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The low O2 content of the Archean atmosphere implies that methane should
have been present at levels ;102 to 103 parts per million volume (ppmv)
(compared with 1.7 ppmv today) given a plausible biogenic source. CH4 is
favored as the greenhouse gas that countered the lower luminosity of the early
Sun. But abundant CH4 implies that hydrogen escapes to space (1space) orders
of magnitude faster than today. Such reductant loss oxidizes the Earth. Pho-
tosynthesis splits water into O2 and H, and methanogenesis transfers the H into
CH4. Hydrogen escape after CH4 photolysis, therefore, causes a net gain of
oxygen [CO2 1 2H2O3 CH4 1 2O23 CO2 1 O2 1 4H(1space)]. Expected
irreversible oxidation (;1012 to 1013 moles oxygen per year) may help explain
how Earth’s surface environment became irreversibly oxidized.

The rise of atmospheric O2 about 2.4 to 2.2
billion years ago (Ga) (1, 2) changed the
course of biological evolution. Yet explain-
ing why O2 rose at that time has remained
elusive, given that bacterial oxygenic photo-
synthesis was present hundreds of millions of
years earlier, before 2.7 Ga (3) and possibly
since 3.8 to 3.5 Ga (2, 4, 5). Oxygenic pho-
tosynthesis splits water into O2 and a reduc-
tant, H. Hydrogen is used to reduce CO2 for
biosynthesis of organic matter. Nearly all
photosynthesized organic matter (today,
;99.9% of ;9000 3 1012 mol C year21)
recombines with O2 via decay or respiration
(6, 7). Conventional thinking has focused on
the burial of organic carbon as the means of
separating photosynthetic reductant from O2,
thereby enabling O2 to accumulate at the
surface. However, the small flux of organic
carbon that escapes oxidation through burial
in sediments [currently ;1013 mol C year21

(6)] would only cause atmospheric O2 to rise
if the burial rate exceeded the rate of O2

consumption by reductants supplied to the
atmosphere and ocean by geologic processes.
Today, these rates appear balanced, with no
atmospheric O2 increase (6). Moreover, at-
mospheric O2 only increases if reductant that
is buried at a preferential rate relative to
oxidized material does not later return to the
atmosphere or ocean, canceling the O2 gains
(e.g., by reduced metamorphic gases or dis-
solution of uplifted, reduced continental sed-
iments). The early environment was suffi-
ciently reducing to scavenge O2 (2), so re-
ductant had to be removed preferentially rel-
ative to oxidized species and irreversibly to

oxygenate the environment permanently.
However, no consensus theory has yet
emerged to explain why O2 rose long after
oxygenic photosynthesis evolved (5), and all
current hypotheses are problematic (8).

We describe an overlooked biogeochemi-
cal mechanism relevant to Earth’s redox his-
tory: the coupling of early oxygenic photo-
synthesis to the escape of H to space. H
escape provides an alternative to organic
burial for removing photosynthetic reductant;
H escape is irreversible, whereas metamor-
phism and continental erosion recycle the
reducing power of buried organic matter. In
the biosphere, H is transferred from photo-
synthetic organics to CH4 by methanogen-
esis. When CH4 is decomposed in the upper
atmosphere by ultraviolet (UV) radiation, H
escapes to space forever. The overall chem-
istry is CO2 1 2H2O 3 CH4 1 2O2 3
CO2 1 O2 1 4H(1space), where the first
reaction sums photosynthesis and methano-
genesis. Currently, Earth gains oxygen by
CH4-induced H escape at a negligible rate
;1010 mol O2 year21 because the rate de-
pends on the magnitude of the atmospheric
mixing ratio of CH4 ( fCH4

), which today is
only 1.7 ppmv.

However, CH4 would have been an im-
portant trace atmospheric constituent before
the rise of O2. Today, the large biogenic flux
of CH4 to the atmosphere is oxidized, limit-
ing fCH4

(9). But in the low-O2 Archean, the
kinetic fates of biogenic O2 and CH4 would
have been reversed. O2 would have been
rapidly consumed and CH4, long-lived. Rapid
reaction of O2 with reduced metamorphic and
volcanic gases and with upwelling oceanic
cations like Fe21 would have buffered O2 to
trace levels (10). Also, organic carbon uplift-
ed onto continents and washed to the ocean
would have been consumed aerobically to
produce CO2 or anaerobically to make CH4

plus CO2, given that Archean elemental car-
bon is found in biologically mediated fine-
grained shales (fixed from CO2) rather than
in detrital form (11). An Archean methano-
gen biosphere is suggested by biochemistry
(12) and carbon isotope evidence (13–15).
Photochemical models suggest Archean fCH4
;200 to 3000 ppmv (16–18) if the biogenic
CH4 production rate were 0.1 to 1 times that
of the present.

Abundant atmospheric CH4 is also the most
plausible explanation for Archean greenhouse
warming (17). A large greenhouse effect is
needed to explain the temperate Archean cli-
mate when solar luminosity was 20 to 30%
lower than today (19). A partial pressure of
carbon dioxide (pCO2) a few hundred to 1000
times larger than today has been postulated (20)
but is improbable for several reasons. Paleosols
indicate that pCO2 was an order of magnitude
too low to counter a fainter Sun at 2.75 Ga (21).
The mineralogy of banded iron formations also
suggests that pCO2 , 0.15 bar at 3.5 Ga (22).
Abundant Archean marine limestone indicates
calcite supersaturation then, as now (7). If
pCO2 were high, oceanic Ca21 should have
been depleted, but evaporitic gypsum (23) sug-
gests otherwise. Also, carbonatization of the
seafloor should have lowered pCO2 to levels
inconsistent with a dominant greenhouse role
(24). Further, Archean geochemical data do not
indicate levels of acid weathering expected for
pCO2 . 100 times present (25). Consequently,
the theory of Archean CH4 greenhouse warm-
ing (Fig. 1A) has become favored (15–18, 21,
24). High CH4 is consistent with relatively low
pCO2 because if a large greenhouse enhance-
ment by CO2 were added to warming dominat-
ed by CH4, CO2 would be consumed in nega-
tive feedback by temperature-dependent weath-
ering of continental silicates. A CH4-mediated
climate can be stabilized in negative feedback
with O2; e.g., increasing fCH4

causes green-
house warming, which increases weathering,
sedimentation, and, ultimately, organic burial
rates. The latter, in turn, increases O2, which
lowers fCH4

.
Climatologically important CH4 (Fig. 1A)

induces rapid escape of H to space. H escapes
from the base of Earth’s exosphere (;300- to
500-km altitude), where H atoms are the only
H species (26, 27). Several processes rapidly
depopulate H atoms from the exosphere so
that diffusive supply of H from lower levels
is the rate-limiting step (27). The total con-
centration of all H-bearing compounds in the
lower stratosphere, ftotal (5 fH2O 1 fH2

1
2fCH4

. . .) (expressed as H2 molecules for
these calculations) determines the diffusion-
limited H escape rate, fescape, given by (27):

fescape 5 2.5

3 1013 ftotal (H2 molecules cm22 s21) (1)

Today, fescape is trivial (Table 1) because
ftotal is small, given only 3 ppmv water vapor,
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1.7 ppmv CH4, and 0.55 ppmv H2 in the
lower stratosphere. Upward transport of H
in H2O, in particular, is limited by a “cold
trap” at the tropopause where water con-
denses. Because such a cold trap is a gen-
eral feature of paleoatmospheres, oxygen
production by abiotic H escape from water
vapor can be neglected (7 ). However, CH4

is not cold trapped and increased H escape
is unavoidable with increased fCH4

. If Archean
fCH4

were ;1000 ppmv (16–18), fescape

would be ;300 times higher than today’s
flux (Table 1). Large CH4-induced H escape

rates and significant global oxidation rates are
general consequences of a high Archean fCH4
(28).

Escape of H to space oxidizes Earth as a
whole. Oxidation is expressed in the geochemi-
cal reservoir where the H originates, although
the resultant oxidized species may subsequently
be transported to other reservoirs. We explain
how oxidation results from CH4-induced H es-
cape in three cases: (i) when CH4 originates
from organic matter produced by oxygenic pho-
tosynthesis, (ii) when CH4 derives from organic
matter produced by anoxygenic autotrophic
metabolisms, and (iii) when CH4 derives from
mantle H.

In (i), oxygen is gained irreversibly be-
cause photosynthetic splitting of water pro-
duces O2 and H, and CH4-mediated escape
removes the H forever. This process is sche-
matically represented in Eqs. 2 through 5.
Oxygenic photosynthesis can be summarized
as

CO2 1 H2O 5 CH2O 1 O2 (2)

where CH2O represents organic matter. Pro-
duction of CH4 mainly derives from symbi-
otic communities of heterotrophs and meth-
anogens that decompose organic matter (13).

2CH2O 5 CH4 1 CO2 (3)

H escape to space via CH4 can be represented
as follows, noting that the detailed photo-
chemistry (16) is rather more complex.

CH4 1 hn3 C 1 4H(1space) (4a)

C 1 O2 5 CO2 (4b)

Thus, the combined effect of the early bio-
sphere, using the processes of oxygenic pho-
tosynthesis (Eq. 2), methanogenesis (Eq.
3), and H escape (Eq. 4), is described by the
sequential sum of these processes [(2 3
Eq. 2) 1 Eq. 3 1 Eq. 4]. This gives the

overall chemical transformation of the
crustal system:

2H2O 1 “the biosphere”

1 hn3 O2 1 4H(1space) (5)

Consequently, the irreversible gain of oxygen
from CH4-induced H escape derives from
water split by oxygenic photosynthesis. A
more circuitous route to oxygen gain occurs
when buried organic matter devolatilizes by
diagenesis or metamorphism to produce H2

(e.g., via CH2O 1 H2O 5 2H2 1 CO2) or
CH4 (via 2CH2O 5 CH4 1 CO2). During the
Archean, if methanogens produced CH4 by
consuming metamorphic H2, or if CH4 or H2

fluxed directly from decomposed buried or-
ganic matter, the net effect of Eq. 5 would
still apply.

Case (ii) concerns CH4 originating from
anoxygenic photoautotrophs or chemoauto-
trophs. Such prokaryotes use H2, reduced sul-
fur, or Fe21 as electron donors in biosynthe-
sis (e.g., H2S 1 CO2 1 hn 3 CH2O 1
H2O 1 S). If CH4 were derived from such
organic matter, H escape would leave behind
oxidized S or Fe, contributing to net crustal
oxidation (though free O2 is not produced),
provided that the electron donor originated
from the crust (e.g., metamorphic H2S). If the
electron donor fluxed from the mantle, case
(iii) would apply.

Case (iii) concerns methanogenic CH4 de-
rived from mantle hydrogen in volcanic gas-
es. Volatile fluxes to the atmosphere have
probably been dominated by recycling of
crustal sedimentary rocks since the early Pro-
terozoic or earlier via metamorphism or vol-
canism (29, 24). Volcanic gases derive from
magma, whereas metamorphic gases are not
directly associated with a silicate melt. Man-
tle minerals buffer the redox state of volcanic
gases, and when H is exported mantle min-

Fig. 1. (A) The calculated mixing ratio of CH4
(left ordinate axis) needed to maintain a sur-
face temperature of 290 K on early Earth
against the lower luminosity of the young Sun.
We used the radiative modeling of (17, 18). The
mean global temperature in the Archean is
assumed to be similar to that of the present
day, given the absence of extensive glaciation
in the Archean and constraints from Archean
evaporites (7, 23). CH4 mixing ratios are calcu-
lated at three fixed levels of pCO2 as indicated,
where PAL indicates present atmospheric lev-
el ' 0.0003 bar. The upper pCO2 limit, pCO2 5
0.01 bar, is derived from paleosols for 2.2 to 2.8
Ga at 290 K (21) and yields a lower limit on
CH4. The irreversible oxidation fluxes due to
escape of hydrogen, corresponding to particular
levels of CH4, are expressed as molar O2 equiv-
alents per year (right ordinate axis). We end
calculations at 2.4 to 2.3 Ga, assuming that
CH4 levels collapsed upon the rise of atmo-
spheric O2. (B) Integrated oxidation due to
CH4-induced H escape to space, using the three
atmospheric CH4 levels from (A), shown with
matching labels. Cumulative oxidation and the
observed molar oxygen inventory in the conti-
nental crust (Table 2) are comparable.

Table 1. Earth’s oxygen fluxes.

Type of flux
Amount

(31012 mol O2 year21)
Action

Modern organic carbon burial flux* 10 6 3 Production
Modern pyrite burial flux† ;1.7 Production
Modern Fe31 subduction flux to the mantle‡ 0.5 to 1.9 Loss
Modern continental oxidative weathering

flux*
7.5 6 1.7 Loss

Modern flux of reduced volcanic and
metamorphic gases*

3 6 1 Loss

Modern net photosynthetic flux to the
atmosphere (assuming the burial fluxes
and oxidative losses are balanced by
negative feedbacks)*

;0 Net change

Modern gain from H escape to space§ 0.02 Absolute gain
Archean gain from H escape to space, with

100 to1000 ppmv CH4§
0.7 to 7.0 Absolute gain

*From (6). †FeS2 is produced by bacteria that use sulfate and Fe31 as oxidants, with 15/8 moles of O2 liberated per
mole of sulfur (60). ‡The estimated net flux to the mantle is 3.8 3 1014 g Fe31 year21 (36). Fe31 derives from
hydrothermal alteration of oceanic basalt; i.e., 22FeO 1 2SO4

2– 1 4H1 5 FeS2 1 7Fe3O4 1 2H2O. Because 14 moles
of Fe31 are subducted for 2 moles of SO4

2–, the net O2 flux to the mantle is (3.8 3 1014 g/56 mol Fe31 year21)/14 5
0.5 3 1012 mol O2 year21 if the SO4

2– had been derived from oxidation of SO2 or 1.9 3 1012 mol O2 year21 if the SO4
2–

had been derived from oxidation of H2S. §Calculated from Eq. 1.
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erals are oxidized to satisfy redox balance
(30). Redox-sensitive elements in igneous
rocks show that the oxygen fugacity of vol-
canic gases has not changed by more than 0.5
log10 units since 3.6 Ga (31), presumably
because of effective mantle buffering. These
data rule out the suggestion that mantle oxi-
dation was an important factor in the rise of
O2 (30, 32). Although mantle H can escape
directly to space, biogenic CH4 may have
helped prevent sequestration of mantle reduc-
tant into the Archean crust. If mantle H had
transferred reducing power to solids in the
crust (e.g., if H were efficiently scavenged by
bacteria to reduce CO2 to organic matter), the
crust could have become gradually more re-
duced. However, fermentation of organic
matter to CH4 and resultant H escape would
allow mantle H to be lost to space.

In all cases discussed above, Earth’s over-
all oxidation state increases. Case (iii) oxidiz-
es the mantle. Cases (i) and (ii) oxidize the
crust (e.g., as Fe2O3 or SO4

2–), which, in the
long-term, must shift kinetics to favor the
survival of free O2. Free O2 is only produced
in case (i), which includes oxygenic photo-
synthesis. Oxygenic photosynthetic bacteria
extract H from water, making them indepen-
dent of abiotic sources of reductants; they
would have dominated global productivity
once they evolved (33), rendering the other
cases inconsequential for effecting significant
crustal redox changes. Biogenic CH4 would
be the major H-bearing species in the Arche-
an stratosphere (16–18), so Eq. 1 can be
rewritten with ftotal ' 2fCH4

foxidation ' 13.1 fCH4
(O2 mol m22 year21)

(6)

Thus, if fCH4
in the Archean atmosphere

were ;100 to 2000 ppmv (Fig. 1A), the
effective flux of O2 into the crust due to
CH4-induced H escape would be (0.7 to
14) 3 1012 mol year21. This rate is com-
parable in magnitude to the (reversible)
modern O2 flux due to organic burial of
;1013 moles O2 year21 (Table 1) and would
produce (0.7 to 14) 3 1021 mol O2 in ;109

year, comparable to the continental crustal
reservoir of excess oxygen (Table 2).

Large oxygen inventories include the con-
tinental crust (Table 2) and mantle. The con-
tinental crust’s excess oxygen mostly resides
in altered and metamorphosed igneous rocks.
Archean basalts have a weight ratio Fe31/
SFe several times greater than fresh basalt,
for which Fe31/SFe ; 0.07. Metamorphic
oxidation of crustal ferrous minerals by water
alone requires extreme volumes of water
(e.g., ;1500-g water per 1-g magnetite to
oxidize magnetite to hematite at 5 kbar and
630°C), so SO4

2– or O2 are often implicated
as oxidants whenever Fe31 is observed to

increase (34). Transfer of the oxidizing pow-
er of SO4

2– to Fe31 is consistent with low
SO4

2– in Archean oceans relative to today’s
oceans (35). In the ocean, continuous oxida-
tion facilitated by CH4-induced H escape
would have produced Fe31 from oceanic
Fe21. Thus, O2 would have been exported to
the mantle through past subduction of Fe31

(Table 2). Ferric oxides are denser than man-
tle material with a refractory tendency for
deep subduction (36), so it is probable that
surviving Archean iron formations are a mere
fraction of those originally deposited.

The oxidation caused by H escape for
greenhouse CH4 levels (Fig. 1A) can be
integrated over time and compared with the
crustal oxidized inventory (Table 2). For
the fCH4

required for warming the early
Earth, cumulative oxidation [Fig. 1B,
curves (i) and (ii)] is consistent with esti-
mates of the continental crust’s inventory
of oxygen (Table 2).

Net oxidation of crustal rocks in the past
would have increasingly enhanced the kinetic
stability of atmospheric O2. Today, most de-
gassed carbon volatiles are recycled via meta-
morphism rather than volcanism. The ratio of
metamorphic to volcanic gas fluxes has likely
increased through time (7, 24). Thus, models
that equate the early Earth’s H escape flux to
fluxes of reductant from the mantle (30, 32)
are incorrect. These models neglect metamor-
phic and continental sources of reductant,
providing no explanation for the net oxidized
state of crustal reservoirs in Table 2. If crustal

volatile recycling dominates, to first order
CH4-induced H escape to space would oxi-
dize the crust by Eqs. 5 and 6. Because the
residence time of Archean O2 would be small
(10, 16), O2 would be sequestered into oxides
(e.g., Fe2O3, SO4

2–, CO3
22). Unlike volcanic

gases, the average oxidation state of meta-
morphic gases is independent of mantle buff-
ering and is controlled largely by the oxida-
tion state of the original sediments (34, 37).
Thus, the oxidation state of Archean meta-
morphic gases would have increased over
time as crustal rocks became more oxidized
(37). Reductants released by metamorphism
(H2, CO, H2S, etc.) would remove atmo-
spheric O2, enabling high fCH4

(10) and rapid
H escape. Oxidation resulting from such H
escape would be expressed inside the crust
where the reductant originated. The surface
would remain weakly reducing, although riv-
er fluxes of reductant to the ocean from
weathering would presumably have declined
with increasing oxidation of uplifted rocks.
However, the details of metamorphic or
weathering redox changes are superfluous:
Le Châtelier’s principle demands that atmo-
spheric and oceanic O2 sinks decrease as the
crust is irreversibly oxidized via CH4-
induced H escape. This is consistent with the
prevalence of methanotrophs in the late Ar-
chean using increasing levels of dissolved
SO4

2– or O2 (12). Then, in the early Protero-
zoic, peak iron formation deposition occurred
(7) and sulfate-reducing bacteria became in-
creasingly ubiquitous (35).

Table 2. Oxidized and reduced reservoirs in Earth’s continental crust. The Earth’s exterior contains Fe2O3
and SO4

22, which arose via oxidation, and atmospheric O2. Oxidized species are expressed in terms of the
O2 moles required for their production; e.g., each mole of Fe31 needed 1/4 mole O2 to be produced from
Fe21. Reduced species are expressed in terms of O2 moles required for their consumption. By, billion
years; ROX, oxygen in the continental crust; AOS, atmosphere, ocean, and sedimentary; RAOS, oxygen in
the AOS system; RredC, reduced carbon in the continental crust.

Species and reservoir
Amount

(31021 mol O2 equivalent)
Size comparisons

Oxidized species
O2 in the atmosphere and ocean* 0.037 0.07 3 RAOS
Fe2O3, SO4

22, and O2 in the AOS system† 0.55 RAOS
Total Fe31 in the continental crust‡ 1.7 to 2.6 (3.1 to 4.7) 3 RAOS
Total ROX (excluding oxygen transferred

into carbonates)
2.0 to 2.9 (1.5 to 2.2) 3 RredC

Net subducted Fe31 loss over 4 By§ 2.0 to 7.6 1.5 to 5.8 3 RredC
Carbonate in the continental crust\ 2.2 to 7.1

Reduced species

Reduced carbon in the AOS system¶ 0.56
Reduced carbon in felsic instrusives,

gneisses, schists and felsic granulites¶
,0.78

Total RredC ,1.3 RredC

Total reduced carbon delivered during 4.4
to 3.8 Ga#

;1 ;RredC

*From (6). †From (61). ‡Much of this Fe31 is in continental basalt that has been oxidized metamorphically or
hydrothermally within the crust (36). §Crude estimate assuming today’s net subduction rate (Table 1), uniformly
extrapolated over 4 By, without accounting for the opposing influences of lower oceanic sulfate and higher seafloor
spreading on early Earth. \Lower estimate from (62), upper estimate from (61). ¶From (62). #The total
accreted mass from impact bombardment would be on the order of 1021 kg (63). Celestial dynamics and D/H in the
ocean suggest that impacts were due to asteroids, not comets. To arrive at this estimate, we assumed ;1% average
reduced carbon content of asteroids.
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That the crust is at a higher oxidation state
than the mantle from which it was derived
suggests irreversible oxidation. Crustal oxygen
fugacity varies by orders of magnitude from
fayalite-magnetite-quartz (FMQ) to hematite-
magnetite (HM) buffer levels (38), whereas the
upper mantle is near FMQ (39). Furthermore,
photosynthesis produces organic carbon bal-
anced by oxides of sulfur and iron (after loss of
O2), so buried organic carbon should balance
oxidized materials in the crust if no H escape
occurred. However, estimates of the continental
crustal inventory show that oxidized species
exceed reduced carbon by a factor of 1.5 to 2.2
(Table 2). This budget excludes oxidized car-
bon, some of which may have started out re-
duced; i.e., when reduced carbon delivered by
impact bombardment during 4.4 to 3.8 Ga is
subtracted from the reduced inventory, the
dominance of oxidized species increases. Time-
integrated subducted losses of Fe31 to the man-
tle may also further increase the redox imbal-
ance (Table 2). A greater oxidized versus re-
duced inventory can be reconciled only by H
escape, or preferential subduction of organic
carbon relative to oxidized species, or both.
Subduction of 12C-enriched graphitic carbon
relative to carbonate is unlikely because marine
carbonates do not become increasingly 12C-
depleted with geologic time (40). But we can-
not discount enhanced subduction of graphitic
carbon relative to subduction of oxidized spe-
cies as a whole. Any irreversible, preferential
loss of reductant into the mantle would be
identical in its crustal redox effect to H escape
to space. Nonetheless, oxidation due to CH4-
induced H escape is chemically expected and
can reconcile the observed redox inventory on
its own. Other geochemical evidence of CH4-
induced H escape may reside in low values of
D/H (deuterium/hydrogen) inferred for Arche-
an seawater (41).
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We report on the direct observation of an oscillating atomic current in a
one-dimensional array of Josephson junctions realized with an atomic Bose-
Einstein condensate. The array is created by a laser standing wave, with the
condensates trapped in the valleys of the periodic potential and weakly coupled
by the interwell barriers. The coherence of multiple tunneling between adjacent
wells is continuously probed by atomic interference. The square of the small-
amplitude oscillation frequency is proportional to the microscopic tunneling
rate of each condensate through the barriers and provides a direct measurement
of the Josephson critical current as a function of the intermediate barrier
heights. Our superfluid array may allow investigation of phenomena so far
inaccessible to superconducting Josephson junctions and lays a bridge between
the condensate dynamics and the physics of discrete nonlinear media.

The existence of a Josephson current through a
potential barrier between two superconductors
or between two superfluids is a direct manifes-

tation of macroscopic quantum phase coher-
ence (1, 2). The first experimental evidence of a
current-phase relation was observed in super-
conducting systems soon after the Josephson
effect was proposed in 1962 (3), whereas veri-
fication in superfluid helium has been presented
only recently owing to the difficulty of creating
weak links in a neutral quantum liquid (4, 5).
The experimental realization of Bose-Einstein
condensates (BEC) of weakly interacting alkali
atoms (6, 7) has provided a route to study
neutral superfluids in a controlled and tunable
environment (8, 9) and to implement novel

1European Laboratory for Non-Linear Spectroscopy
(LENS) and 2Istituto Nationale per la Fisica della
Materia (INFM), L.go E. Fermi 2, I-50125 Firenze, Italy.
3Dipartimento di Fisica, Università di Firenze, L.go E.
Fermi 2, I-50125 Firenze, Italy. 4Dipartimento di
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