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Chapter 1

Radiometric Dating and
Least-Squares Line Fitting

1.1 Introduction

How do you fit a line through a scatter of data points on a piece of graph
paper? If you have just two data points and have a sharp pencil, then the
job is easy: just connect the two points with a stiff ruler and draw the line.
Suppose you have three or more data points which you believe should lie on
a straight line, but actually don’t. In this situation it is likely that you will
attempt to fit a line through the data points by minimizing a least-square
measure of the misfit between the data points and the line.

This kind of problem arises in all branches of science and engineering.
We shall learn about linear least-squares inverse methods using a very simple
example derived from geochemistry (radiometric dating). This example has
historical significance because it involves the theory and data which were
used to determine the age of the Earth and resolve a controversy which
lasted throughout the ninteenth century.

10



1.2 Debate Over the Age of the Earth

One of the turning points in the history of science was the development of an
absolute time scale for geologic history. Before this absolute time scale was
developed, the age of the Earth was the subject of great debates involving
scientists from many disciplines. The discovery of radioactive elements ended
this debate and gave the scientific viewpoint that the earth is 4.5 billion years
old. A good review of this debate may be found in van Andel [1985].

Before the late 1700’s, scientists and philosophers of Western cultures
generally looked towards the Old Testament of the Bible for data needed
to determine the age of the earth. Isaac Newton (1642-1627), the father of
classical mechanics, for example, spent much of his time studying the biblical
scriptures to estimate the time at which geologic history began. By counting
the generations listed in the Book of Genesis, Newton and other scholars
estimated that the earth was roughly 6000 years old.

In the late 1700’s, a Scottish gentleman named James Hutton (1726-1797)
noticed that certain predictions made by the Bible about the appearance and
location of rocks were falsified by direct observations (e.g., sandstones could
be found within granites, rock strata could be seen resting on the eroded
remnants of former mountain ranges, etc.). Hutton proposed that the biblical
account of earth geology was misleading and that the age of the earth was
much longer than the 6000-year figure proposed earlier. Hutton believed,
in fact, that the earth’s age was so great that it would defy quantitative
determination by scientific means. This idea lasted through the early 1800’s,
and gave rise to a number of related ideas including Darwin’s (1809-1882)
notion of natural selection and the evolution of life.

During the latter half of the 19th century, Lord Kelvin (known as William
Thompson, 1824-1907, before his elevation to peerage by Queen Victoria)
performed a mathematical calculation that stunned the scientific world and
led to the replacement of Hutton’s point of view concerning the determinabil-
ity of the earth’s age. Kelvin, an important physicist of his day responsible for
many theoretical developments in thermodynamics, realized that the Earth,
like any other object in the physical universe, must obey the laws of ther-
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modynamics. In particular, the earth and it’s internal heat must exemplify
the conservation of heat energy. With this realization, Kelvin suggested that
the Earth’s age was not “indeterminant” as Hutton suggested, but could
be measured by considering the physics which governed the way the Earth
cooled from its initial, molten state.

Kelvin’s calculation (which he reported in a scientific paper published
in 1864) involved the temperature profiles measured in deep mine shafts
and wells scattered throughout England and Scotland. These temperature
profiles showed then, as they do today, that the ambient rock temperature
increases by several degrees with every 100 m increase in depth below the
earth’s surface. If the deep earth is so warm, Kelvin reasoned, then it couldn’t
have been cooling down from some original molten state for very long. Using
the mathematics which we will review in Chapter (6), and data from a deep
well in Edinburgh, Scotland, Kelvin estimated the Earth’s age to be 20-100
million years. Kelvin’s theory created a crisis in geology because many other
theories (such as Darwin’s theory of natural selection) depended on earth
being much older than Kelvin’s figure.

For 50 years, this crisis went on unresolved. It was only after the discovery
of radioactive elements at the beginning of the 20th century that the impasse
between Kelvin’s relatively young Earth and the prevailing view of geologists
familiar with other indicators of geologic time was resolved. Once it was
determined that heat was liberated from radioactive radium salts during the
process of radioactive decay, the assumptions Kelvin used to estimate the
age of the Earth were found to be incorrect.

Kelvin assumed that the heat now flowing out of the earth’s interior
was entirely primeval, i.e., was left over from the assembly of the planet
from the hot gasses and dust of the early solar nebula. He assumed that
no new heat could be added to the earth to replace that which seeped out
by conduction through the crust. In 1896, Becquerel (1852-1908) discovered
an element called radium (Ra). Soon thereafter, Mdm. Marie Sklodowska
Curie (1867-1934) determined the significance of this element and others
commonly found within the earth which are subject to a newly discovered
phenomena called radioactive decay. Heat is emitted when radium, uranium,
thorium and other elements undergo nuclear decay. The minor abundance

12



of radioactive elements within the earth’s interior is sufficient account for
the heat flow Kelvin observed in the mine shafts without requiring that the
age of the earth be as short as Kelvin had estimated. Kelvin was forced to
retract his estimate of the earth’s age in 1904, and admit that the geologists
who held-out for a much older Earth were correct.

The discovery of radioactive decay became significant in a more crucial
way in the middle of the twentieth century when when efforts were begun to
determine an absolute geologic time scale. Much of this work was done at
the University of Chicago by scientists who were formerly employed by the
Manhattan Project (a government sponsored project during World War II
designed to create the atom bomb). Harold Urey (1893-19 ), his students, and
colleagues determined a way to recognize the existence of natural radiometric
clocks found within natural rock samples. In 1956, a former University of
Chicago student, Clair Patterson, determined that the earth and all of the
meteorites that have fallen on the earth formed (differentiated from a well-
mixed solar nebula) at the same time. This age, 4.5 billion years, today
stands as the best estimate of the span of geologic history. We will next
learn more about Patterson’s methodology and repeat in the lab exercises
associated with this Chapter his data analysis as an example of a least-
squares inverse problem.

1.3 Radioactive Decay

In the examples of radiometric dating discussed below, we will consider three
distinct radioactive decay series: rubidium to stronsium decay (87Rb →87Sr),
and two uranium to lead decays (238U→206Pb and 235U→207Pb). Each of
these decay series can be described by the same mathmatical law. Consider
a rock which contains one or more radioactive elements. Denoting the con-
centration of a radioactive parent element by P and the concentration of the
stable daughter element into which the parent element decays by D, we have

P (t) = Po exp(−λt) (1.1)

D(t) = Do + (Po − P (t)) (1.2)
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where t is time, Po and Do are initial concentrations of P and D at t = 0,
and λ is a decay constant that is inversly related to the half-life. In the
exercises associated with this chapter, you will refer to the decay constants
for 87Rb→87Sr (λ = 1.42 × 10−11 per year), 238U→206Pb (λ = 1.55 × 10−10

per year), and 235U→207Pb (λ = 9.85× 10−10 per year) [Faure, 1986].

1.4 Radiometric Dating

On first glance, (1.1) might seem to provide an easy way to date rocks to
determine the time since their formation. If you knew Po, and could measure
P , then you could simply evaluate (1.1) to determine the age of the rock, T :

T =
− ln P

Po

λ
(1.3)

This method has no promise in practical applications for the very simple
reason that Po is never known.

40K → 40Ar dating

In some circumstances, a radiometric age can be determined by considering
the differences in chemical behavior between the parent and the daughter
elements. In the 40K → 40Ar decay series, the daughter element is an inert
gas which easily effuses from molten rocks. The age of igneous rocks (rocks
which form from a melt) can be determined by measuring the amount of the
inert daughter gas which builds up within the the rock after gas effusion is
effectively shut off by solidification. In 40K→40Ar decay (λ = 5.54 × 10−10

per year) for example, Ar is a noble gas which has a zero concentration while
the rock is molten. Once the rock becomes solid, 40Ar gas that is created by
40K decay is locked in.

In this circumstance, it is easy to manipulate Eqn. (1.1) and Eqn. (1.2)
to yield

D

P
= exp(λT )− 1 (1.4)
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where T is now interpreted as the age of the rock since it solidified. This age
is readily determined by measuring the ratio of the concentration of daughter
to parent (40A to 40K):

T =
ln(1 + D

P )

λ
(1.5)

Potasium-argon dating is used in many applications to date igneous rocks
that are associated with volcanic lava flows. By correlating lava flow ages
with the magnetic-reversal and biostratigraphic chronologies, most sedimen-
tary rocks currently found on the earth can be dated. The trouble with this
form of dating is that it doesn’t give the age of the earth’s formation as a
planet, only the ages of the oldest lava flows. (This method also suffers from
the fact that Ar gas can escape from even the most solid rocks, thus ages
determined by this method tend to under estimate the true age of the igneous
rock.)

1.5 Isochron Method

Another way to overcome the problem of not knowing the initial concentra-
tion of the parent element is known as the isochron method [Faure, 1986]. To
see how this works, we divide (1.2) by the equation which governs the time-
evolution of the concentration of a stable isotope of the daughter element:

Ds(t) = Dso (1.6)

and use (1.1) to get
D

Ds
=

Do

Ds
+

P

Ds
(eλT − 1) (1.7)

Two advantages are gained in deriving the above expression which involves
isotopic ratios. First is that only one initial condition needs to be known
to solve for T (i.e., Do/Ds). The second is that the laboratory practices
needed to measure isotopic ratios of the daughter element are generally less
stringent than for the measurement of absolute concentrations of the isotopes.
(In other words, the chemist can spill half of a sample on the floor and still
measure D/Ds to the same precision.)
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Notice that the equation for D
Ds

as a function of P
Ds

in (1.7) is that of a

line. The intercept of this line is (Do

D , and (eλT − 1) is the slope. This line is
called the isochron. If D

Ds
points for various minerals within a given rock were

to be plotted as a function of P
Ds

on a graph, the data points would lie on a
line. (To make this point as clearly as possible, we assume that measurement
error and other disturbances to the rock samples do not distort the location
of the data points. We consider the effects of measurement uncertainty in
the next chapter.) The slope of the isochron, α, is related to T , the age
of the rock since an initial time when D = Do (I will explain the physical
significance of this so-designated initial time below):

α = (eλT − 1) (1.8)

and

T =
1

λ
ln(α + 1) (1.9)

Notice that T can be determined without ever knowing Do

Ds
. Only the slope of

the line is important in determining the age of the rock. It is easy, however,
to determine Do

Ds
as well simply by locating the intercept of the isochron on

the P
Ds

-axis of the plotted data. A diagram displaying the concept behind
the isochron method of radiometric dating is provided in Fig. (1.1).

Given that Do

Ds
does not change with time, and that D

Ds
and P

Ds
are both

observable by laboratory analysis on samples collected today, one can deter-
mine the age of a rock by finding the slope of the isochron. This task will
provide the entré to linear least-squares inverse methods in the discussion
which follows.

Before considering an example of the isochron method of radiometric
dating, we will need to add one more twist to the technique for determining
the age of rock using isotopic measurements. This additional twist was used
by Patterson [1956] to determine the 4.5-billion year age of the earth using
two independent uranium to lead decay series as measured in meteorites.
The motivation for Patterson’s improvement of the isochron method is that
it is very difficult to measure a P/Ds ratio compared to a D/Ds ratio. For
example, many elements that are rich in lead isotopes have very little affinity
for uranium, thus, to get the age of an entire planet (the earth) it would be
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best to devise a dating strategy that depended only on the measurement of
lead isotopes. Fortunately, this is possible due to the fact that there are
two different isotopes of uranium which decay independently at two different
rates to two different lead isotopes.

Consider the 238U→206Pb (λ = 9.85 × 10−10 per year) , and 235U→207Pb
(λ = 1.55× 10−10 per year)decay series. Each seperately satisfies (1.7), thus

1D

Ds
=

1Do

Ds
+

1P

Ds
(eλ1T − 1) (1.10)

2D

Ds
=

2Do

Ds
+

2P

Ds
(eλ2T − 1) (1.11)

Here, we take Ds to be the concentration of a stable lead isotope, say 204Pb. If
we subtract the ratio of the initial concentration to the stable concentration
from both sides of (1.10) and (1.11) and then divide (1.10) by (1.11), we
obtain (

1D

Ds
−

1Do

Ds

) (
2D

Ds
−

2Do

Ds

)−1

=

(
1P
2P

) (
eλ1T − 1

eλ2T − 1

)
(1.12)

following the same arguement as before, we see that the ratio
1D
Ds

is a linear

function of
2D
Ds

, and that the slope of the line povides a means to estimate
the age of the rock:

α =

(
1P
2P

) (
eλ1T − 1

eλ2T − 1

)
(1.13)

Notice that the expression in (1.13) involves the ratio of
1P
2P . This ratio

happens to be the same in all meteorites: 1
137.8

.

Unfortunately, it is not possible to invert (1.13) to get a tidy expression
for T . We will discuss the inversion of (1.13) for T once α is known after first
describing the least-squares line fitting procedure that provides us with the
estimate of α when there are more than two points on the plot of 1D/Ds vs.
2D/Ds. The object of the lab exercises associated with this chapter will be
to use (1.13) to reproduce Patterson’s famous calculation of the age of the
earth.
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1.6 Example: The Age of a Lunar Basalt

As an example of the isochron method, we determine the age of a lunar
basalt collected by the Apollo 12 astronauts using 87Rb→87Sr decay with
86Sr serving as the stable daughter isotope [Nyquist et al, 1979]. The data
we will use is presented in Table (3) of Nyquist et al.’s paper, and a plot of
the data points is displayed in Fig. (1.2). The data represent the various
measured isotopic ratios of several mineral separates of the whole rock sample
that were extracted for the radiometric dating analysis: plagioclase (Plag),
pyroxene (Px), ilmenite (Ilm), and the bulk rock itself (WR). Close inspection
of the plot of data in Fig. (1.2) suggests that the four data points do not
exacly lie on the same line. This is due to measurement error. (We sall
postpone the discussion of measurement error to the next chapter.) Casual
inspection of these data and an eye-ball guess suggest a slope for the isochron
on the order of 0.04. This rough estimate of the slope corresponds to an age
of 2.7-billion years using Eqn. (1.9). (The date determined by Nyquist and
colleagues is 3.29 ± 0.11 billion years.) Our goal, however, is to determine
these parameters as systematically and as accurately as possible. We shall
do so by solving a linear inverse problem.

1.7 Linear Algebra of Line Fitting

Let’s define the vector d to be the column vector of 87Sr/86Sr values obtained
from the mineral separates and the whole rock. Using the data in Table (3)
of Nyquist et al., we have:

d =




0.70096
0.69989
0.70200
0.70490


 (1.14)

The vector m is defined to be the column vector which contains the estimate
of the isochron’s slope α and intercept β:

m =
[
α
β

]
(1.15)
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Figure 1.2: Lunar-basalt isotopic-ratio data of Nyquist et al. [1979].
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The relation between the model vector m and the data vector d is

Am = d (1.16)

where,

A =




Rwr 1
RPlag 1
RPx 1
RIlm 1


 =




0.0296 1
0.00537 1
0.0492 1
0.1127 1


 (1.17)

where Rxx denotes the 87Rb/86Sr value of the xxth mineral separate.

Notice that the matrix A to be inverted for m in Eqn. (1.16) is not
square. It has four rows but only two columns. this reflects the fact that
there are more data points than model parameters. Thus the problem is said
to be overdetermined. In circumstances where measurement error scatters
the data points so that they are not colinear, Eqn. (1.16) cannot be solved
exactly.

1.7.1 LU Decomposition

Suppose that we wish to determine the slope and intercept of the lunar
basalt isochron using only two data points corresponding to the ilmenite
and plagioclase mineral separates (the two end points in Fig. 1.2). In this
circumstance, d and m have the same dimension (2), and A is a square,
2 × 2 matrix. One of the classic techniques for solving a linear system of
equations is called the LU-decomposition. (This method also goes by the
name of Gaussian elimination and back substitution.)

The main idea behind the LU-decomposition can be seen by considering
a square matrix U which contains only zeros below the diagonal:

U =
(

u11 u12

0 u22

)
(1.18)

Suppose we wish to solve the following linear equation involving the matrix
U:

Ux = y (1.19)
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or (
u11 u12

0 u22

) (
x1

x2

)
=

(
y1

y2

)
(1.20)

where x and y are arbitrary column vectors, y has known values and x is
the desired vector to be solved for. Due to the upper-triangular structure of
U, we can immediately perform a back substitution to give:

x2 =
y2

u22
(1.21)

and
x1 =

y1

u11
−

x2u12

u11
(1.22)

The reason the solution is so easily found is that we only encounter one
unknown at a time during each back substitution step. If we had a lower-
triangular matrix L, we could solve a similar problem by performing forward
substitution.

The simplicity offered by the structure of upper- and lower-triangular
matrices can be exploited to solve general square matrices that have non zero
determinants. This is because for any matrix A it is possible to construct
an upper- and a lower-triangular matrix, U and L respectively such that

A = LU (1.23)

The triangular structure of L and U is exploited to solve for the slope and
intercept of the isochron in the following way:

Am = LUm = d (1.24)

First, define a temporary vector y such that

Ly = d (1.25)

We use forward substitution to solve for y:

y1 =
d1

l11
(1.26)

y2 =
d2

l22
− y1l21

l22
(1.27)
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Next, we use back substitution to sove for m in terms of the now-known y:

m2 =
y2

u22
(1.28)

m1 =
y1

u11
− m2u12

u11
(1.29)

The LU-decomposition of the 2× 2 matrix A obtained when we use only
two data points to determine the slope and intercept of the lunar basalt
isochron is found by judiciously multiplying rows of A by constants and
subtracting various rows from various other rows. First add −a21

a11
times the

first row to the second row. This gives:

(
a11 a12

0 a22 − a21a12

a11

)
(1.30)

This is the matrix U that we seek. When the first row (multiplied by a
factor) was added to the second, the corresponding elements of d should also
be added to give: (

d1

d2 − −a21

a11
d1

)
(1.31)

Thus,

L =
(

1 0
a21

a11
1

)
(1.32)

One can readily see that
LU = A (1.33)

It is easy to see why the construction of the LU-decomposition depends
on the determinant of A being nonzero. Since the L we constructed has only
ones on its diagonal, failure of the LU-decomposition depends on there being
a zero diagonal element of U. When this happens, the back substitution step
fails due to an attempt to divide by zero. It is easily shown that

det(A) =
2∏

i=1

uii (1.34)

Thus a non-zero determinant assures us that none of the diagonal elements
of U will be zero.
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1.8 Least-Squares Inverse

One way to overcome the problem that there are more than two data points
in the lunar basalt problem is to perform a least-squares determination of m
in Eqn. (1.16). To do this, we define a performance index J which measures
the distance between the data vector d and the predicted data vector dp

associated with a given estimate of m

J =
1

2
(dp − d)′ · (dp − d) (1.35)

where the prime denotes the transpose. Notice that Eqn. (1.18) represents
the dot-product between two difference vectors. This dot-product yeilds the
classic sum of squares that the least-squares method is named for. A map
of J is displayed in Fig. (1.3). The goal of this section is to determine an
efficient and automatic algorithm for finding the m which minimizes J .

1.8.1 Using Calculus to Find the Minimum of J

To minimize J , we must find an m which satisfies

∂J
∂mi

= (Am− d)jaji

= ajiajkmk − ajidj

= 0 (1.36)

Observe that the summation convention is used; thus indicies j and k are
summed over their respective ranges (in this case from 1 to 4 for j, and 1 to
2 for k).

The index notation used above can be written in a more illuminating
fashion by using matrix-vector multiplications. The km’th component of the
product of two matrices A and B can be expressed as:

(AB)km = akibim (1.37)

Also, the ij’th component of the transpose A′ of A can be written:

a′ij = aji (1.38)
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Figure 1.3: Contours of the least-squares performance index J as a function
of the slope and intercept of the isochron.
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Thus the jk’th component of the product of A′ and A can be written

(A′A)jk = ajiajk (1.39)

Using Eqn. (1.39), it is now easy to see that Eqn. (1.36) can be written

A′Am−A′d = 0 (1.40)

Thus,
m = (A′A)−1A′d (1.41)

The matrix product (A′A)−1A is refered to as the least-squares inverse of
the rectangular matrix A. Notice that A′A is a square matrix that is also
symmetric. This helps to assure us that A′A can be inverted (we must still
watch out for the possibility that A′A is defective, or ill-conditioned in some
sense, and that this may prevent us from finding its inverse).

We can now solve for the isochron of the lunar basalt using all four data
points. As will be shown in the laboratory exercise, the least-squares inver-
sion of the rectangular matrix is easily performed with the aid of Matlabr

:

>> m=(A’*A)/A’*d
m =

0.0469

0.6996

A plot of the Lunar basalt isotopic ratio data and the least-squares line which
runs through the data is provided in Fig. (1.4).

Having found the least-squares solution for the isochron, it is now possible
to substitute the numerical value of the slope into Eqn. (1.9) to get

T =
1

1.42× 10−11
ln(0.0469 + 1) = 3.23× 109 years (1.42)

According to Nyquist et al. [1979], the estimated uncertainty of T is 0.11×109

years. (Our estimate of this uncertainty will be approximately twice as large,
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Figure 1.4: The lunar basalt isochron determined by solving the least-squares
inverse problem.
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as demonstrated in the next chapter.) This age corresponds to the time
when great floods of molten basalt created the lunar mare; and is significant
because it suggests that the majority of lunar geologic history corresponds
to the very early history of the Earth.

1.8.2 A Problem Ahead

Before leaving the subject of radiometric dating it is important to point
out that the method for estimating the slope and intercept of an isochron
developed in this chapter has not allowed for the fact that measured data
appear both in the operator A and in the data vector d. If we were to
arbitrarily switch the data vector in Eqn. (1.14) with the first column of the
operator in Eqn. (1.17), the resulting isochron found from inverting Eqn.
(1.16) could yield a different age when the inverse of its slope is substituted
into Eqn. (1.9). In the Lunar-basalt example, the age of the isochron was the
same for either case; but, as you will see in Lab 1, the age of the lead-iosotope
isochron will differ significantly depending on what data is partitioned into
the linear operator A and what is partitioned into d. Perhaps of greatest
concern is the fact that the uncertainty analysis to be taken up in Chapter
2 will suffer from the fact that measurement errors associated with the first
column of A cannot be treated in a systematic manner.

1.9 Summary

In this chapter, we have accomplished two things. First, we have reviewed
the history and techniques involved in radiometric dating. Second, we have
learned how to solve linear algebra problems involving a rectangular matrix
which maps a small number of parameters (the slope and intercept of an
isochron, in the example discussed here) to a large number of data points.
The key to the solution of such overdetermined linear inverse problems is the
fact that we recognize that an exact inversion of the rectangular matrix is
impossible from the start. We proceed by formulating an inexact problem,
the least-squares problem, which we solve readily using the linear algebra of
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rectangular matrices.
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1.11 Appendix: Newton-Raphson Method for

Finding Roots

The expression relating the slope of the isochron and the age of the isocrhon
given by Eqn. (1.13) is transendental. While α(T ) is expressed as an analytic
function, T (α) cannot be expressed analytically. This is due to the fact that T
appears in the exponential functions of both the numerator and denominator
on the right-hand side of Eqn. (1.13). These expressions cannot be inverted
by taking a logarithm to form a simple, analytic expression. This presents
us, as it did Clair Patterson, with a problem. We can determine α; but once
determined, how do we then use α to determine T using Eqn. (1.13)?
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We will use the Newton-Raphson technique to determine T from a known
α. This technique is just one of many that are recommended for such prob-
lems. A good review of these techniques can be found in Press et al. [1989].
The Newton-Raphson method is an algorithm that is good for finding roots
of a function f(x). A root is a special value of x, say x̃, where f(x̃) = 0. The
Newton-Raphson algorithm finds the root by an iterative procedure whereby
an initial guess of x̃, say xo, is corrected through evaluation of f and its
derivative f ′ at x = xo. This algorithm is derived by considering a truncated
Taylor series which expresses f(x) in the neighborhood of the initial guess
xo:

f(xo + δ) = f(xo) + δf ′(xo) (A1)

We know that this expression is not valid when δ is large because other
terms in the Taylor series expression that have been truncated from (A1) are
significant. Nevertheless, we shall assume that Eqn. (A1) is accurate and
“hope for the best”. If we define our intial guess, xo to be separated from
the desired root by δ, xo = x̃ − δ, then

δ = −
f(xo)

f ′(xo)
(A2)

We can improve our guess of x̃ by making use of the estimate for δ given by
Eqn. (A2):

x1 = xo + δ = xo −
f(xo)

f ′(xo)
(A3)

We can continue this procedure ad infinitum to eventually reach the root.
Each successive guess at the root will be related to the previous guess by the
following recursion rule:

xi+1 = xi −
f(xi)

f ′(xi)
(A4)

Eventually, we might wish to stop the iterative process when xi+1 and xi

no longer differ by a significant amount. This stopping point is a matter of
judgement, and often is related to the level of observational error found in
the observations which go into defining f(x), or the accuracy of the computer
being used to perform the arithmetic. (For example, on a Macintosh, using
single-precision arithmetic, two floating point numbers are the same if their
mantissas are the same to the 7’th decimal place.)

29



To solve Eqn. (1.13) for T when α is known, we can define a function

f(T ) = α −
(

1P
2P

) (
eλ1T − 1

eλ2T − 1

)
(A5)

Clearly, when f (T ) = 0, Eqn. (1.13) is satisfied.

1.11.1 Example

Let’s use the Newton-Raphson technique to determine the age of the lead-
isotope isochron considered by Patterson [1956], and which we will assume
has a slope of α = 0.6. To impliment the algorithm expressed by Eqn.
(A4), we make use of the derivative of f(T ), which can easily be determined
analytically using the chain rule:

f ′(T ) =

(
1P
2p

) {
−λ1e

λ1T

eλ2T − 1
+

λ2e
λ2T (eλ1T − 1)

(eλ2T − 1)2

}
(A6)

Values of the constants in Eqns. (A5) and (A6) are:
1P
2P

= 1
138.7

, λ1 =
9.72×10−10 yr−1, and λ2 = 1.537×10−10 yr−1. First, let’s define the function
and its derivative using Matlabr script-files:

% ***********************

% Function isochron

% **************************

% When this function is zero, T must be the age of the

% lead-isotope isochron of slope alpha:

%

function f = isochron(T);

f=alpha-(1/138.7)*(exp(lambda1*T)-1)/(exp(lambda2*T)-1);

%

% End of Function.

% ***********************

% Function isochronprime
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% **************************

% This is the derivative of the isochron-function with respect to

T:

%

%

function fp = isochronprime(T);

fp=-(1/138.7)*(lambda1*exp(lambda1*T)/(exp(lambda2*T)-1)+ ...

lambda2*exp(lambda2*T)*(exp(lambda1*T)-1)/(exp(lambda2*T)-1)%

% End of Function

Next, let’s write a script file that runs the Newton-Raphson algorithm:

% ***********************

% Script which runs Newton-Raphson Algorithm

% **************************

% This routine performs the Newton-Raphson algorithm to seek

% the root (T) of the function "isochron()" which is stored as

% a MatLab function, using the derivative of the function

% "isochronprime()":

%

% Initial guess:

%

Tn=1.5e9;

test=1.e12;

%

% Do the NR-loop until convergence to limit 1.0e4 (10,000 years):

%

counter=0;

while (abs(test)> 1.0e4)

counter=counter+1;

Tnp1=Tn-isochron(Tn)/isochronprime(Tn);

test=Tnp1-Tn;

Tn=Tnp1;

end

%

% Write the result:

%
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counter

%

Tn

%

isochron(Tn)

% End of script.

Now, let’s use these functions and script in a Matlabr session:

>> alpha=0.6;

>> global alpha;

>> lambda1=9.72e-10;

>> lambda2=1.537e-10;

>> global lambda1 lambda2;

>> NR

counter =

15

Tn =

4.5843e+09

ans =

3.0532e-06

Let’s check the answer by using the Matlabr -native routine fzero():
>>fzero(’isochron’,2e9)

ans =

4.5843e+09
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1.12 Lab 1 - The Radiometric Determination

of the Age of the Earth

To test your understanding of the concepts of radiometric dating and linear
least-square inverse methods, try to repeat the famous lead-isotope chronom-
etry performed by Clair Patterson [1956] to determine the 4.55-billion year
age of the earth (and meteorites). Patterson’s paper will be handed to you
in class, so you can get the data you need from his Table (1). The method
I ask you to use in this lab is slightly different than his. (Notice that his
Eqn. (1) does not address the overdetermined nature of his data-analysis
task. He has five meteorite lead-isotope measurements to deal with; yet his
Eqn. (1) is only capable of dealing with two at a time.) Please use the linear
least-squares inverse methods discussed in Chapter 1.

1.12.1 Look at the Data

Before setting up the linear-algebra problem represented by Eqn. (1.16), plot
your lead-isotope data and estimate the slope and intercept of the meteorite
isochron.

Problem 1. Use the Matlabr plotting routines to construct a graph of
the

207Pb
204Pb

vs.
206Pb
204Pb

values for the 5 meteorites listed in Table (1) of Patterson’s
[1956] paper. Use the text labeling routines of Matlabr to identify each
point.

Problem 2. Estimate the slope of the isochron, and compare your estimate
with the slope estimated by Patterson. To determine Patterson’s estimated
slope, plug his determined age of the isochron (4.55 × 109 years) into Eqn.
(1.13).

33



1.12.2 The Forward Problem

Before confirming your estimate of the slope of the isochron using least-
squares inverse methods, let’s see what the time-evolution of the data should
have been for an earth 4.55-billion years old.

Problem 3. Two of the five meteorites analyzed by Patterson were of the
iron variety (the other three were stony). These iron meteorites (Henbury,
Australia and Canyon Diablo, Arizona) came from the iron core of a plane-
tary body that was demolished early in the history of the solar system. The
two iron meteorites are fragments of the original iron core. The three stony
meteorites are probably fragments of the stony part of the original planetary
body.

An important chemistry fact is that 238U and 235U (the parent elements of
206Pb and 207Pb) are not siderophilic. (A siderophile is an element that likes
to chemically join with the metalic elements of the Fe and Ni core of planetary
bodies.) This means that the lead-isotope ratios in the iron meteorites are
probably primeval. In other words, uranium probably did not get into the
cores of the planetary bodies at the time they were formed. Thus, the lead-
isotope ratios represented by the two iron meteorites are probably the initial
ratios for these isotopes for all material in the solar system (even the parts
of planets, such as the earth’s crust and mantle, which received a large dose
of uranium during the differentiation process).

For this problem, I ask you to devise a series of 5 graphs like the one
you plotted in Problem 1 which show the time-evolution of the isotopic con-
centrations of the five meteorites. The 5 graphs should plot the data that
would have been measured at 1, 2, 3, 4 and 4.5 billion year intervals after the
formation of the planets. To do this, you will have to devise an expression
which indicates what the ratios

235U
204Pb

and
238U
204Pb

were at the time of planetary
differentiation. This should not be hard to do, just use Eqns. (1.10), (1.11),
and assume that the age of the earth is indeed what Patterson measured
(4.55-billion years). Remember to put labels and titles on your 5 graphs to
indicate which data points correspond to which meteorites and for what time
the data is being plotted.
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1.12.3 The Least-Squares Inverse

Now that you have pretty much solved the problem by the normal trial-and-
error technique, let’s do it the easy and sophisticated way using the linear
algebra of overdetermined linear systems.

Problem 4. Construct the matrix A and the vector d for the linear problem
(1.5.3) applied to Patterson’s data. (In this circumstance the definitions of
the data and the entries in the matrix are different from what was done in
Eqns. (1.5.1) and (1.5.4) due to the fact that only lead-isotopes are being fit
to a line.) Enter your matrix and data vector as Matlabr variables in an
interactive Matlabr session. (Try printing a portion of the screen to serve
as a record of your data entry.)

Next, construct the matrix A′A and the modified data vector A′d us-
ing the Matlabr commands. Agian, show your results. Determine the
LU-decomposition of A′A (use the Matlabr -native LU-decomposition
routine), and apply this decomposition to the modified data vector A′d to
obtain the least-squares estimate of the slope and intercept of the isochron
for the meteorites (in other words, the vector m). (Note, you will have to
devise your own forward substitution and back substitution algorithms. This
will give you practice in setting up ‘for’-loops and Matlabr script files.)

Finally, do the above steps the easy way by using the backslash notation of
Matlabr to eliminate the need to explicitly work out the LU-decomposition
and perform the forward and backward substitutions.

Problem 5. Plot the lead-isotope isochron you found in Problem 4 on the
graph of the lead-isotope data determined in Problem 1.

Problem 6. Repeat your determination of the slope of the lead-isotope
isochron, but this time swap the data contained in the first column of the A
with the data contained in d. How does the inverse of this slope ( 1

α
) compare

with the slope you determined in Problem 4. Will the age of the isochron
determined in this problem be different from that of the isochron determined
in problem 4.
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1.12.4 Inverting an Intransitive Relationship

One of the tough parts of the analysis is the fact that the relation between
the slope of the isochron and the age of the isochron cannot be analytically
inverted. While you can write α as a function of T , you can’t write T as a
function of α. To determine the age of the isochron who’s slope was found
above, you will have to use some approximation strategy to invert the formula
in Eqn. (1.13).

Problem 7. Determine T , the age of meteorites, for the isochrons deter-
mined in Problems 4 and 6 by using the Newton-Raphson method. This
method involves finding the root (zero) of the following function:

f(T ) = α − 1

137.8

(
eλ1T − 1

eλ2T − 1

)
(L4.0.1)

where λ1 and λ2 are the decay constants for 238U and 235U, respectively.
Devise a Matlabr script which performs the Newton-Raphson algorithm
for an arbitrary Matlabr function; you may wish to use this algorithm
later. Check your answer by using the Matlabr -native routine fzero().

Discuss the significance of your solution to the age of the earth. Sug-
gest reasons why your result is different than that determined by Patterson
[1956].
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Chapter 2

Underdetermined Inverse
Problems: Minimum-Norm
Line Fitting

2.1 Introduction

In Chapter (??), we learned how to solve an inverse problem in which the
number of observations exceeds the number of unknown model parameters.
Here we consider the opposite situation, i.e., an inverse problem in which the
number of undetermined model parameters exceeds the number of observa-
tions. Problems of this nature do not have unique solutions; thus, additional
constraints must be imposed artificially on the undetermined model param-
eters to select a single solution from the multitude of solutions which satisfy
the constraints imposed by the observations. The technique we shall derive
here is referred to as the minimum norm inverse of underdetermined prob-
lems. The term, minimum norm, refers to an artificial constraint that the
solution be simple in some sense, such as having minimum norm in the vector
space which contains it. Taken together, the minimum norm inverse and the
least squares inverse described in Chapter (??) provide a means to solve most
inverse problems encountered in the geophysical sciences.
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2.2 An Absurd Inverse Problem: Fitting an

Isochron Through One Point

For continuity, we shall consider the lunar-basalt isochron problem developed
in Chapter (??), but with one rather strange twist. We shall assume that
only one measurement of the 87Sr/86Sr and 87Rb/86Sr values exist, say the
data pair for the whole-rock sample. Obviously, with only one single data
point, an infinite number of possible isochrons fit the data. The question of
dating the lunar basalt under such circumstances becomes absurd. There is
no unique date.

While the above problem may seem absurd, it serves to illustrate both
the nature of all underdetermined inverse problems (which often appear to be
very reasonable despite the non-uniqueness of their solution) and the solution
method. We thus proceed with the problem of determining m = [α β]′ ∈ R2

from a single data point d ∈ R1 subject to the constraint

Am = d (2.1)

where, following § (1.7)
d = [0.70096] (2.2)

and
A = [ Rwr 1 ] = [ 0.0296 1 ] (2.3)

The 1× 2 matrix A : R2 →R1 is rectangular and thus cannot be inverted.

To make headway, suppose that we have a hunch that the lunar basalt
is approximately 3.5 ×109 years old (corresponding to an isochron with a
slope of 0.0497) and that the initial 87Sr/86Sr ratio at the time the basalt
formed was 0.7000. This hunch might lead us to seek the m which satisfies
Eqn. (2.1) and at the same time minimizes the difference between m and
mh = [0.0497 0.7000]′, where mh represents the value of α = αh and β =
βh (the slope and intercept of the isochron, respectively) associated with
the “hunch”. In mathematical terms, we wish to minimize the following
performance index

J = [m −mh]
′ [m −mh]

= (α − αh)
2 + (β − βh)

2 (2.4)
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subject to Eqn. (2.1) as a constraint. The scalar quantity J can be referred
to as a norm, or way of measureing the length of vectors in R2. Thus, the
inverse problem we wish to solve is to minimize the norm of m subject to
the constraint that it satisfies the data expressed by Eqn. (2.1).

The minimization of J subject to Eqn. (2.1) is relatively straightforward.
First, we write m1 = α as a function of m2 = β and d:

m1 = α =
d1 − A12m2

A11
=

d1 − A12β

A11
(2.5)

Substitution into Eqn. (2.4) gives,

J =

(
d1 −A12β

A11
− αh

)2

+ (β − βh)
2 (2.6)

We can now appeal to calculus to find the constraints which minimize J :

dJ

dβ
= 0 = −2

A12

A11

(
d1 − A12β

A11
− αh

)
+ 2(β − βh) (2.7)

The above equation gives

β =

A12d1

A2
11

+ A12αh

A2
11

+ βh

(
A12

A11

)2
+ 1

(2.8)

which may be substituted into Eqn. (2.5) to obtain the corresponding α.

2.2.1 Lagrange Undetermined Multiplier

Another way to satisfy the constraint is to augment the performance index J
with the addition of a Lagrange multiplier term. We define this augmented
performance index H as follows

H = [m −mh]
′ [m−mh] + 2λ′(Am− d) (2.9)

where λ ∈ R1 is the Lagrange undetermined multiplier vector. We now min-
imize H with respect to two unknowns: m and λ. From our understanding
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of calculus, we seek the m and λ which make the partial derivatives of H
with respect to the components of m and λ equal to zero:

∂H

∂m
= 2m′ − 2m′

h + 2λ′A = 0 (2.10)

∂H

∂λ
= 2 (m′A′ − d′) = 0 (2.11)

The two Euler-Lagrange conditions implied by Eqns. (2.10) and (2.11) are

m = mh −A′λ (2.12)

Am− d = 0 (2.13)

Substitution the expression for m given in Eqn. (2.12) into Eqn (2.13) , we
obtain an expression for λ

λ = [AA′]
−1

Amh − [AA′]
−1

d (2.14)

Observe that the matrix [AA′] is a square, 1×1 matrix which has an inverse.
(Do not be alarmed by the formal rigor of retaining matrix algebra notation
despite the matrix having only one row and one column. The results will
generalize to problems involving higher dimensional vector spaces readily.)
Substituting the expression for λ given in Eqn. (2.14) back into Eqn. (2.12)
gives the final solution:

m = mh −A′ [AA′]−1 Amh + A′ [AA′]−1 d

=
[
I−A′ [AA′]

−1
A

]
mh + A′ [AA′]

−1
d (2.15)

Defintion: A General Minimum-Norm Inverse

The expression given by Eqn. (2.15) when mh = 0 is often referred to as the
minimum-norm inverse of the following problem

Am = d (2.16)

when m ∈ RN , d ∈ RM , and A : RN →RM is a rectangular M ×N matrix
with N > M . In other words, the minimum-norm inverse is

m = A′ [AA′]
−1

d (2.17)

¥
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Example

Using Matlabr , the solution given by Eqn. (2.15) was evaluated using the
data given in Eqns. (2.2) and (2.3) with mh = [0.0497 0.7000]′:

>>m=[eye(2,2) - A’*inv(A*A’)*A]*mh + A’*inv(A*A’)*d

m =

0.0497

0.6995

Clearly, this solution is far from satisfactory because it represents an
isochron that is far older than the known age of the lunar basalt derived
in Chapter (1). This inaccuracy serves to illustrate the pitfalls inherent in
underdetermined inverse problems. In the current circumstance, the “hunch”
mh used to select one solution from the multitude of possible solutions was
inaccurate. Unfortunately for most underdetermined inverse problems, there
is no a priori way of evaluating the accuracy of the minimum norm solution.
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Chapter 3

Dealing with Uncertainty

3.1 Introduction

In Chapter (??) we developed a method for fitting a line through a scatter
of data points. The pay off was a means to estimate the age of the earth
by determining the slope of the isochron which passed through isotopic data
measured in five meteorites collected on the earth’s surface. What made this
problem hard was the fact that the five meteorite samples overdetermine the
two unknowns necessary to describe the isochron.

What we didn’t consider in Chapter (??) was the fact that the isotopic
measurements are subject to uncertainty introduced by instrumental errors,
sample handling, and other causes. In this chapter, we will account for this
uncertainty in the methodology for estimating the slope and intercept of
the isochron. In addition, we will examine how uncertainty in the isotopic
measurements propagates through the least-squares line fitting method to
ultimately yield a quantifyable uncertainty in the age of the earth.
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3.2 Expectation Operators and Covarience Ma-

trices

Consider the overdetermined problem defined in §(1.7). The vector m ∈ RN

with N = 2 represents the slope and intercept of the isochron, the data
vector d ∈ RM represents the M > N measured isotopic ratios, and the
rectangular M × N matrix A represents the mapping which converts the
slope and intercept of the isochron into predicted values of the isotopic ratios.
Restating the problem, our assumption is that m and d are related linearly,
i.e.,

Am = d (3.1)

and that d is known to us, but m is not. The purpose of the previous chapter
was to devise a scheme to determine m in the face of the fact that A is a
rectangular matrix. Here, we shall consider an additional difficulty in solving
Eqn. (3.1), namely the difficulty which arises when the data d is subject to
error.

We assume that the data actually observed do represents the sum of the
“actual” state of the vector d and a random error vector ε:

do = d + ε (3.2)

We shall assume that we know in advance certain statistical properties of the
errors, namely,

〈ε〉 = 0 (3.3)

〈εε′〉 = 〈(ε− 〈ε〉) (ε− 〈ε〉) ′〉 = Q (3.4)

where we use the notation 〈·〉 to denote the expectation value of the variable
enclosed by the angle brackets. The M ×M matrix Q is called the covari-
ence matrix. It’s diagonal elements represent the standard deviations of the
individual components of ε, and it’s off-diagonal elements represent the cor-
relations between different components of ε. In circumstances where ε arises
because of random measurement error associated with instrumentation (i.e.,
not because of inadequacy of our assumed linear relationship expressed in
Eqn. (3.1)), we expect Q to be diagonal.
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The expectation value, 〈·〉, is formally defined using the notion of proba-
bility:

3.2.1 Expectation Operator

The probability that a given random variable ε will lie within dε of a given
value εo is defined to be P (εo)dεo. The mean (expectation value) and covari-
ence (second moment) of the random variable are defined to be

〈ε〉 =
∫

RM

ε P (ε) dε (3.5)

Qij =
∫

RM

(ε− 〈ε〉)i (ε− 〈ε〉)j P (ε) dε (3.6)

where the integrations are over the entire vector space RM which contains
ε. A good explanation of the above definitions is provided in chapter 2 of
Menke (1989).

3.3 Two Questions

Given the existence of ε, we are confronted with two basic questions. First,
should we modify the least-squares inverse derived in §(1.8) to account for the
fact that some components of do are subject to greater errors (presumably)
than others? Second, once the first question is answered and a solution

m̂ = m + ζ (3.7)

is found to the equation
Am̂ = do (3.8)

determined via a method which satisfactorily addresses the first question,
what will be the statistical description of its error ζ?
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An appreciation for the first question can be derived by considering Fig.
(3.1). Three data points with error bars (denoting expected standard devia-
tion of the error in the ordinate value of the data) are displayed along with
two possible lines which are “fit” in some sense to the data. The dashed line
represents the least-squares fit which simply represents the minimization of
J defined in §(1.8). It clearly does not account for the fact that the error
bar on the right-most data point is much larger than the error bars on the
two other data points. The solid line represents what is considered to be
a superior fit to the data (i.e., its slope is positive, which is physically re-
quired of all isochrons in radiometric dating). To achieve the superior fit,
it is necessary to weight the misfit between the line and the data less for
data points in which the uncertainty is high, and more for data points in
which the uncertainty is low. The following modification of the least-squares
inverse derived in §(1.8) will do the trick.

3.3.1 Least-Squares Inverse with Data Uncertainty

Consider the following least-squares performance index J :

J = (Am− do)
′
Q−1 (Am− do) (3.9)

The inverse of Q appears on the right-hand side of the above definition as a
means to preferentially weight the misfit between the predicted and observed
data components. The solution m̂ which minimizes J is

m̂ =
[
A′Q−1A

]−1
A′Q−1do (3.10)

This solution of the inverse problem is preferable to that derived in the
previous chapter because, in situations such as that depicted in Fig. (3.1),
the line chosen to fit the data will account properly for non-uniform error
bars.

3.3.2 Model Covarience

Having defined the least-sqares solution to Eqn. (3.8) in a manner consistent
with the presence of data uncertainty (represented by the matrix Q), we next
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Figure 3.1: Two possible lines fit to three data points. Vertical bars indicate
expected errors in data. The solid line represents a solution to the line-fitting
problem which properly accounts for the uncertainty of the data. The dashed
line represents a solution which does not.

46



consider how to describe the uncertainty of m̂. We define the covarience
matrix E to be the covarience of ζ the random errors in m̂ = m + ζ:

E =
〈
ζζ ′

〉
(3.11)

Our goal is to express E in terms of Q. To achieve this goal, we note the
definition

ζ = m̂−m (3.12)

and make use of the assumption that Am = d (i.e., misfit between the line
and the measured data is due to errors ε in the data only) to write

A′Q−1Aζ = A′Q−1Am̂ −A′Q−1Am (3.13)

= A′Q−1do −A′Q−1d (3.14)

= A′Q−1ε (3.15)

thus,

ζ =
[
A′Q−1A

]−1
A′Q−1ε (3.16)

Substitution of the above expression into Eqn. (3.11) gives,

〈
ζζ ′

〉
= E = [A′Q−1A]

−1
A′Q−1 〈εε′〉 [Q−1] ′A

[
[A′Q−1A]

−1
]
′ (3.17)

=
(
[A′Q−1A]

−1
A′ [Q−1] ′A

) [
[A′Q−1A]

−1
]
′ (3.18)

=
[
[A′Q−1A]

−1
]
′ = [A′Q−1A]

−1
(3.19)

In simplifying the above expression, we have made use of the fact that E, Q
and its inverse are symmetric matrices (i.e., Q′ = Q). The bottom line is
that we have a precise description of the uncertainty in the derived quantity
m̂ that is a simple linear function of Q, the uncertainty of the data.

3.3.3 Example: Lunar Basalt Isochron Uncertainty

As an example of the above error-analysis works, we reconsider the problem
discussed in §(1.8) in which the age of a lunar basalt is determined using
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87Rb → 87Sr dating. The covarience matrix Q associated with the 87Sr/86Sr
data is [Nyquist et al., 1979]

Q =




(3.5× 10−5)2 0 0 0
0 (4.5× 10−5)2 0 0
0 0 (2.5× 10−5)2 0
0 0 0 (3.0 × 10−5)2


 (3.20)

Two least-squares solutions to the problem Am̃ = do posed in §(1.8) can
be constructed. The first is the solution developed in the previous chapter
which takes no account of data uncertainty,

m̃ = [A′A]−1A′do (3.21)

The second is that derived above, i.e.,

m̂ =
[
A′Q−1A

]−1
A′Q−1do (3.22)

(To be rigorous, a third least-squares solution will be discussed in a future
chapter, and arises due to the fact that the matrix A contains measured
87Rb/86Sr ratios which are also subject to uncertainty which is not accounted
for here.) Using the Nyquist et al. [1979] data for A and d, and the above
estimate of Q (this estimate was made using data presented in Table 3 of
Nyquist et al., and the assumption that one standard deviation of the data
reported by Nyquist et al. should be taken to be the diagonal components of
Q), the values of m and m̂ were computed, and found to differ only in the
fifth significant digit, i.e.,

m̂−m =

[
−8.9
1.5

]
× 10−5 (3.23)

Proper accounting of data uncertainty thus does not lead to much difference
in the least-squares determination of the slope of the lunar-basalt isochron.

What is more important, however, is the determination of E, the co-
varience matrix for the least-squares estimate of m̂. Using Eqn. (3.19), we
find

E =

[
0.1827 −0.0105
−0.0105 0.0009

]
× 10−6 (3.24)
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One standard deviation in the uncertainty of the slope α = m1 is thus 0.43×
10−3, or about 0.9%. To translate this uncertainty into the uncertainty of
the age of the lunar basalt, we make use of Eqn. (??):

T =
1

λ
ln(α + 1) (3.25)

Taking the derivative of T with respect to α leads to the expression

dT =
1

λ

1

α + 1
dα (3.26)

Using dα = 0.43 × 10−3 we find that dT = 2.9 × 107 years, which is about
0.9% of the estimated 3.23× 109 year age of the lunar basalt.

We remark that the estimated uncertainty (0.06 ×109 years at the 2σ
confidence level) derived here is substantially smaller than the 0.11×109 years
estimated by Nyquist et al. [1979]. This discrepancy stems from the fact that
Nyquist et al. used a more sophisticated method to derive the isochron which
accounted for uncertainty in the 87Rb/86Sr data which appear in the matrix
A. To this point, we have disregarded the effects of data uncertainty in A
for the purpose of illustrating the most simple linear least-squares method.
We shall investigate the effects of data uncertainty in A in Chapter (5).

3.4 Data Independence

Another question associated with data uncertainty in over-determined least-
squares problems concerns the subject of data independence. Suppose the
researchers who measured the five elements of do were given funds to make
a re-measurement of only one of the components of do. Which one(s) would
they remeasure? Logically, the researchers would like to remeasure the com-
ponent of do that is most influential in determining m̂. Our goal here is to
develop a means to make this determination, i.e., to identify the data which
is most faithfully represented by m̂.

We proceed by determining a matrix D referred to as the data indepen-
dence matrix. Suppose we invert a particular set of data do for m̂, and then
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operate on m̂ with the matrix A to form a “retrodiction”of the data dr:

dr = Am̂ = A
[
A′Q−1A

]−1
A′Q−1do = Ddo (3.27)

where
D = A

[
A′Q−1A

]−1
A′Q−1 (3.28)

In a perfect world, where dr closely resembled do, the matrix D would closely
resemble the identity matrix. In most circumstances, however D will have
numerous off-diagonal elements that are different from zero. Rows of D which
have strongest diagonal dominance suggest that the corresponding element
of the data vector will be most faithfully preserved through the inversion
process. Elements of the data vector which correspond to the most diagonally
dominant rows of D are therefore most influential in determining m̂, and are
thus prime candidates for remeasurement. Conversely, elements of the data
vector which correspond to the least diagonally dominant rows of D have
little significance in determining m̂. It would not be desireable to remeasure
these components.

One of the crucial advantages of the data-independence matrix is that
it depends only on the matrices A and Q. Thus, it can be calculated in
advance of making the initial measurements of do. This point should be kept
in mind for circumstances where you have to defend a particular measurement
strategy in advance of actually making the measurements. If you know how
you intend to process your data in advance, i.e., you know the matrices A
and Q in advance, then you can compute D and use it to argue for efforts to
concentrate on making better measurements of the most influential elements
of the data.
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3.4.1 Example: Data Independence Matrix for the Lu-

nar Basalt Problem

The data-independence matrix for the lunar basalt isochron described in
§(3.3.3) can be determined readily using Eqn. (3.28):

D =




0.3212 .03204 0.3469 0.0116
0.4119 0.4613 0.3714 −0.2447
0.2478 0.2063 0.3270 0.2189
0.0099 −0.1631 0.2627 0.8905


 (3.29)

The second and fourth rows are the most diagonally dominant rows of D;
thus, the data corresponding to the second and fourth components of do are
most influential in determining the least-squares solution m̂. Reference to
Eqn. (??) and Fig. (4) of the previous chapter indicates that the second and
fourth components of do are the outlying points through which the isochron
must pass. It makes intuitive sense that this should be true. Data points
clustered in the middle of the overall spread of data points do little to deter-
mine the slope of the line (as is suggested by the lack of diagonal dominance
in the first and third rows of D). The data points clustered near the two
extremes of the data range have more influence in determining the slope, and
are thus of greater interest in measurement efforts. If Nyquist et al. were to
wish to remeasure one or two of the mineral-separate 87Sr/86Sr values which
comprise the components of do in an effort to improve overall accuracy of the
resulting age of the lunar basalt, the data-independence matrix D computed
above suggests that the plagioclase (second) and ilmenite (fourth) mineral
grains would be the best candidates for remeasurement.

3.5 Uncertainty in Underdetermined Inverse

Problems

In the previous sections of this chapter, we have focussed on the description
of uncertainty in overdetermined inverse problems. Here, we turn our at-
tention to the question of uncertainty in underdetermined inverse problems,
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such as that discussed in Chapter (??). Uncertainty in the solution of under-
determined problems arises from two sources: error in d, and uncertainty in
the additional constraints imposed to select the solution from the multitude
of possible solutions which satisfy the data. In other words, for the problem

Am = d (3.30)

in which m ∈ RN , d ∈ RM , A : RN → RM , N > M , and where a “hunch”
mh is used to define the norm of m to be minimized, error can arise from
uncertainty in both d and mh. Here we assume that the covarience of errors
in the data, Q, and of the “hunch”mh, S, are known in advance.

In the circumstance when both d and mh are known to be uncertain, it
is not appropriate to apply the minimum-norm solution derived in Chapter
(??), because the constraint imposed by the data, and represented by Eqn.
(3.20), is imposed as a “hard”constraint (i.e., is satisfied exactly). What is
preferable, is to find a solution which balances the satisfaction of the con-
straint imposed by the data off against the requirement that the solution be
close to the “hunch” mh. To achieve such a solution, the following perfor-
mance index must be minimized:

J = [m −mh]
′ S−1 [m −mh] + [Am− d]′Q−1 [Am− d] (3.31)

The solution m̂ which minimizes J is readily found to be

m̂ =
[
A′Q−1A + S−1

]−1 (
S−1mh + A′Q−1d

)
(3.32)

The covarience of error E associated with the above estimate m̂ is readily
shown to be

E = [A′Q−1A + S−1]
−1

S−1
[
[A′Q−1A + S−1]

−1
]′

+ [A′Q−1A + S−1]
−1

A′Q−1A
[
[A′Q−1A + S−1]

−1
]′

(3.33)

3.6 Model Resolution

A crucial question associated with underdetermined inverse problems is the
fact that the inherent non-uniqueness of the solution implies that it is im-
possible to completely resolve the parameters associated with the solution.
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Researchers faced with the prospects of solving an underdetermined inverse
problem such as those described in the previous section or in Chapter (??)
might wish to determine in advance of their data-collection effort what as-
pects of the desired solution m will be well resolved, or well-determined, by
the data. To make this determination, it is necessary to construct the model
resolution matrix R.

Following along the same lines of reasoning as used to develop the data
independence matrix D for overdetermined problems, we consider the degra-
dation of a known “exact” model mo when it is used to create data that is
then inverted to determine a “retrodicted” model mr. Using the minimum-
norm inverse developed in Chapter (??), we find

mr = A′ [AA′]
−1

Amo (3.34)

Defining the model resolution matrix R = A′ [AA′]
−1

A, our interest is in
the question of how closely R resembles the identity matrix I. For overde-
termined problems, R = I. For underdetermined R 6= I.

As with the data-independence matrix, the model-resolution matrix de-
pends only on A (and on S and Q if known) which, in turn, depends only on
the physics of the problem. It is thus possible, and profitable, to determine
R in advance of any data collection to evaluate how useful the data collection
exercise will ultimately be in resolving the unknown model parameters.

Example: The Lunar-Basalt Problem with One Data Point

We revisit the truncated lunar-basalt isochron problem discussed in Chapter
(??) to derive the model-resolution matrix associated with the determination
of the slope and intercept of the isochron. Using Matlabr we find:

R=A’*inv(A*A’)*A

>>R =

0.0009 0.0296

0.0296 0.9991
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Clearly, the intercept β is most accurately resolved, whereas the slope α is
least well resolved.
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Chapter 4

Singular Value Decomposition:
Geometric Interpretation

4.1 Introduction

The goal of this chapter is to lay a conceptual groundwork for the power-
ful tool in linear algebra known as the singular value decomposition (SVD)
of a matrix. Our interest in the SVD stems from the fact that it has has
become the main tool currently used to solve overdetermined, underdeter-
mined and mixed linear inverse problems. We will begin with a review of the
linear algebra of square, symmetric matrices, and seek a practical, geomet-
ric understanding ofeigenvalues and eigenvectors. The concepts will then be
generalized to non-symmetric, rectangular matrices such as those commonly
encountered in overdetermined and underdetermined inverse problems in the
geophysical sciences.
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4.2 Geometrical Interpretations of Linear Op-

erators

Linear algebra is the study of linear operators which map vectors between
two vector spaces. Matrices are convienent representations linear operators,
although much of linear algebra (including the notion of SVD) was developed
before matrices were used to represent linear operators. (A nice historical
perspective on the development of SVD during the 19’th century is avail-
able in Stewart [1993]. Stewart reviews the mathematical works of Gauss
(-) Beltrami (1835 - 1899), Jordan (1838-1921) and Sylvester (1814 - 1897)
that were instrumental in leading to our modern-day view of linear algebra.)
While much of linear algebra can be developed and understood in purely ab-
stract terms, we shall develop here a concrete, geometrical interpretation of
linear algebra in an effort to gain greater insight into the mathematical na-
ture of the inverse problems in which we are interested, and into the workings
of the SVD.

We consider a linear operator represented by the matrix A which maps
vectors v ∈ RN into vectors u ∈ RM . We denote RN the domain of A and
RM the range of A. When N = M , the matrix A is square (i.e., it has the
same number of rows and columns, and is referred to as an N ×N matrix).

4.2.1 Mappings of the Unit Sphere

A useful way to think about what linear operators do is developed by consid-
ering how the image of a sphere of unit radius in the domain of A is deformed
as a result of its mapping into the range of A. For the time being, we restrict
our attention to square matrices A : RN → RN . First, let’s define what is
meant by a sphere of unit radius in RN :

Definition: The unit sphere in RN is the set of all vectors v which satisfy

‖v‖ = 1 where ‖v‖ =
√

v′v =
√∑N

i=1 v2
i

An example of how the image of a unit sphere in R2 is distorted by a linear

56



operator is seen in Fig. (4.1) which displays the result for the square matrix

A =
(

0.0492 1
0.1127 1

)
(4.1)

(This is the square matrix derived from the radiometric datating problem
defined in Chapter (1) where only the isotopic ratios of two mineral sepa-
rates, Px and Ilm, are considered.) Notice that the figure of the unit sphere
(really a unit circle, since this example involves a mapping A : R2 → R2)
is distorted into an elliptical shape. (It can be proven that the image of the
circle after mapping is an elipse because of the fact that v′A′Av = c, where
c is a constant chosen to ensure that v′v = 1, is a quadratic function of
the components of v. This quadratic function formally corresponds to the
equation of an ellipse or elliptical surface.)

The geometrical viewpoint suggested by Fig. (4.1) suggests that two
special categories of linear operators can be defined:

Catagory A (pure strain). The mapping A : RN → RN maps the unit
sphere into an ellipse. There exist at least 2N vectors of unit length (in
the set comprising the unit sphere), denoted by {ei}N

i=1 and {−ei}N
i=1, which

suffer a change in length but are not rotated, ı.e., Aei = λiei where λi is a
positive real number. (In continuum mechanics, one would regard a mapping
in this category as a representation of a pure strain.) We remark that the
vectors {ei}N

i=1 are mutually orthogonal, i.e., e′iej = 0 if i 6= j. Figure (4.2)
displays such a case.

Category B (pure rotation). The mapping A : RN → RN maps the unit
sphere to itself (no stretching or shrinking of the length of any vector) with
all vectors being rotated about an axis of rotation. Figure (4.3) displays and
example of this case.

Having asserted that the above two categories describe the “end-member”distortions
brought about by a general linear mapping of the unit sphere, we develop
means by which the two categories can be recognized by simple inspection
of the matrix A. We prove below that A belongs to category A if A is a
symmetric matrix (i.e., A′ = A). Likewise, A belongs to category B if A is
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Unit Sphere and its A-mapping

Figure 4.1: A mapping of the unit sphere in R2 into its image in R2 by
the linear operator represented by the matrix A : R2 → R2. The original
position of a point on the unit sphere, and its image after the mapping is
shown in two examples by open circles connected by line segments.

Pure stretching

Pure shrinking

Figure 4.2: A mapping from R2 →R2 which does not rotate. (Note, the two
pairs of vectors aligned with the principal axes of the ellipse do not rotate.
All other vectors will rotate.
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a unitary matrix, (i.e., its columns are a set of orthonormal column vectors of
unit length. (We remind the reader that the length of a vector v in RN to be

‖v‖ =
√∑N

i=1 v2
i , and that a set of vectors {vi} is orthonormal if v′ivj = δij.)

Symmetric Matrices Belong to Category A

We expect the ellipse which is the image of the unit sphere after mapping to
have principal axes which are orthogonal and complete. (The term complete
referrs to the fact that the principal axes could serve as a coordinate system
for the vector space in which the ellipse resides.) By definition, category A
mappings must imply that there are N vectors {vi, i = 1, N} in RN which
originally lie on the unit sphere, i.e., vj

′vi = δji and which become the
principal axes of the ellipse,

Avi = λivi (4.2)

Here the scalar coefficients {λi, i = 1, N} are the factors which determines
how much the {vi, i = 1, N} are stretched or shrunk to reach the principal
axes of the elliptical image of the unit sphere. (When we discuss the unit
sphere and its elliptical image, we must recongnize that these geometrical fig-
ures are abstract if the vector spaces in which they reside have dimensionality
greater than 3.)

Let’s multiply Eqn. (4.2) by v′j:

v′jAvi = λiv
′
jvi (4.3)

Next, let’s do the same thing, but switch the indices i and j:

v′iAvj = λjv
′
jvi (4.4)

In the above expression, we have made use of the commutaion of the vector
product v′ivj = v′jvi. We can also write the left-hand side of Eqn. (4.4) in
a manner which swaps the order of the appearance of the vectors vi and vj :

v′iAvj = (Avj)
′vi

= v′jA
′vi (4.5)
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(Recall the commutation rules associated with taking the transpose of vectors
and matrices: if a and b are two vectors and L is a matrix, then a′b = b′a
and (La)′ = a′L′.) If we subtract Eqn. (2.0.4) from Eqn. (2.0.3), and make
use of Eqn. (2.0.5) we get

v′j(A −A′)vi = (λi − λj)v
′
jvi (4.6)

We have already asserted (using our notion of the geometry of an ellipse) that
the vectors which align with the principal axes of the ellipse are orthonormal.
In addition, when i = j the factor (λi − λj) = 0. Thus, Eqn. (4.6) implies

v′i(A−A′)vj = 0 (4.7)

for all i and j. Equation (4.7) states that the vector (A−A′)vj is orthogonal
to all of vectors {vi, i = 1, N}. Recall that the set {vi, i = 1, N} is complete
(one would say that the vectors {vi, i = 1, N} completely span the vector
space in which they reside). The only vector which can be orthogonal to all
the {vi, i = 1, N} is the zero vector (a vector having zeros for each and every
component). Thus if (A − A′)vj = 0, we must conclude that A′ = A (or
Aij = Aji). The matrix A must therefore be symmetric. ¥

Unitary Matrices Belong to Category B

Pure rotations preserve the angle between two vectors and do not change
their length. Thus we can consider a set of orthonormal vectors {vi, i = 1, N}
which span RN and assert that their image once transformed by the linear
operator A will also be orthonormal and will span RN . We denote the image
of {vi, i = 1, N} under the transformation A by {ui, i = 1, N}. By definition

uj = Avj (4.8)

and

u′kuj = δkj = (Avk)
′(Avj)

= v′k(A
′A)vj (4.9)

but v′kvj = u′kuj = δkj , so

v′kvj = v′k(A
′A)vj (4.10)
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or
vj = (A′A)vj (4.11)

Thus,
A′A = I (4.12)

Note that Eqn. (4.12) implies that the columns of A are composed of or-
thonormal basis vectors (each column is a complete, separate basis vector).
¥

4.3 Eigenvalues and Eigenvectors of a Sym-

metric Matrix

If A is a symmetric linear operator (matrix) it belongs to category A. The
geometry of the ellipse, and Eqn. (4.2), suggest that there is a set of eigen-
vectors, {vi, i = 1, . . . , N}, which belong to RN and eigenvalues, {λi, i =
1, . . . , N}, which can be associated with the matrix A. How do we determine
these eigenvectors and eigenvalues? There are many ways to perform such a
determination. In this chapter, we adopt a relatively inefficient, but intuitive,
technique that is based on our geometric picture of the unit sphere and its
distorted image. We will also show that the set of eigenvectors {vi, i = 1, N}
are mutually orthogonal (this confirms our geometric notion that the prin-
cipal axes of an ellipse are indeed perpendicular) and that the eigenvalues
{λi, i = 1, . . . , N} are all positive.

An appealing way to find the principal axes of an ellipse is to recognize
that the principal axes of the ellipse represent vectors in which the distance
between the ellipse and the origin is extremized (maximized or minimized
in some sense). We can determine the principal axes of an N -dimensional
hyperellipse, for example, by finding the extrema of the following measure of
the length, J , of a vector u = Av which lies on the elliptical image of the
unit sphere. In other words, we seek the extrema of J , where

J = (Av)′(Av) (4.13)
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subject to the constraint that

v′v = 1 (4.14)

(i.e., v lies on the unit sphere).

We can enforce the constraint represented by Eqn. (4.14) by using a
Lagrange multiplier µ:

J̃ = (Av)′(Av) + µ(1− v′v) (4.15)

The Euler-Lagrange conditions for the extremization of J̃ are generated by
differentiating J̃ with respect to each component of v and with respect to µ,
the unknown Lagrange multiplier.

∂J̃

∂µ
= 1− v′v = 0 (4.16)

∂J̃

∂vk
= 2(AikAijvj − µvk) = 0 (4.17)

here, vk denotes the kth component of v, and Aij denotes the ijth component
of A.

To satisfy Eqn. (4.17) we must solve

A′Av− µv = 0 (4.18)

or
(A′A− µI)v = 0 (4.19)

In general, there is no way to solve Eqn. (4.19) with a non-trivial (non-
zero) vector v 6= 0 unless the matrix A′A− µI is defective in some sense. In
particular, Eqn. (4.19) can be satisfied for a non-zero v when

det(A′A− µI) = 0 (4.20)

The left-hand side of Eqn. (4.20) expresses a polynomial of degree N in the
variable µ, thus Eqn. (4.20) expresses the condition that µ is a root of the
characteristic polynomial of the matrix A′A. Note that µ is guaranteed to be
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a real positive number because A′A is a symmetric, square matrix. You can
prove this for yourself. These roots are called the eigenvalues of the operator
A′A.

Assuming that the N roots of the characteristic polynomial (4.20), {µl, l =
1, N}, are determined, the vl’s can then be determined by solving Eqn.
(4.19). This entails performing the LU-decomposition of (A′A− µI) which,
as we have ensured by choosing µ in such a manner that det(A′A−µI) = 0,
is not possible.

We get around this problem by substituting v′ for the lth row of the
matrix (A′A − µI) and replace the lth zero component on the right-hand
side of Eqn. (4.19) with 1. This substitution enforces the constraint that
v′v = 1. Since there are N roots to apply this substitution, there will be N
vectors produced by this proceedure. These N vectors, {vl, l = 1, N}, are
referred to as the eigenvectors of the operator A′A.

Notice that nothing so far has depended on the assumption that A is
symmetric. We shall next make use of this assumption to show that A can
have eigenvalues and eigenvectors. By assumption, A is symmetric (A′ = A),
thus

det(A′A− µI) = det(A2 − µI)

= det
([

A +
√

µI
] [

A −√µI
])

= det(A +
√

µI) det(A−√µI)

= 0 (4.21)

where we have made use of the fact that the determinant is a linear operator
on matrices.

To satisfy Eqn. (4.21), either det(A +
√

µI) = 0 or det(A − √µI) = 0.
If we choose one convention, say det(A −√µI) = 0, then we recognize that
λi =

√
µi, for i = 1, . . . , N are roots of a characteristic polynomial for A.

Note that we must demand that the µi > 0, i = 1, . . . , N in order for the
square-root to yield a real-valued λi. We are assured that the µi > 0 due
to the fact that the characteristic polynomial associated with the symmetric
matrix A′A does indeed have only positive real roots. (NEED TO PROVE
THIS. Refer to a text on linear algebra for a proof of this assertion.)
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Following the method described above, we can choose a set of eigenvectors
{ui, i = 1, N} such that u′iuj = δij and

Aui = λiui (4.22)

If we multiply Eqn. (4.22) by A we see (using the symmetry of A) that

AAui − λiAui = A′Aui − λ2
i ui = A′Aui − µiui (4.23)

which tells us that ui = vi.

Orthagonality of Eigenvectors

We can also affirm the assumption made previously that the vectors {vi,
i = 1, . . . , N} are mutually orthogonal. (This previous assumption followed
from our geometric intuition that the principal axes of an ellipse are mu-
tually orthogonal.) To demonstrate this, take the dot-product between two
members of the set vi:

v′ivk = (Avi)′Avk

λiλk

=
v′iA

′Avk

λiλk

=
µk

λiλk
v′ivk

=
λk

λi
v′ivk (4.24)

Note that we have made use of familiar commutation rule: (Av)′ = v′A′.
For Eqn. (4.24) to hold true when i 6= k, either v′ivk = 0 or λk/λi = 1. If
λk/λi 6= 1, Eqn. (4.24) implies that vi and vk are orthogonal. If λk/λi = 1
, we say that the matrix A has degenerate eigenvalues and eigenvectors. In
this circumstance, we may select two vectors, vi 6= 0 and vk 6= 0, which are
orthogonal and satisfy Eqn. (4.22).
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4.4 SVD of General, Nonsymmetric, Square

Matrices

What happens when the matrix A : RN → RN is not symmetric, i.e., does
not conform precisely to category A defined above? Consideration of this
question leads to the concept of the singular-value decomposition (SVD).

We begin by noting the fact that the unit sphere is mapped to an ellipsoid
regardless of the fact that A, by assumption, is not symmetric. We may thus
consider the conditions which define the extrema of J defined in Eqn (4.15).
Following the same steps as followed previously for the case of symmetric
matrices we come to Eqn. (4.19). The existance of solutions of Eqn. (4.19)
implies that there are two sets of orthonormal vectors, {vi}N

i=1 and {ui}N
i=1,

such that
Aui = λivi (4.25)

A′vi = λiui (4.26)

and
λ2

i = µi (4.27)

for i = 1, . . . , N . We refer to the vectors {vi}N
i=1 and {ui}N

i=1, and the set
of scalar quantities {λi}N

i=1 as the SVD of the matrix A. Equations (4.25)
- (4.27) suggest a convienent notation. If we define the matrix V such that
it’s i’th column is the vector vi, and likewise define the matrix U such that
it’s i’th column is the vector ui, then

AV = UΛ (4.28)

where Λ is a matrix which has the λi’s on its diagonal and zeros everywhere
else. Noting the fact that VV′ = I, we can express A in a canonical form
which will be referred to as the SVD:

A = UΛV′ (4.29)
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Example

Let’s compute the {µi, i = 1, 2}, {λi, i = 1, 2}, {vi, i = 1, 2}, and the {ui, i =
1, 2} for the matrix given in Eqn. (4.1). This is a non-symmetric matrix, so
we cannot expect vi = ui.

First observe that, according to Eqns. (4.25)-(4.27),

A′Avi − λ2
ivi = 0 (4.30)

and
AA′ui − λ2

i ui = 0 (4.31)

This suggests that we can use the Matlabr -native eigenvalue and eigen-
vector routines to determine the {vi, i = 1, 2} and {ui, i = 1, 2}:

>> [V,D]=eig(A’*A)

V =
0.9967 0.0808
−0.0808 0.9967

(4.32)

D =
0.0020 0

0 2.0131

>> [U,D]=eig(A*A’)

U =
0.7089 0.7053
−0.7053 0.7089

D =
0.0020 0

0 2.0131

The matrix D above contains the eigenvalues (µi) on its diagonal. Thus,
the values of λi can be found by taking the square root of the components
of D. The values of {vi, i = 1, 2} and {ui, i = 1,2} are to be found in the
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Pure rotation

Figure 4.3: All vectors in this mapping from R2 → R2 are rotated in the
same direction by the same angle of rotation. No stretching or shrinking
occurs.

Unit Sphere and its A-mapping

v1

v2

u1

u2

Figure 4.4: The {vi, i = 1, 2} and {ui, i = 1, 2} for the matrix A expressed
in Eqn. (4.1).
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columns of V and U. Figure (4.4) displays the location of the {vi, i = 1, 2}
and {ui, i = 1, 2}.

Notice that both the {vi, i = 1, 2} and {ui, i = 1, 2} given above are or-
thonormal basis vectors. They are not perpendicular to each other, however.
Can you take this exercise further by verifying that Eqns. (4.25) and (4.26)
are true?

Let’s determine the SVD of the matrix A given by Eqn. (4.1). The

Matlabr -native SVD routine does this job easily:

>> [U,S,V]=svd(A) U =

0.7053 0.7089
0.7089 −0.7053

S =
1.4188 0

0 0.0448

V =
0.0808 −0.9967
0.9967 0.808

One can compare the columns of U and V with derived in the SVD routine
with those derived in the previous section. Also note that S= Λ is the
square-root of D found in the previous section.

4.5 SVD of Rectangular Matrices

All of the results discussed so far in this chapter have applied to square,
N × N , matrices. The SVD also exists when A is a rectangular, M × N ,
matrix that maps RN →RM .

Following the techniques of the previous section, we can consider the
eigenvalues and eigenvectors associated with the two symmetric, square ma-
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trices A′A : RN → RN and AA′ : RM → RM . In particular there ex-
ist {ui, i = 1, . . . ,N}, {vi, i = 1, . . . , M}, {µi, i = 1, . . . , N}, and {γi, i =
1, . . . , M} such that,

(A′A − µiI)vi = 0 i = 1, . . . , N (4.33)

(AA′ − γjI)uj = 0 j = 1, . . . , M (4.34)

For the sake of argument, and without loss of generality, let’s assume that
N < M and that A represents the matrix associated with an overdetermined
least-squares problem. In this circumstance, there will be M − N more
eigenvalues γj associated with Eqn. (4.34) than eigenvalues µj associated
with Eqn. (4.33). Thus, for a subset {γk, k = 1, . . . , N} of the eigenvlaues
{γk, k = 1, . . . , M}, we can prove that γk = µk. Operating on Eqn. (4.33)
with A, we obtain

0 = AA′Avi − µiAvi

= AA′(Avi)− µi(Avi)

= AA′uk − µiuk (4.35)

but AA′uk = γkuk from Eqn. (4.34), so

AA′uk − µiuk = (γk − µi)uk = 0 (4.36)

The only way for Eqn. (4.36) to be satisfied for non-zero vk is for γk = µi.
We might as well adopt an indexing convention such that k = i, so γi = µi.

Having identified the {vi, i = 1, . . . , N}, {ui, i = 1, . . . , M}, and {µi =
γi, i = 1, . . . , N}, we can relate the two sets of vectors together in the follow-
ing manner

Avi = λiui i = 1, . . . , N (4.37)

A′ui = λivi i = 1, . . . , N (4.38)

A′ui = 0 i = N, . . . , M (4.39)

where λi =
√

γi , i = 1, . . . , N . One can verify that the relationship between
ui and vi implied by Eqns. (4.37) and (4.38) satisfies the definitions of ui

and vi given in Eqns. (4.33) and (4.34).
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Using the above relations, we define the SVD for the rectangular M ×N
matrix A as follows:

AV = UΛ (4.40)

where, as before, the kth columns of V and U are composed of the compo-
nents of the vectors {vk, k = 1, N} and {uk, k = 1, M} respectively, and

Λ =




λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 . . . 0 λN

0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0




(4.41)

Notice that V is a square N ×N matrix and U is a square M ×M matrix.
The matrix Λ is a M ×N rectangular matrix that has λi’s on its ‘diagonal’.

From Eqn. (4.40) we can deduce the SVD of the rectangular matrix A:

A = UΛV′ (4.42)

where we have made use of the fact that VV′ = I. Notice the similarity
between the above expression and that derived for square matrices in Eqn.
(4.29).The beauty of singular value decomposition is that the formula for the
decomposition of A is true for both the underdetermined and overdetermined
inverse problems.

4.6 The Moore-Penrose Inverse

The SVD is a powerful tool in the solution of linear inverse problems of all
types. Before showing how the SVD can be used to solve least-squares and
minimum-norm problems, we pause to describe the Moore-Penrose inverse
(MP inverse) of a general linear operator. We shall prove that the SVD
provides an easy means to generate the MP inverse.
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Consider the matrix equation

A m = d (4.43)

where A is an M ×N matrix (M rows and N columns), m ∈ RN is a model
vector, and d ∈ RM is a data vector. Our interest is in determining a model
m from data d. If M < N , the equations are underdetermined. If M > N ,
the equations are overdetermined. In some circumstances, the nature of the
equations may be mixed, with some elements of m being underdetermined,
and other elements of m being overdetermined. The matrix A+ is said to be
the MP inverse of A if

AA+A = A
[
AA+

]
′ = AA+

A+AA+ = A+ [A+A]
′
= A+A (4.44)

The MP inverse of the matrix A in Eqn. (4.43) is easily expressed in
terms of the SVD. Suppose that N ≤ M (overdetermined problem), then the
SVD of A generates the following set of singular values

λ1 ≥ λ2 ≥ . . . λK > 0

λK+1 = . . . = λN = 0 (4.45)

where K ≤ N is an arbitrary number which designates the number of non-
zero singular values. The following expression can be easily verified by sub-
stitution into Eqns. (4.44) to be the MP inverse of A:

A+ = VΛ+U′ (4.46)

where

Λ+ =

(
L+

Z

)
: RM →RN (4.47)

is an N ×M matrix, L+ is an N ×N square diagonal matrix with elements
(λ−1

1 , . . . , λ−1
K , 0, . . . , 0) on its diagonal and zeros on its off-diagonal elements,

and Z is an N × (M −N) matrix of zeros.

In the case of an underdetermined problem, where N ≥ M and K ≤ M ,
the expression given in Eqn. (4.46) is also a MP inverse. In this circumstance
the matrix Λ+ is defined by

Λ+ = (L|Z) (4.48)
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where Λ+ is an N ×M matrix, L is the M ×M square diagonal matrix
with elements (λ−1

1 , . . . , λ−1
K , 0, . . . , 0), and Z is a (N − M ) × M matrix of

zeros.

4.7 Solving Overdetermined Linear Problems

with SVD

The previous section demonstrates how the MP inverse of a linear operator
is easily derived from the SVD of a general, rectangular matrix A. We
now revisit the least-squares inverse methods discussed in Chapter (1) to
demonstrate the fact that the MP inverse defined above in Eqn. (4.46) is
precisely the same as the least-squares inverse defined in Eqn. (1.8).

Recalling Eqn. (??), the least-squares solution of an overdetermined prob-
lem is

m = (A′A)−1A′d (4.49)

Substituting the SVD for A in Eqn. (4.49)gives

m = ((UΛV′)′UΛV′)−1(UΛV′)′d

= (VΛ′U′UΛV′)−1(UΛV′)′d

= (Λ′Λ)−1VΛU′d

= VΛ+U′d (4.50)

where we have made use of the relations V′V = I, UU′ = I, (Λ′Λ)−1 is
diagonal and thus commutes with V, and (Λ′Λ)−1Λ : RM →RN is given by

(Λ′Λ)−1Λ = Λ+ =




1
λ1

0 0 . . . 0 0 0 . . . 0

0 1
λ2

0 . . . 0 0 0 . . . 0

0 0 1
λ3

. . . 0 0 0 . . . 0
...

...
...

. . .
...

...
... . . .

...
0 0 . . . 0 1

λN
0 0 . . . 0




(4.51)

The expression in Eqn. (4.50) is generally preferred over that in Eqn.
(4.49) for expressing the solution of overdetermined least-squares inverse
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problem. Careful inspection of Eqn. (4.50) gives a sense of the geometri-
cal interpretation of the least-squares inverse. The first matrix to operate on
d is U′. This operation simply re-expresses the data d in terms of the M
eigenvectors {ui, i = 1, . . . , M} which span the data space RM , and which
are stored as rows of U′. Now that d is expressed in terms of the eigenvec-
tors, the next operation, multiplication by Λ−1 takes the data and maps it
(in an intelligent way) to the ‘model ’space RN where the desired solution
m resides. The last operation, multiplication by V, re-expresses the im-
age of the data vector (which is now expressed in terms of the eigenvectors
{vi, i = 1, . . . , N} that span the space RN) into its expression in terms of
the original (physical) basis vectors which span RN .

Example

Let’s compute the slope and intercept of the lunar basalt isocrhon discussed
in Chapter 1 using SVD instead of the least-squares inverse formula expressed
in Eqn. (??). We shall make use of the Matlabr SVD routine:

>>d

d =
0.7010
0.6999
0.7020
0.7049

>>A

A =
0.0296 1.0000
0.0054 1.0000
0.0492 1.0000
0.1127 1.0000

>>[U,S,V]=svd(A)
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U =
0.4995 0.2474 −0.4303 −0.7100
0.4989 0.5518 −0.1700 0.6463
0.5000 0.0012 0.8505 −0.1633
0.5016 −0.7965 −0.2502 0.2270

S =
2.0024 0

0 0.0795
0 0
0 0

V =
0.0492 −0.9988
0.9988 0.0492

Next, let’s compute m using the SVD approach:

>> U’

ans =
0.4995 0.4989 0.5000 0.5016
0.2474 0.5518 0.0012 −0.7965
−0.4303 −0.1700 0.8505 −0.2502
−0.7100 0.6463 −0.1633 0.2270

% This script computes the inverse of S, the rectangular matrix %

of eigenvalues:SINV=zeros(2,4);SINV(1,1)=1.0/S(1,1);SINV(2,2)=1.0/S(2,2);%

>> SINV

SINV =

0.4994 0 0 0
0 12.5767 0 0

>>m=V*SINV*U’*d
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m =
0.0469
0.6996

The solution m (slope=0.0469, intercept=0.6996) is precisely that which we
computed in Chapter 1 using Eqn. (??).

4.8 Data Independence and Model Resolu-

tion

The concepts of the MP inverse and SVD allow a compact development of
the notion of data independence and model resolution discussed in previous
chapters.

Data Independence

In the case of an overdetermined inverse problem, we can construct the data
independence operator D following the methods of Chapter ():

D = AA+

= UΛV′ VΛ+U′

= UΛΛ+U′

= UKU′
K (4.52)

where the matrix UK is a rectangular M ×K matrix consisting of the first
K columns of U, and where K is the number of non-zero singular values λi.

Model Resolution

Similarly, in the underdetermined case, we can construct the model resolution
matrix, R

R = (A+A)
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= VΛ+U′ UΛV′

= VΛ+ΛV′

= VKV′
K (4.53)

where, again, the matrix VK is the N ×K rectangular matrix consisting of
the first K columns of V.

4.9 Model Covarience

The covarience matrix of model errors can be readily expressed using the
notation of the SVD. Using 〈·〉 to denote the expectation value, we have

〈m̂〉 = A+〈d〉 (4.54)

Errors in the derived model will similarly be related to errors in the data:

(m̂− 〈m̂〉) = A+(d− 〈d〉) (4.55)

The covariance matrix C of the model errors is thus

C = 〈(m̂ − 〈m̂〉)(m̂− 〈m̂〉)′〉 = A+〈(d− 〈d〉)(d− 〈d〉)′〉(A+)′ = A+Q(A+)′

(4.56)

In situations where Q is diagonal, and all diagonal elements are the same,
say σ2, i.e.,

Q = σ2I (4.57)

we see that
C = σ2A+(A+)′ (4.58)

or more compactly

C = σ2A+(A+)′

= σ2VΛ+U′ U(Λ+)′V
= σ2VΛ+(Λ+)′V′

= σ2VKΛ−2
K V′

K (4.59)

where Λ−2 is a square K × K diagonal matrix having diagonal elements
λ−2

1 , λ−2
2 , . . . , λ−2

K .

76



4.10 Testing Data Sufficiency

Situations arise from time to time in which the number of independent data
measurements appear to overdetermine the desired end-result model but, in
practice, do not. The SVD provides a useful test to foresee circumstances
in which this situation arises. Suppose, for example, the lunar-basalt data
were clustered in such a manner that the four 87Rb/86Sr measurements were
clustered very close in numerical value rather than spread over an interval.
The fact that there were four independent measurements might suggest that
least-squares would provide an accurate and reliable evaluation of m = [αβ]′.
The SVD of the matrix A would suggest otherwise. The fact that the our
87Rb/86Sr measurements are clustered implies that the four rows of A will be
nearly the same. In this circumstance, the SVD of A will yield two singular
values λ1 and λ2 in which one was indistinguisable from zero (or, in other
words, where λ1 >> λ2). If the smaller singular value λ2 is indistinguishable
from zero, then neither D nor R will be the identity operator, as suggested by
Eqns. (4.52) and (4.53). In the case of a lunar basalt analysis with clustered
87Rb/86Sr measurements, K=1, N = 2 and M = 4.

The above example suggests that an additional role of the SVD in inverse
methods is the insight it gives into the nature of the problem (i.e., whether
the problem is overdetermined or underdetermined). In the circumstance
suggested above, the count of non-zero singular values, K, provides the means
to detect underdeterminacy even in circumstances where, on the face of it,
the number of data points exceeds the number of undetermined parameters.

4.11 Summary

In this chapter we have accomplished an important bit of ‘dirty work’. We
have managed to develop a conceptual, geometric view of the linear-algebra
of square matrices, and have extended it to include rectangular matrices. In
doing this, we have developed the concepts of eigenvectors and eigenvalues,
and have derived the very useful singular-value decomposition (SVD). We
have seen how the SVD provides a means for finding the least-squares inverse
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of a rectangular matrix that is equivalent to the more brute-force method
derived in the previous chapter.
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4.13 Laboratory Exercises

Using SVD to Solve Overdetermined, Underdetermined and Mixed
Linear Inverse Problems

In this lab you will re-compute the slope and intercept of the lead-isotope
isochron which determines the age of the earth [Patterson, 1956] using SVD
as the technique for inverting a rectangular (overdetermined) matrix.

Problem 1. Use the Matlabr routines to compute the SVD of the matrix
A you generated in problem 4 of Chapter 1.

Problem 2. Using the SVD, compute m, the vector containing the slope
and intercept of the lead-isotope isochron determined by Patterson’s [1956]
data.

Problem 3. Show that the MP inverse of an underdetermined problem is
the same as the minimum-norm problem derived in Chapter (3).
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Chapter 5

Idiosyncratic Line-Fitting
Algorithms: Control Method
and Simulated Annealing

5.1 Introduction

We revisit the line-fitting problem of Chapter (1) to introduce two additional
methods for solving overdetermined, least-squares inverse problems: control
methods and simulated annealing. Our motivation for introducing these
methods is the fact that the problem of finding the slope and intercept of
an isochron in radiometric dating is complicated by the fact that isotopic
measurements appear in both the data vector d and the linear operator A
of the following linear prolbem (see § 1.7):

Am = d (5.1)
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In the lunar basalt example of Chapter (1), the data vector d ∈ R4 consisted
of four observed 87Sr/86Sr values associated with four minaral separates:

d =




Swr

SP lag

SPx

SIlm


 (5.2)

and the 4×2 matrix A : R2 →R4 contained four observed 87Rb/86Sr ratios.

The least-squares solution to Eqn. (5.1) which takes account of errors ε in
d, namely m̂ = (A′Q−1A)

−1
A′Q−1d does not account for the fact that there

is also uncertainty associated with the elements of A. To adequately account
for these additional errors, we must abandon Eqn. (5.1) and the linear-
algebraic methods associated with solving it in favour of a more primitive,
non-linear approach to finding m̂ given the 87Sr/86Sr and 87Rb/86Sr data.

The complication outlined above has been dealt with in radiometric geochronol-
ogy by the least-squares methods developed by York [1966]. York’s work
emphasizes the complexity of even the most simple least-squares line fitting
problem. We shall not review York’s methods, but rather introduce more
modern techniques for accomplishing the same fundamental goal.

The first method we shall introduce is known as control. The control
method was invented by engineers and applied mathmaticians (see Bryson
and Ho [1975] or Bellman [1967]) to solve constrained optimization prob-
lems associated with the manoever of spacecraft, the operation of chemical-
processing plants and other such practical concerns. Problems which are
amenable to control methods are those in which the minimum of a least-
squares performance index is sought subject to constraints which may take
the form of differential equations. The essential ingredient of the control
method is its systematic means to determine the gradient of a least-squares
performance index J in the space of unknown parameters to be determined.
The advantage of control methods over the linear-algebraic methods de-
scribed in Chapter (1) is that they can be extended quite readily to the
solution of non-linear least-squares problems.

The second method we shall discuss is called simulated annealing (see
chapter 10 of Press et al. [1989]). Simulated annealing, like the control
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method, is appropriate for problems involving the minimization of a non-
linear, least-squares performance index. Unlike the control method, however,
simulated annealing appeals to random trial and error as a means to find the
solution. The appealing name, “simulated annealing”, stems from an analogy
that can be drawn between the mathematical process of minimization and
the physical process associated with the annealing of metal as it cools from
a liquid state. Unlike the control method, simulated annealing requires very
little mathematical set-up to impliment an algorithm for solving a least-
squares inverse problem.

5.2 Radiometric Dating Redux

Consider the lunar basalt isochron fitting problem described in § (1.7). Let
the vector X ∈ R4 denote the four observed 87Rb/86Sr ratios associated with
the four mineral separates. Let Y ∈ R4 denote the four observed 87Sr/86Sr
ratios. Our problem is to choose a slope α and intercept β such that the
following least-squares performance index J is minimized

J = [X− x]′ S [X − x] + [Y − y]′Q [Y − y] (5.3)

subject to the four constraints

αxi − yi + β = 0 for i = 1, . . . , 4 (5.4)

Pairs of compontents (xi, yi) of the vectors x ∈ R4 and y ∈ R4 represent the
four points which lie on the isochron and which are, in some sense, closest
to the corresponding data points (Xi, Yi). The matrices S and Q express the
covarience of the errors in measurements of X and Y, respectively; i.e.,

S = 〈(X − 〈X〉) (X− 〈X〉)′〉 (5.5)

Q = 〈(Y − 〈Y〉) (Y − 〈Y〉)′〉 (5.6)

To minimize J subject to the 4 constraints represented by Eqn. (5.4), we
employ a Lagrange-multiplier vector λ to augment J :

H = [X− x]′ S−1 [X− x] + [Y − y]′Q−1 [Y − y] + 2λ′ [αx− y + β1] (5.7)
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where

1 =




1
1
1
1


 (5.8)

Our goal now is to minimize H by judiciously choosing the 14 variables
xi, i = 1, . . . , 4, yi, i = 1, . . . , 4, λi, i = 1, . . . ,4, α and β.

The Euler-Lagrange equations expressing the conditions that must be met
for H to be minimum are derived by considering the variation δH. Following
the usual practice, we obtain:

−S−1 [X − x] + αλ = 0 (5.9)

−Q−1 [Y − y]− λ = 0 (5.10)

αx− y + β1 = 0 (5.11)

λ′x = 0 (5.12)

and

λ′1 =
4∑

i=1

λi = 0 (5.13)

Equations (5.9)-(5.13) represent 14 equations for the 14 unknowns. It is not
easy to solve Eqns. (5.9)-(5.13) because they are nonlinear (due to vector
products between two unknowns such as λ and x in Eqn. (5.12), for example).

One strategy for minimizing H is to recognize that the left-hand sides of
Eqns. (5.9)-(5.13) represent the gradient of H with respect to each of the
14 unknown variables. An iterative, down-gradient search technique may be
utilized to find the solution which minimizes H using the ability to readily
evaluate the gradient of H. Such an algorithm might be constructed as
follows.

5.2.1 Control Algorithm

Step 1-

Guess x, α and β. Denote them by x[1], α[1] and β[1].
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Step 2-

Compute y[1] and λ[1] using Eqns. (5.11) and (5.10), respectively.

Step 3-

Compute ∇H using the expression derived from the left-hand sides of Eqns.
(5.9), (5.12) and (5.13):

∇H = 2



−S

[
X − x[1]

]
+ α[1]λ[1]

(λ[1])′x[1]

(λ[1])′1


 (5.14)

Step 4-

Test to determine if ∇H = 0. If so, then the search algorithm stops because
x[1], y[1], α[1] and β[1] have minimized H. If not, proceed to the next step.

Step 5-

Using a down-gradient search algorithm, obtain an improved guess x[2], α[2]

and β[2]. For efficiency, select a search algorithm that makes use of ∇H
computed from the previous step. (Numerous algorithms are available for
this step. We recommend the conjugate gradient method, described in the
appendix to this chapter, for its versatility.)

step 6-

Proceed to Step 2.
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5.3 Example: Lunar Basalt Isochron

We apply the control algorithm described above as a means to radiometrically
date the lunar basalt discussed in § (1.7). In this example,

X =




0.0296
0.00537
0.0492
0.1127


 (5.15)

Y =




0.70096
0.69989
0.70200
0.70490


 (5.16)

S =
(

1

2

)2




0.00042 0 0 0
0 0.000052 0 0
0 0 0.00042 0
0 0 0 0.00092


 (5.17)

Q =
(

1

2

)2




0.000072 0 0 0
0 0.000092 0 0
0 0 0.000052 0
0 0 0 0.000062


 (5.18)

The data for S and Q are derived from table 3 (part II) of Nyquist et al.
[1979]. (The 2σ error levels are divided by two and squared to obtain the
diagonal components of the covarience matrices.)

For an initial guess, we choose x[1] = X, α[1] = 0.01, and β[1] = 0.699.
The folowing Matlabr algorithm was used to search for the solution m =
[x′ α β]′ which minimizes H:

% This program determines the slope and intercept of the

%

X=[0.0296

.00537

.0492

0.1127];
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%

Y=[0.70096

0.69989

0.702

0.7049];

%

S=.25e4*[.0004

.00005

.0004

.0009].^ 2;

%

S=diag(S,0);

Sinv=inv(S)

%

Q=.25e4*[.00007

.00009

.00005

.00006].^ 2;

%

Q=diag(Q,0);

Qinv=inv(Q)

%

beta=0.699;

alpha=0.01;

guess= [X

alpha

beta];

%

options(1)=0; % set to 1 for verbose output

options(9)=1; % set to 1 for check of analytic gradient

options(2)=1.e-5; % stopping criteria for m

options(3)=1.e-5; % stopping criteria for H

options(14)=500; % max number of iterations in search

%

m = fminu(’H’,guess,options,’gradH’,X,Y,S,Q) % minimization

%

%
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Observe that S and Q have been multiplied by a scaling factor of 1.0×
104 to better condition the algorithm for rapid convergence to the solution.
The value of this scaling factor was found experimentally. The Matlabr

toolbox function fminu calls two functions H and gradH. These two functions
represent the objective function H and its gradient ∇H , respectively; and
are listed as follows:

function [h] = H(guess,X,Y,Sinv,Qinv)

xtrial=guess(1:4);

ytrial=guess(5)*xtrial+guess(6)*ones(4,1);

h= (X-xtrial)’*Sinv*(X-xtrial) + (Y-ytrial)’*Qinv*(Y-ytrial);

function [dh] = gradH(guess,X,Y,Sinv,Qinv)

xtrial=guess(1:4);

ytrial=guess(5)*xtrial+guess(6)*ones(4,1);

lambda=-Qinv*(Y-ytrial);

alpha=guess(5);

dh=[-2*Sinv*(X-xtrial)+2*alpha*lambda

2*lambda’*xtrial

2*lambda’*ones(4,1)];

Normally, these functions are created by the user and then stored as m-files
in Matlabr .

The above Matlabr routines generated the following solution m:

m =

0.0295

0.0054

0.0493

0.1125

0.0469

0.6996
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Recall that the first four components of m are the components of x, the fifth
component of m is the slope of the isochron, and the last component of m
is the intercept of the isochron. Figure (5.1) displays the isochron associated
with the above solution.

5.4 Error Analysis Associated with the Con-

trol Method

In Chapter (3) we derived the linear relationship between the covarience of
m, E = 〈(m − 〈m〉) (m − 〈m〉)′, and the covarience of the data Q. The
expanded view of the isochron problem presented in this chapter necessitates
that we deal with a non-linear relationship between E and the two covarience
matrices S and Q.

Non-linearity in the relationship between m and the data X and Y sug-
gests that E cannot be written as an explicit function of S and Q. To obtain
E in this circumstance, we resort to a statistical technique. We generate N
separate vectors {mn}N

n=1 from N separate renditions of the data X̃n and
Ỹn, n = 1, . . . , N which differ from the expected value of the data X and Y
by random errors rx and ry, respectively. The random errors are assumed to
be normally distributed, to have zero mean, and a covarience equal to that
of the data, i.e.,

〈rx〉 = 0 (5.19)

〈ry〉 = 0 (5.20)

〈(rx − 〈rx〉) (rx − 〈rx〉)′〉 = S (5.21)

〈(ry − 〈ry〉) (ry − 〈ry〉)′〉 = Q (5.22)

The N separate solutions to the isochron problem generated by the N sep-
arate perturbations of the data are then analysed statistically to obtain an
estimate of E:

〈m〉 =
1

N

N∑

n=1

mn (5.23)
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Figure 5.1: The lunar basalt isochron found by control methods.
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〈(m− 〈m〉) (m − 〈m〉)′〉 =
1

N − 1

N∑

i=1

(mi − 〈m〉) (mi − 〈m〉)′ (5.24)

Lunar Basalt Example

The above empirical means of determining E was employed for the Lunar
basalt isochron problem using the following Matlabr algorithm:

% This algorithm determines the covarience matrix E.

%

% First, set up random data

%

X=[0.0296

.00537

.0492

0.1127];

Y=[0.70096

0.69989

0.702

0.7049];

S=1.0e4*.25*[.0004

.00005

.0004

.0009]. ^ 2;

S=diag(S,0);

Sinv=inv(S);

Q=1.0e4*(.25*[.00007

.00009

.00005

.00006]. ^ 2);

Q=diag(Q,0);

Qinv=inv(Q);

%

options(1)=0; % set to 1 for verbose output

options(9)=0; % set to 1 for check of analytic gradient
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options(2)=1.e-5; % stopping criteria for m

options(3)=1.e-5; % stopping criteria for H

options(14)=100; % max number of iterations in search

%

N=10;

XR=zeros(4,N);

YR=zeros(4,N);

MR=zeros(6,N);

for n=1:N

XR(:,n)=X+randn(4,1).*sqrt(1.0e-4*diag(S));

YR(:,n)=Y+randn(4,1).*sqrt(1.0e-4*diag(Q));

end

%

for n=1:N

n

beta=0.6996;

alpha=0.0469;

guess= [XR(:,n)

alpha

beta];

MR(:,n) = fminu(’H’,guess,options,’gradH’,XR(:,n),YR(:,n),Sinv,Qinv)

% minimization algorithm

end

%

% Now do statistics on MR:

%

meanM=[mean(MR’)]’

standard=std(MR’)

E=cov(MR’)

What is of central interest is the standard deviation of the individual com-
ponents of {mn}N

n=1. The above algorithm gives

standard =

1.0e-03 *
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0.1987 0.0260 0.1589 0.5928 0.4898 0.0254

The standard deviation of the slope α is approximately 4.272×10−4, or about
1.1% of the derived value of α. This level of uncertainty is slightly higher
than that derived in Chapter (3).

It should be pointed out that a significant problem can crop up if the
above monte-carlo method is used to establish the model covarience E. If the
search algorithm is not sufficiently sensitive, and the down-gradient search
stops before m is significantly changed from its value at the initial guess,
the variance of m can be perceived to be artificially small. To safeguard
against this possibility, one must use special care to see to it that the model
covarience does not change when parameters controling the down-gradient
search are made more sensitive.

5.5 Radiometric Dating Redux2: Simulated

Annealing

Here we solve the isochron problem using a modern computational technique
called simulated annealing. This method is similar to the control method
described in the previous sections in that it accounts for uncertainty in both
X and Y. Unlike the control method, or the linear least-squares method
discussed in Chapter (1), simulated annealing does not make use of Euler-
Lagrange conditions as a means to search for the minimum of J . Instead,
simulated annealing employes a random selection process to perturb a trial
solution vector m = [x′ α β]′ and simple trial and error to select those
perturbations which yield a smaller J . Here we define J in such a manner as
to incorporate esxplicitly the linear constraint of the previous section:

J = [X− x]′ S [X − x] + [Y − αx− β1]′Q [Y − αx− β1]′ (5.25)
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For a given guess m, a perturbed guess m̃ is constructed using a sequence of
N random numbers ξn, n = 1, . . . , N , where N is the dimensionality of m.

m̃ = m +




ξ1∆x
ξ2∆x

...
ξN−1∆α
ξN∆β




(5.26)

where ∆x, ∆α, and ∆β are appropriately chosen ranges over which the
random perturbations are to vary. The random numbers ξn, n = 1, . . . , N are
assumed to have a normal (bell-shaped) probability of mean 0 and standard
deviation 1.

The simulated annealing algorithm revolves around the question of whether
to accept the randomly perturbed guess m̃ as a replacement of the initial
guess m. Defining Jo and J ′ to be the values of J associated with m and m̃,
respectively, the decision to accept m̃ is based on two variables: P (Jo, J

′)
and ξd, where

P (Jo, J
′) = e

(Jo−J ′)
θ (5.27)

and where ξd ∈ [0, 1] is a random number that has a uniform distribution in
the interval [0,1]. The parameter θ is referred to as the annealing tempera-
ture. Its significance will become clear below.

According to the simulated annealing algorithm, a perturbed guess m̃
is accepted unconditionally when P (Jo, J

′) > 1. This makes sense because
J ′ < Jo implies that the perturbed guess is closer to the minimum of J than
the original guess. The crucial aspect of the simulated annealing algorithm
which makes it attractive in some applications is that the perturbed guess
is also accepted when ξd < P (Jo, J

′), i.e., even when J ′ > Jo. The point
of accepting some of the perturbed guesses, even when they are worse than
the original guess, is that they introduce a randomness to the search process
which helps the algorithm from being “caught” near isolated local minima of
J . This role of the parameter θ is to determine the frequency at which “bad”
guesses are occasionally accepted. When θ is large, P (Jo, J

′) will be near 1
even when J ′ is much greater than Jo. Since ξd is distributed uniformly on
the interval [0,1] (equal probability for all values between 0 and 1), there is
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a greater chance of accepting bad guesses when θ is large. Conversely, when
θ is small, there P (Jo, J

′) will be closer to 0 for a given (Jo − J ′), and the
chance of accepting bad guesses is reduced.

Typically, during an effort to minimize J , the “annealing temperature”
θ will begin relatively large, and reduce as J is reduced. Initially, a greater
acceptance rate of bad guesses is beneficial to the algorithm because it helps
avoid local minima in J which would otherwise “trap” the guess m. As J is
reduced toward its anticipated minima, it becomes less beneficial to accept
bad guesses on the premise that local minima in J are affecting the guess.
Thus, the parameter θ is reduced as J is reduced.

The name of the algorithm, simulated annealing, reflects the analogy be-
tween the minimization algorithm and the metallugical process of annealing
metal. To manufacture metal with optimum hardness characteristics, the
crystal structure of the atoms must be in near perfect order, i.e., the free
energy of the metal must be minimized. Often, as metals cool, the atoms get
“caught” in imperfect orderings which do not minimize the free energy. The
metalurgist can raise the temperature of such an imperfectly ordered metal
to allow sufficient random thermal motions that anneal out the imperfect or-
derings. The parallels between the minimization of free energy by increasing
the annealing temperature and the minimization of J by increasing the pa-
rameter θ are what motivate the term “simulated annealing” in the current
context.

Example: Lunar Basalt Isochron by Simulated Annealing

The following Matlabr algorithm is used to generate the guess m which
minimizes J defined in Eqn. (??) using the lunar basalt data of Nyquist et
al. [1979] summarized in Eqns. (5.15)-(5.18):

% This program determines the slope and intercept

% of the lunar basalt isochron using

% simulated annealing.

%

X=[0.0296
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.00537

.0492

0.1127];

Y=[0.70096

0.69989

0.702

0.7049];

S=(.5*[.0004

.00005

.0004

.0009]). ^ 2;

S=diag(S,0);

Sinv=inv(S);

Q=(.5*[.00007

.00009

.00005

.00006]).^ 2;

Q=diag(Q,0);

Qinv=inv(Q);

beta=0.6990;

alpha=0.04;

m= [X

alpha

beta];

dm= [.0001*X

.0001

.00001];

theta=1.e-2;

%

%

N=1000;

History=zeros(N,2);

counter=0;
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while counter <= N

if counter == 500

theta=theta/10;

end

mtilde=m+randn(6,1).*dm;

counter=counter+1;

History(counter,1)=H(m,X,Y,Sinv,Qinv);

History(counter,2)=m(5);

P=exp( (H(m,X,Y,Sinv,Qinv) - H(mtilde,X,Y,Sinv,Qinv)) / theta);

if P >= 1

m=mtilde;

elseif rand(1,1) <= P

m=mtilde;

end

end

%

%

plot(History(:,1))

The result of the above algorithm is shown in Figs. (5.2) and (5.3). The
algorithm is able to converge to the answer derived previously using control
methods; but the convergence is slow and is not monotonic.

In some practical circumstances, slow convergence, such as that demon-
strated by Figs. (5.2) and (5.3) may not be a limiting performance issue when
selecting a method for solving a particular inverse problem. The computa-
tional cost of computing J and generating random numbers ξi, i = 1, . . . , N ,
and ξd may be much less than the cost of solving Euler-Lagrange equations or
impliming a control algorithm. In such circumstances, simulated annealing
may offer a viable means of achieving a solution efficiently and with minimum
programming cost.
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Figure 5.2: The performance index J as a function of iteration count in the
effort to solve the lunar basalt isochron problem using a simulated annealing
algorithm.
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Figure 5.3: The slope of the lunar-basalt isochron as a function of itera-
tion count in the effort to solve the lunar basalt isochron problem using a
simulated annealing algorithm.
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Chapter 6

Sea-Floor Spreading Models
and Ocean Bathymetry

6.1 Overview

One of the crucial developments in geophysical sciences that shape our mod-
ern view of the earth was the discovery of sea-floor spreading (plate tectonics)
in the early 1960’s. A key step in this discovery was the explanation of the
curious bathymetry of the ocean floor. According to the sea-floor spread-
ing hypothesis, oceanic crust is created from a liquid, isothermal magma at
the mid-ociean ridges, and is destroyed by subduction in subduction zones
usually located far from the mid-ocean ridges. Near the mid-ocean ridges,
the ocean floor is shallow because the rock that comprises the oceanic crust
is hot. Far from the mid-ocean ridges, the ocean floor is deep because the
rock is cold. We shall study the process which determines the depth of the
ocean basins as a function of distance from the mid-ocean ridge. Our goal
will be to learn how least-squares inverse methods can be used to fit models
of sea-floor spreading to bathymetric data derived from the Pacific. Before
doing so, however, we will derive the solution for conductive cooling of a
semi-infinite solid, and use it to repeat the calculation of the age of the earth
by Kelvin in 1864 discussed in Chapter 1.
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6.2 Sea-Floor Spreading and Continental Drift

One of the crucial scientific discoveries in the twentieth century was the fact
that the ocean floor moves horizontally across the surface of the globe like
a great conveyor belt, carrying the continents with it. The importance of
this movement is realized when one considers that it is responsible for most
of the geochemical processes which, over the long term, are necessary for re-
cycling the earth’s crust and making the chemical composition of the ocean
and atmosphere habitable. The effect of sea-floor spreading we shall consider
here concerns only the ocean bathymetry. In particular, we want to know
why the ocean basins have a depth that appears to be minimum near their
center and to increase with the square-root of the distance on either side.
For a more complete discussion of sea-floor spreading and its effect on the
earth, the reader should consult a text on geology.

A key step in the discovery of sea-floor spreading involved the analysis of
the geologic age and depth of the ocean floor. As shown in Figs. (6.1) and
(6.2), a typical transect across an ocean such as the North Atlantic shows a
curious deepening and aging of the ocean floor away from the center of the
ocean basin. The age vs. distance relationship suggests that ocean crust is
created at the mid-ocean ridge, and moves away at a constant rate. The
deepening can be explained by the thermal contraction of the oceanic crust
as it cools with increasing ages. Recall that ocean crust is being constantly
created by the solidification of hot, molten basalts in the seam of the mid-
ocean ridges. Thus, as the oceanic crust moves away on either side of the
ridge, it will progressively cool and sink deeper into the earth’s mantle.

Several groups of marine geophysicists [Davis and Lister, 1974; Parsons
and Sclater, 1977], realized that the depth of the sea-floor varied linearly
with the square-root of its geologic age (at least for the first 70 million years
or so). This relationship suggested that the cause of depth variation was
thermal contraction associated with conductive cooling which, as will soon
be shown, is a function of

√
t. This relationship is shown in Fig. (6.3), which

displays typical depth values plotted as a function of the square-root of the
age.
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Figure 6.1: Ocean Bathymetry in typical cross section.
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Figure 6.2: Schematic transect of the geological age of the ocean floor across
a typical ocean basin. This age is determined typically by bio-stratigraphic
analysis of the ocean sediments that are piled up atop the basaltic bedrock.
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Several conductive-cooling models for the oceanic crust have been pro-
posed to explain the relationship shown in Fig. (6.3). The simplest, proposed
by Davis and Lister [1974], makes use of a solution Lord Kelvin [1864], the
greatest physicist of the 19th century, derived for the conductive cooling of
the semi-infinite solid. This solution is derived below in the context of its
original use by Kelvin, the estimation of the age of the earth as a solid planet
from measurements of its geothermal properties.

6.2.1 Kelvin’s Solution for the Cooling of the Earth

In 1864, Lord Kelvin (Sir William Thompson) presented an estimate of the
age of the Earth based on the geothermal temperature gradient measured
in Scotland [Kelvin, 1864; see also Carslaw and Jeager, 1988, p. 85]. He
assumed that the Earth was assembled in a molten state, and began to
cool by conductive heat transfer. Using an estimate for the temperature of
molten rock, the present-day geothermal gradient, and the solution to the
conductive heat transfer equation, discussed below, he determined the time
elapsed since the Earth was in a molten state. His estimate, 94 million
years, contradicted the prevailing scientific view of his day that the Earth
was many Billions of years old. We now know that the earth is over 4.5
billion years old. The error in Kelvin’s estimate was due to the fact that
he had not considered the effects of heat generated within the Earth by
radioactive decay or of convection in the mantle. The story of Kelvin’s work
is interesting, nevertheless, and provides a valuable insight into the working
of modern science [Richter, 1986]. I review Kelvin’s work here because it
provides a necessary result for the derivation of the bathymetric profiles of
the ocean.

Kelvin [1864] treated the Earth as a semi-infinite solid occupying z <
0. Conductive heat transfer in this geometry is described by the following
equations [Carslaw and Jeager, 1988]:

θt = κθzz (6.1)

θ(0, z) = θo (6.2)

θ(t, 0) = θs = 0 (6.3)
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θz(t, z → −∞) → 0 (6.4)

where θ is temperature, t is time, z is elevation with respect to the pla-
nar surface of the semi-infinite solid, and subscripts t and zz denote single
and double partial differentiation with respect to the subscripted variable,
respectively. The surface temperature θs is taken to be 0 C (roughly the
atmospheric temperature in Scotland on a cold day).

There are several ways to solve (6.1) - (6.4) discussed in Carslaw and
Jeager [1988]. We shall use the Laplace transform method [Arfken, 1970, p.
688]. First, a few words about the Laplace transform.

6.2.2 Laplace Transform

Let L(f (t)) = f̃(s) be the Laplace transform of f (t). By definition,

L(f(t)) =

∞∫

0

e−stf(t)dt (6.5)

One might wonder why the Laplace transform would be useful in solving a
problem such as that defined by (6.1) - (6.4). The utility of the Laplace
transform is appreciated when one considers how it transforms the time-
derivative term in (6.1):

L(θt) =

∞∫

0

e−st ∂θ

∂t
dt

=

∞∫

0

∂

∂t

(
e−stθ

)
dt +

∞∫

0

se−stθdt

= −θo + sL(θ)

= −θo + sθ̃ (6.6)

We see that the advantage gained by applying the Laplace transform to (6.1)
is that it eliminates the time-derivative term (thus, converting a partial differ-
ential equation into an ordinary differential equation where only derivatives
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with respect to z appear) and folds-in the initial condition at the same time.
Taking the Laplace transform of (6.1) gives:

sθ̃ − θo = κθ̃zz (6.7)

This equation is called the subsidiary equation. Notice that it is simply a
second-order, non-homogeneous ordinary differential equation for the func-
tion θ̃(z).

The Laplace-transformed boundary conditions which go along with (6.7
are written

θ̃(s, 0) = 0 (6.8)

θ̃z(s, z → −∞) → 0 (6.9)

6.2.3 Solution of the Subsidiary Equation

The general solution to the subsidiary equation may be written as the sum of
two independent solutions of the homogeneous form of the subsidiary equa-
tion and a particular solution which satisfies the non-homogeneous form of
the subsidiary equation:

θ̃(s, z) = Ae
√

s
κ

z + Be−
√

s
κ

z +
θo

s
(6.10)

The boundary conditions imply B = 0 and A = − θo

s , thus

θ̃(s, z) =
θo

s
− θoe

√
s
κ

z

s
(6.11)

Now that we have θ̃(s, z), our problem becomes one of inverting the Laplace
transform for θ(t, z).
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6.2.4 Inverse Laplace Transform

The inverse Laplace transform is defined using the so-called Bromwich inte-
gral:

L−1(f̃(s)) = f(t) =
1

2πi

i∞+γ∫

−i∞+γ

f̃(s)estds (6.12)

where γ is a small positive real number and i =
√
−1. Clearly, the Bromwich

integral represents a contour integration on the complex plain. Figure (6.4)
displays the path of integration associated with the Bromwich integral.

If you need to invert a Laplace transform, the first thing you try is to
go to a table of inverse transforms and look up your function to see if you
can avoid the tedious work of evaluating the Bromwich integral. If you are
unlucky, you are forced to take on the integration of the Bromwich integral
without the help of a table. In the present circumstances, we are unlucky.

6.2.5 Integrating the Bromwich Integral

Our goal is to evaluate

θ(t, z) =
θo

2πi

i∞+γ∫

−i∞+γ


1

s
−

e
√

s
κ

z

s


 estds (6.13)

One of the tricks of complex analysis at our disposal is Cauchy’s integral
theorem. Cauchy’s theorem states that the integral of a function over any
closed contour in the complex plain is identically zero when the function has
no poles (singularities like 1

s as s → 0) enclosed by the contour or branch
cuts which cross the contour. The integrand of the above equation contains
a pole at s = 0 and a branch cut along the negative part of the real axis.
(The branch cut comes from the fact that we desire to make the function

√
s

single valued on the complex plain.) We may thus imagine a closed contour
which contains, as one of its parts, the contour of the Bromwich integral and
which avoids enclosing the poles or crossing the branch cut of the integrand
in the above equation. A diagram showing this closed contour is shown in
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Figure 6.3: Schematic plot of depth (open circles) vs. the square-root of the
geologic age. A linear relationship is demonstrated for the ocean floor that
is younger than about 70-million years.

Figure 6.4: The contour required to invert the Laplace transform may, in the
present problem, be deformed to the “keyhole” contour shown above.

108



Fig. (6.4). Observe that Cauchy’s integral theorem allows us to equate the
above integral which represents half of the contour integration with −1 times
the integral over the “keyhole” contour which excludes the branch cut along
the negative real axis and the pole at s = 0. We find it easier to perform the
integration along this keyhole contour. The inverse Laplace transform thus
reduces to

θ(t, z) =
−θo

2πi

[ 0∫

∞

(
e−iπ

r
− e−iπ

r
e

ei π
2 z

√
r√

κ

)
ereiπtdr

+

∞∫

0

(
eiπ

r
− eiπ

r
e

e−i π
2 z

√
r√

κ

)
ere−iπtdr

+ lim
r→0

π∫

−π

(
e−iφ

r
− e−iφ

r
e
ei

φ
2 z

√
r√

κ

)
ereiφtdφ

]
(6.14)

where we have made use of polar coordinates (r, φ) to represent s and
√

s:

s = reiφ (6.15)

√
s =

√
rei φ

2 (6.16)

making note of the identities e−iπ = −1, e−iφ = −1, ei φ
2 = i, and e−i φ

2 = −i,
the above integral over the keyhole contour is rewritten as

θ(t, z) =
−θo

2πi

[ 0∫

∞

(−1

r
− −1

r
e

i z
√

r√
κ

)
e−rtdr

+

∞∫

0

(−1

r
− −1

r
e
−i z

√
r√

κ

)
e−rtdr

+ lim
r→0

π∫

−π

(
e−iφ

r
−

e−iφ

r
e
ei

φ
2

z
√

r√
κ

)
ereiφtdφ

]
(6.17)

We observe that the third integral term on the right-hand side of the
above equation is zero when the limit of r → 0 is taken. We also observe
that the limits of integration on the first integral term may be reversed to
give
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θ(t, z) =
−θo

2πi

[ ∞∫

0

(
1

r
− 1

r
e

i z
√

r√
κ

)
e−rtdr

+

∞∫

0

(−1

r
−
−1

r
e
−i z

√
r√

κ

)
e−rtdr

]

=
θo

2πi

[ ∞∫

0




e
i z
√

r√
κ

r
−

e
−i z

√
r√

κ

r


 e−rtdr

]
(6.18)

We again change coordinates using ρ =
√

r, dρ = dr
2
√

r , and dr = 2ρdρ to
give

θ(t, z) =
θo

2πi

∞∫

0


e

i zρ√
κ

ρ2
− e

−i zρ√
κ

ρ2


 e−ρ2t2ρdρ

=
θo

πi

∞∫

0

1

ρ

(
e

i zρ√
κ
−ρ2t − e

−i zρ√
κ
−ρ2t

)
dρ (6.19)

The above integral is manupulated using the following identity

∞∫

0

1

ρ
e
−iρz√

κ
−ρ2t

dρ =

0∫

−∞

−1

ρ
e

iρz√
κ
−ρ2t

dρ (6.20)

to give

θ(t, z) =
θo

πi

∞∫

−∞

1

ρ
e

i zρ√
κ
−ρ2t

dρ (6.21)

We now define ζ = z√
4κt

and x =
√

tρ. With these new variables, the
argument of the exponential function in the integrand of the above equation
becomes

izρ√
κ
− tρ2 = 2iζ

√
tρ− tρ2

= 2iζx − x2

= 2iζx − x2 − ζ2 + ζ2

= (ζ + ix)2 − ζ2 (6.22)
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We also note that
dρ

ρ
=

dx

x
(6.23)

Thus, the integral we are evaluating becomes

θ(t, z) =
θo

πi

∞∫

−∞

e(ζ+ix)2−ζ2 dx

x
(6.24)

This integral is too difficult to evaluate as it stands, but we can make progress
towards its evaluation by considering the ζ-derivative of θ(t, z):

∂θ(t,z)
∂ζ =

θo

πi

∞∫

−∞

(2(ζ + ix)− 2ζ) e(ζ+ix)2−ζ2 dx

x

=
2θo

πi

∞∫

−∞

ixe(ζ+ix)2−ζ2 dx

x

=
2θo

π
e−ζ2

∞∫

−∞

e(ζ+ix)2dx (6.25)

We find that this integral for the ζ-derivative of θ(t, z) is easy to evaluate if
we define two variables, u and v, such that

u2 = −(ζ + ix)2 (6.26)

and
v2 = u2 (6.27)

with du = dv = −dx. With this change of variables, and with the identity
Y =

√
Y Y , the integral for the ζ-derivative of θ(t, z) becomes

∂θ(t,z)
∂ζ =

−2θo

π
e−ζ2

∞∫

−∞

e−u2

dx

=
−2θo

π
e−ζ2

√√√√√
∞∫

−∞

e−u2du

∞∫

−∞

e−v2dv

=
−2θo

π
e−ζ2

√√√√√
∞∫

−∞

∞∫

−∞

e−(u2+v2)du dv
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=
−2θo

π
e−ζ2

√√√√√
∞∫

0

2π∫

0

e−r2rdφ dr

=
−2θo

π
e−ζ2

√√√√√2π

∞∫

0

−1

2

∂

∂r
(e−r2) dr

=
−2θo

π
e−ζ2√

π (6.28)

We now know the ζ-derivative of θ(t, z), so it is an easy matter to determine
θ(t, z) (here, we make use of the definition of the error function):

θ(t, z) =
−2θo√

π

−ζ∫

0

e−ξ2

dξ

= θoerf(−ζ)

= θoerf

(
−z√
4κt

)
(6.29)

Observe that the error function is antisymmetric about the z = 0 level.

The error function, erf(x), is a well-known special function that is tab-
ulated in various mathematical handbooks [Abramowitz and Stegun, 1964;
Press et al., 1989]. In particular, the student will find that it is implimented
as a function in Matlabr .

6.2.6 Geothermal Gradient

The geothermal gradient at z = 0 is given by the derivative of (6.29) with
respect to z

θz(t, 0) =
∂

∂z




2θo√
π

z√
4κt∫

0

e−ξ2

dξ




∣∣∣
z=0

= −
θo√
πκt

(6.30)
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The cooling history of the upper 100 km of a semi-infinite solid with a diffu-
sivity of κ = 1.18 × 10−6 m2 s−1 occupying the region z < 0 is displayed in
Fig. (6.5). Each curve represents θ(t, z) at 10-million year intervals starting
with an initial temperature of θo(z) = 3871 C. (The values for κ, θs and θo

are taken from Kelvin’s [1864] analysis.) The surface temperature is assumed
constant at 0 C for the entire cooling history. Note that significant deviation
from the initial temperature profile occurs in a relatively thin upper crust of
the Earth, according to this model. This suggests that the cooling half-space
model may be adequate for describing the early stages of a more complicated
Earth model such as the model of the oceanic crust we will discuss below.

6.2.7 Kelvin’s Edinburgh Calculation

Kelvin [1864] used (6.30) to estimate the age of the Earth, Te, from measure-
ments of the geothermal gradient made near Edinburgh, Scotland:

Te =
−1

πκ

(
θo

θz(Te, z = 0)

)2

(6.31)

Using measurements to evaluate the right-hand side of (6.31), in particular
θz(Te, z = 0) = −1/27 C m−1, Kelving determined that Te ≈ 94× 106 years.
A plot of θz(t, z) for the first 100-million years of the cooling history of the
semi-infinite solid shown in Fig. (6.5) is displayed in Fig. (6.6).

Kelvin’s [1864] analysis was flawed for two reasons. He did not account
for the generation of heat within the earth due to the decay of radioactive
elements, and he was unaware of convective cooling processes associated with
mantle convection. Radioactivity and mantle convection were not discovered
until the next century, so Kelvin had no way of knowing about these flaws. As
suggested by Richter [1986], Kelvin’s method, despite its flaws, was important
because it represented the first time the laws of physics were applied to
something so large and seemingly inscrutible as the Earth.
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Figure 6.5: Conductive cooling of a semi-infinite solid occupying z < 0.
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6.3 Theory of Sea-Floor Subsidence

We are now ready to develop a theory which explains the bathymetry of the
ocean. Following Davis and Lister [1974], we adopt (6.29) as a satisfactory
approximation to the temperature profile of a column of oceanic crust as
it cools from its initial molten state. We assume that subsidence ∆d(t) of
the sea floor from its initial elevation at the mid-ocean ridge d(t = 0) is
determined by two processes: thermal contraction, and isostatic depression
due to increasing water load above the subsiding sea floor.

Thermal contraction ∆h(t) is related to θ(t, z) by the thermal expansion
coefficient α

∆h(t) = −αθo

0∫

−∞

(
1− erf(

−z

2
√

κt
)

)
dz (6.32)

Here the role of the integral is to sum the temperature change over what we
take to be the infinite depth of the oceanic crust. We know, of course, that
the oceanic crust is of limited thickness. The minus sign appears in (6.32) due
to the fact that the temperature of the oceanic crust is cooling with time,
and is thus contracting vertically. We use the expression for an infinitely
thick crust here because we know that during the brief time interval oceanic
crust actually resides on the surface of the earth (up to about 200 million
years), there is little difference between the heat lost from a plate and that
lost from a semi-infinite solid. We thus avoid the complexity of dealing with
finite thickness by taking −∞ as the upper limit on the integral of (6.32).
Before evaluating this integral, we consider the effect of isostatic depression.

Isostatic depression due to sea-water loading, ∆g(t), is determined from
∆d(t) (to be determined later) by assuming that deep below the Earth’s
surface there exists a horizontal compensation level that is parallel to the
sea-surface (i.e., the geoid). Gravitational equilibrium requires that the the
total mass of water and oceanic crust above is a constant that is independent
of location. In other words,

ρm∆g(t) = ρw∆d(t) (6.33)

where ρw and ρm are the densities of seawater and mantle material, respec-
tively, and ρw∆d(t) is the extra load caused by sea-water filling the void
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caused by the thermal contraction of the oceanic crust. The net change in
ocean depth ∆d(t) is the sum of ∆h(t) and ∆g(t). This gives

∆d(t) =
1

1− ρw/ρm
∆h(t) (6.34)

We are now ready to determine ∆d(t) by evaluating the integral in (6.32).
This is somewhat tricky and is done as follows. First, change the variable of
integration from z to x = −z/(2

√
κt)

0∫
−∞

(
1− erf

(
−z√
4κt

))
dz = −2

√
κt

0∫

∞

(1− erf(x)) dx

= 2
√

κt

∞∫

0

(1− erf(x)) dx (6.35)

We next make use of the definition of the complementary error function

(erfc(x) = 2√
π

∞∫
x

e−ξ2
dξ)

2
√

κt
∞∫
0

(1− erf(x)) dx = 2
√

κt

∞∫

0

erfc(x)dx

=
4
√

κt√
π

∞∫

0

∞∫

x

e−ξ2

dξ dx (6.36)

We recognize that the domain of integration in the above double integral
is the wedge contained within the region of the first quadrant of the (ξ, x)-
plain enclosed by the positive ξ axis and the line x = ξ. We can reverse the
order of integration, without changing this domain of integration, to obtain
a simplification:

4
√

κt√
π

∞∫
0

∞∫
x

e−ξ2
dξ dx =

4
√

κt√
π

t∫

0

∞∫

0

e−ξ2

dξ dx

=
4
√

κt√
π

∞∫

0

ξe−ξ2

dξ
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=
4
√

κt√
π

∞∫

0

−1

2

∂

∂ξ

(
e−ξ2

)
dξ

=
−2
√

κt√
π

e−ξ2
∣∣∣
∞

0

=
2
√

κt√
π

(6.37)

We thus achieve the following expression for ∆d(t):

∆d(t) =
−2ρmαθo

√
κt√

π(ρm − ρw)
(6.38)

where ∆d(t) < 0 denotes increasing depth. Assuming a mid-ocean ridge
depth of dm, the depth function d(t) can be written

d(t) = dm +
−2ρmαθo

√
κt√

π(ρm − ρw)
(6.39)

(Again, remember that depths are intended to be negative numbers, thus
dm < 0 and d(t) will become increasingly negative as t → ∞. You will
be asked to find the parameters α and θo which give the best fit to ocean
bathymetric data in the laboratory exercises associated with this chapter.

6.4 A Plate Model of Oceanic Crust

The conductive cooling model presented in the previous section describes
the ocean bathymetry for young (less than 70 million years) oceanic crust
with reasonable accuracy (see Fig. 6.3). For older crust, the actual ocean
depth is more shallow than that predicted by (6.39). This inaccuracy is
a consequence of a thermal-cooling model that is too simple. Parsons and
Sclater [1977] proposed that the oceanic crust should be modeled as a plate of
fixed thickness, and that it should sit above an astheonsphere that has fixed
temperature due to vigorous mantle convection. The advantage of Parsons
and Sclater’s model is that it captures the asymptotic behavior of ocean
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depth as the age becomes very large without sacrificing the ability to explain
the depth of young oceanic crust.

Parsons and Sclater [1977] were concerned primarily with the asymptotic
behavior of the ocean crust after it has cooled for a very long time. They
thus considered the oceanic crust to be a plate of fixed final thickness ao to
be reached as t → ∞. The geometry of this plate is summarized in Fig.
(6.7).

The equations which govern the conductive cooling of this plate are

θt = κθzz − a(t) < z < 0 (6.40)

θ(0, z) = θo − a(t) < z < 0 (6.41)

θ(t, 0) = θs = 0 (6.42)

θ(t,−a(t)) = θo (6.43)

where a(t) is the plate thickness. To account for the changing thickness of
the plate, it is convenient to adopt a stretched vertical coordinate ζ = z/a(t)
so that the domain of (6.40 - 6.43 can be treated as the fixed interval 0 > ζ >
−1. To perform this coordinate transformation on the governing equations,
we note that

∂

∂t
→ ∂

∂t
− ȧζ

a

∂

∂ζ
(6.44)

and
∂2

∂z2
→ 1

a2

∂2

∂ζ2
(6.45)

where ȧ is the time derivative of a. To simplify the above equations, we
adopt a non-dimensional time variable

t → a2

κ
t (6.46)

θ → θoθ (6.47)

and note that ȧ
a << κ

a2 for our problem. These simplifications allow us to
rewrite (6.40) - (6.43) as

θt = θζζ − 1 < ζ < 0 (6.48)
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θ(0, ζ) = 1 − 1 < ζ < 0 (6.49)

θ(t, 0) = 0 (6.50)

θ(t,−1) = 1 (6.51)

Equations (6.48) - (6.51) are readily solved by the separation of variables
method. First we note that the asymptotic solution when t → ∞ is θ →
−ζ. The full solution can be written as the sum of this asymptotic, steady-
state solution and a transient solution, θ̃ which satisfies homogenous (=0)
boundary conditions and a slightly different initial condition (=1 + ζ)

θ̃ = T (t)Z(ζ) (6.52)

Equation (6.48) becomes
T ′

T
− Z ′′

Z
= 0 (6.53)

where primes denote differentiation. Noting that (6.53) requires that a func-
tion of t only (T ′/T ) cancel a function of ζ only (Z ′′/Z), we must conclude
that both terms in (6.53) must be scalar quantities. In other words,

T ′

T
= λ =

Z ′′

Z
(6.54)

Solutions Zn which satisfy the homogeneous boundary conditions are of the
form

Zn(ζ) = bn sin(nπζ) n = 1, . . . ,∞ (6.55)

Corresponding solutions Tn are of the form

Tn(t) = e−(nπ)2t n = 1, . . . ,∞ (6.56)

The full solution may be written as linear combinations of the Tn(t) ·Zn(ζ)’s:

θ(t, ζ) = −ζ +
∞∑

n=1

bne
−(nπ)2t sin(nπζ) (6.57)
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The constants {bn, n = 1, . . . ,∞} may be evaluated by enforcing the initial
condition θ(0, ζ) = 1, which implies that

θ̃(0, ζ) = 1 + ζ

=
∞∑

n=1

bn sin(nπζ) − 1 < ζ < 0 (6.58)

The bn’s are evaluated by standard Fourier series techniques. First, we
note that

bn = 2

0∫

−1

(1 + ζ) sin(nπζ)dζ (6.59)

The integrand may be broken into two terms which are readily integrated:

2

0∫

−1

sin(nπζ)dζ =
−2

nπ
cos(nπζ)|0−1

=
−2

nπ
(1− (−1)n)

=
{ −4

nπ if n is odd
0 if n is even

(6.60)

for n = 1, . . . ,∞. Also,

2

0∫

−1

ζ sin(nπζ)dζ

= 2

0∫

−1

d

(
−ζ cos(nπζ)

nπ

)
− 2

0∫

−1

− cos(nπζ)

nπ
dζ

=
−2

nπ
(ζ cos(nπζ))|0−1 −

−2

(nπ)2
sin(nπζ)|0−1

=

{
2

nπ if n is odd
−2
nπ if n is even

(6.61)

Combining the intermediate results presented in (6.60) and (6.61) we find
that

bn =
−2

nπ
n = 1, . . . ,∞ (6.62)
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Thus the complete solution to the plate model is

θ(t, ζ) = −ζ +
∞∑

n=1

−2

nπ
e−(nπ)2t sin(nπζ) (6.63)

In dimensional form (recall (6.46) and (6.47)), this expression is

θ(t, ζ) = θo

(
−z

a
+

∞∑

n=1

−2

nπ
e
−(nπ)2κt

a2 sin(
nπz

a
)

)
(6.64)

The geothermal heat flux at z = 0, q(t, 0), is readily determined by taking
the z-derivative of θ(t, z)

q(t, 0) = −kθo

(
−1

a
+

∞∑

n=1

−2

a
e
−(nπ)2κt

a2

)
(6.65)

where k is the thermal conductivity of the oceanic crust.

The thermal subsidence is again determined by summing a thermal con-
traction contribution and an isostatic depression contribution.

∆h(t) = αθo

0∫

−a

(
1 +

z

a
−

∞∑

n=1

−2

nπ
e
−(nπ)2κt

a2 sin(
nπz

a
)

)
dz (6.66)

This expression is easily evaluated by noting that

0∫

−a

(
1 +

z

a

)
dz =

a

2
(6.67)

and
0∫

−a

−2

nπ
sin(

nπz

a
)dz =

{
0 if n is even

4a
(nπ)2

if n is odd (6.68)

The result is

∆h(t) =
αθoa

2

(
1−

∑

n odd

8

(nπ)2
e
−(nπ)2κt

a2

)
(6.69)

Making use of (??), we derive the depth anomaly

∆d(t) =
αρmθoa

2(ρm − ρw)

(
1−

∑

n odd

8

(nπ)2
e
−(nπ)2κt

a2

)
(6.70)
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We note that the asymptotic subsidence at t → ∞ is given by (this is the
result when all the exponential terms in the sum have decayed to zero)

∆ds =
αρmθoa

2(ρm − ρw)
(6.71)

Thus,

d(t) = dm + ∆ds

(
1−

∑

n odd

8

(nπ)2
e
−(nπ)2κt

a2

)
(6.72)

We note as a reminder that (6.72) is approximate in the sense that we did
not account for the fact that a changes with time. This change, as argued
previously, is so small compared to the size of a (typically 100 km or so),
that the approximation is satisfactory for practical application

Parsons and Sclater [1977] demonstrated that the plate model for ocean
crust subsidence was superior to the semi-infinite solid model derived by
Davis and Lister [1974] because it captured the otherwise anomalous behavior
of the ocean floor at large geologic ages shown in Fig. (6.3) without losing the
satisfactory attributes of the

√
t-dependence for young ages. The advantage

of the plate model is reflected in the fact that as the ocean crust ages, it
becomes less like a semi-infinite body and more like a plate with a finite
amount of heat to be dissipated. Eventually, the plate is able to attain a
steady-state temperature depth profile (the linear term in (6.64)). Thus at
great age, the plate reaches a constant asymptotic elevation, and this is in
agreement with the very old ocean crust in Fig. (6.3).

Parsons and Sclater [1977] suggested that two simple empirical formulae
could be derived from the solution (6.72)

d(t) = 2500 + 350
√

t m for 0 < t < 70m.y. (6.73)

and
d(t) = 6400− 3200 e

−t
62.8 m for t > 70m.y. (6.74)

These results perform reletively well in explaining the depth/age relationships
for the ocean floor around the Earth. Recent revisions of the Parsons and
Sclater model [Stein and Stein, 1992] suggest that improvements to the Parsos
and Sclater model can be made by using inverse methods to fit the expressions
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for thermal subsidence and geothermal heat flow in (6.72) and (6.65) to the
observations from the world ocean. Parameters to be fit include θo, α, and
a. This will be the objective in Lab 5.
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6.6 Lab: Fitting an Oceanic Crust Model to

Oceanic Depth and Heat Flow Data

Stein and Stein [1992] revisited the problem of fitting an oceanic plate model
to ocean bathymetry and heat flow data in order to obtain a better under-
standing of the anomalies which occur in regions (such as the Darwin Rise
in the Pacific Ocean) where the heat-flow process may be more complicated
than that which is treated by the Parsons and Sclater [1977] model. We will
repeat their analysis here:

6.6.1 Cooling Half Space Model

Define the performance index [Stein and Stein, 1992], J , using the N observed
values of depth, {di, i = 1, . . . , N}, and M observed values of heat flow,
{qi, i = 1, . . . , M}, of a combined North Atlantic/North Pacific data set
(these data are provided as vectors d and q in the Matlabr data file
associated with this lab)

J =
1

N

N∑

i=1

(di − d̂i)
2

σ2
di

+
1

M

M∑

j=1

(qj − q̂j)
2

σ2
qj

(6.75)

where variables with -̂s denote model-predicted quantities, {σdi , i = 1, . . . , N}
are the standard deviations for the depth data, and {σqi, i = 1, . . . , M} are
the standard deviations for the heat flux data (provided as Matlabr vectors
sigmad and sigmaq).

Problem 1. Plot {di, i = 1, . . . , N} and {qi, i = 1, . . . , M} as a function of
the age of the oceanic crust at the location where the data were measured.
(Ages for d and q are included as Matlabr variables aged and ageq.)
Include error-bars on the plots (use the Matlabr error-bar plotting func-
tion).

Problem 2. Fit the semi-infinite solid model of the oceanic crust presented
in the previous section to the sub-set of N ′ and M ′ depth and heat flow
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data elements which are associated with an age less than 70-million years.
To make this task easier, convert the non-linear relations between the model
unknowns, α and θo, and the depth and heat-flow variables, d(t) and q(t),
given by (??) and (??), to linear relations using α = α(0) + ∆α and θo =
θ(0)

o + ∆θo. Assume,

d(t) ≈ dm −
2ρmθ(0)

o α(0)
√

κt√
π(ρm − ρw)

(1 +
∆α

α(0)
+

∆θo

θ
(0)
o

) (6.76)

q(t) ≈
kθ(0)

o√
πκt

(1 +
∆θo

θ
(0)
o

) (6.77)

where α(0) = 3.28 × 10−5 (C−1) and θ(0)
o = 1333 (C) are the estimates of

α and θo derived by Parsons and Sclater [1977] in their earlier study of
ocean bathymetry. The quantities ∆θo and ∆α are the unknowns to be
determined by fitting the model (6.76) and (6.77) to the data according to
the performance index expressed in (6.75) (suitably redefined to account only
for data associated with ages less than 70-million years). Use κ = 8.047×10−7

m2 s−1, ρm = 3330 kg m−3, k = 3.138 W m−1 C−1, ρw = 1000 kg m−3, and
dm = 2600 m [Stein and Stein, 1992]. Graph your results by plotting the
data as discrete points and the best-fitting model as a solid line.

6.6.2 Cooling Plate Model

Noting the poor fit between model and data in Problem 2 for data associated
with ocean crustal ages over 70-million years, we abandon the cooling half-
space model in favour of the cooling plate model derived in the previous
section.

Problem 3. The heat flux and ocean depth predicted by the plate model
involve infinite sums of terms which have factors which decrease with increas-
ing summation index. Determine the upper cut-off value for the summation
index. Use as as criterion for this determination the idea that the next term
in the series beyond the cut-off term would change the truncated series, if
it were included in the sum, by less than a factor of 10−8. Assume that all
data will involve ages greater than 5× 105 years.
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Problem 4. Repeat the model-fitting analysis of Problem 2, except use
all the data and the plate model represented by (6.65) and (6.72). The
additional unknown to be included in your analysis is ∆a which is the first-
order correction to an assumed oceanic plate thickness of ao = 125× 103 m.
Plot your results. Discuss any systematic deviations between your best-fit
ocean bathymetry and the data.
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Figure 6.7: Schematic plot of Parsons and Sclater’s [1977] oceanic plate ge-
ometry.
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Chapter 7

Borehole Paleothermometry

7.1 Overview

Success in the search for an accurate paleothermometer has come from ap-
plication of inverse methods to unusual observations. The CLIMAP project
(CLIMAP, 1976), for example, mapped the sea-surface temperature (SST)
of the world ocean during the last glacial maximum period (approximately
18,000 years ago) using observations of plankton in the sediments dredged
from the ocean floor. The surface temperature on the Greenland and Antarc-
tic ice sheets is reconstructed for past times using the oxygen-isotope compo-
sition of ice measured in ice cores. Here we examine the problem of detecting
past climate change through the measurement and analysis of temperature
profiles in rock boreholes.

This problem is of considerable interest because it provides a means to
suppliment historical temperature data (i.e., surface temperature recorded
daily at meteorological stations) over land surfaces. By gaining a more com-
plete record of this history, it may be possible to determine whether the
climate over land surfaces has warmed during the last century. As discussed
by Pollack and Chapman (1993), the rise of atmospheric CO2 during the last
200 years is expected to have produced some warming over the last century.

129



A problem arises when one tries to check this prediction because most of
the historical temperature data come from a relatively few locations that are
biased towards Northern Hemisphere centers of population. This problem
appears to have been overcome by the analysis of temperature profiles in
boreholes of approximately 100 m depth which are routinely measured in
remote parts of the globe (Pollack and Chapman, 1993; Lewis, 1992).

We will examine the borehole paleothermometry problem here because it
gives insight into the benefits and drawbacks of least-squares inverse meth-
ods applied to physical systems which involve diffusion. As we shall see,
the diffusive nature of heat transfer in the upper crust of the earth limits
the ability to detect past climate change. Another reason for studying the
paleothermometry problem is that the solution may be developed with finite-
difference representation and with continuous representation in parallel. This
parallel development helps to illustrate the underlying similarity between the
mathematics of integral equations and that of linear algebra.

7.2 An Ideal Borehole Paleothermometry Prob-

lem

Let θ(z, t) denote the deviation of the temperature profile from steady state
in an infinite-half space earth (Figure 7.1) subject to a surface temperature
history Ts(t) which is uniform at 0◦ C for time t < 0 and which is non-zero and
irregular for 0 < t < tf . Suppose that this temperature profile is observed
at t = tf , and the function representing the temperature-depth observation
is θb(z). (We assume, for this example, that it is possible to measure the
temperature profile in the infinite-half space earth.) The paleothermometry
problem is succinctly stated as follows: determine Ts(t) for 0 < t < tf from
θb(z).

Many physical factors important in geothermal heat flow are disregarded
in this simple, idealized problem. For example, groundwater may introduce
a convective element of heat transport in porous rocks and soils. Likewise,
groundwater in polar regions may freeze (forming permafrost) thereby lib-
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z

z=0
θ

Figure 7.1: A temperature-depth profile θb(z) measured in an ideal half-
space earth. Departure of θb(z) from the steady-state geothermal gradient is
assumed to result entirely from past surface temperature changes at z = 0.
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erating latent heat. An additional consideration is the presense of surface
snow or standing water. A few centimeters of snow cover is often capable
of insulating the ground surface from extremely cold atmospheric temper-
atures. We disregard these, and other, considerations to avoid complexity
which might obscure the inverse methods introduced here.

7.3 Solution of the Forward Problem

The equations which govern the evolution of θ(z, t) are (Carslaw and Jeager,
1988)

θt = κθzz z < 0, 0 < t < tf (7.1)

θ(z, t = 0) = 0 (7.2)

θz(z → −∞, t) = 0 (7.3)

θ(z = 0, t) = Ts(t) 0 < t < tf (7.4)

For simplification, we nondimensionalize the above equations by adopting
new time and vertical distance coordinates that have been suitably scaled, it
i.e.,

t = Tt′ (7.5)

z = Zz′ (7.6)

If we choose T = Z2/κ, then (7.1)-(7.4) are simplified by virtue of the fact
that the thermal diffusivity κ no longer appears in Eqn. (7.1):

θt = θzz z < 0, 0 < t < tf (7.7)

θ(z, t = 0) = 0 (7.8)

θz(z → −∞, t) = 0 (7.9)

θ(z = 0, t) = Ts(t) 0 < t < tf (7.10)

where the primes on t and z have been dropped for notational simplicity.
Effectively, by re-scaling t and z using Eqns. (7.5) and (7.6), we are able to
define a more convienent way of measuring time and space (a stopwatch and
ruler with more convienent units of measurement).
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7.3.1 Green’s Function Approach

The solution θ(z, tf ) to Eqns. (7.7)-(7.10) is formally determined by use of
a Green’s function G(z, t; ξ) which satisfies the following “backward” heat-
diffusion problem:

Gt = −Gzz z < 0, 0 < t < tf (7.11)

G(z, t = tf ) = −δ(z − ξ) (7.12)

Gz(z → −∞, t) = 0 (7.13)

G(z = 0, t) = 0 0 < t < tf (7.14)

where δ(z − ξ) is the delta function. Notice that Eqn. (7.11) represents
the adjoint form of Eqn. (7.7). Equations (7.11)-(7.14) are referred to as
the backward heat-diffusion problem because the transformation τ = tf − t
yields the following problem which is equivalent to Eqns. (7.7)-(7.10):

Gτ = Gzz z < 0, 0 < τ < tf (7.15)

G(z, τ = 0) = −δ(z − ξ) (7.16)

Gz(z → −∞, τ ) = 0 (7.17)

G(z = 0, τ ) = 0 0 < τ < tf (7.18)

Notice that the function G(z, t; ξ) has three arguments. The argument which
follows the semicolon denotes the location where G(z, tf ; ξ) has a non-zero
(infinite) value at t = tf .

The expression which gives θ(z, t) in terms of G(z, t; ξ) is found by ma-
nipulating the following integral

0 =

tf∫

0

0∫

−∞

[θ(Gt + Gzz) + G(θt − θzz)] dzdt (7.19)

Performing integration by parts, we get

0 =

0∫

−∞

θG |tf0 dz +

tf∫

0

κ(θGz −Gθz)|0−∞dt (7.20)
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Consequently, using boundary conditions,

0 = −
0∫

−∞

θ(z, tf ) · δ(z − ξ) dz +

tf∫

0

Ts(t)Gz(0, t; ξ) dt (7.21)

Thus,

θ(ξ, tf) =

tf∫

0

Ts(t)Gz(0, t; ξ)dt (7.22)

The solution of the forward problem at any time tf is the integral transform of
the surface-temperature history expressed by Eqn. (7.22). The Green’s func-
tion Gz(0, t; ξ) is used to convey the essence of the heat-transfer physics that
governs this particular problem. What is important to realize at this point,
is that the solution to any linear heat-diffusion problem can be described in
terms of an integral equation like Eqn. (7.22). This property will provide
an important advantage below when we describe the inverse heat-diffusion
problem.

7.3.2 Determination of Gz(0, t; ξ) using Duhammel’s The-
orem

To determine Gz(0, t; ξ), we make use of the analysis of the previous chapter
concerning the sea-floor cooling problem:

Qt = Qzz z < 0, t > 0 (7.23)

Q(z, t = 0) = 0 (7.24)

Qz(z → −∞, t) = 0 (7.25)

Q(z = 0, t) = 1 t > 0 (7.26)

The solution of this problem was found to be

Q(z, t) = erf

(
−z

2
√

t

)
(7.27)

We also make use of Duhammel’s theorem (Carslaw and Jeager, 1988, p. 31;
p. 62) to define the Green’s function in terms of the analytic expression for
Q(z, t).
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Theorem 7.1 (Duhammel)

θ(z, t) =

t∫

0

Ts(t
′)Qt(z, t− t′)dt′

where Q(z, t− t′) = erf

(
−z

2
√

t− t′

)

Proof. To show the above identity, consider the following three heat-
diffusion problems for the temperature fields R(z, t), S(z, t) and T (z, t) in
the domain z < 0, t > 0:

Rt = Rzz St = Szz Tt = Tzz

R(0, t) =

{
0 t < t′

1 t ≥ t′
S(0, t) =

{
0 t < t′ + dt′

1 t ≥ t′ + dt′
T (0, t) =





0 t < t′

1 t′ ≤ t ≤ t′ + dt′

0 t > t′ + dt′

R(z, 0) = 0 S(z, 0) = 0 T (z, 0) = 0

Rz(−∞, t) = 0 Sz(−∞, t) = 0 Tz(−∞, t) = 0

Galilean invarience allows us to recognize the fact that the solutions S(z, t)
and R(z, t) are related to the solution Q(z, t). In fact, S(z, t) and R(z, t) are
the same as Q(z, t) if the time variable in S and R is replaced by t− t′ and
t− t′ − dt′, respectively:

S(z, t) = Q(z, t− t′) R(z, t) = Q(z, t− t′ − dt′)

Linearity of the heat-diffusion operator and boundary conditions allows us
to compose a solution for T (z, t) by taking the difference between S(z, t) and
R(z, t):

T (z, t) = S(z, t)− R(z, t) = Q(z, t− t′)−Q(z, t− t′ − dt′) ≈ Qt(z, t− t′)dt′

(7.28)
Linearity also permits us to multiply T (z, t) by Ts(t

′) to yield a solution to
the following heat-diffusion problem,

Tt = Tzz
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T (0, t) =





0 t < t′

Ts(t
′) t′ ≤ t ≤ t′ + dt′

0 t > t′ + dt′

T (z, 0) = 0

Tz(−∞, t) = 0

The solution of this problem is T (z, t) = Ts(t
′)Qt(z, t− t′). Again, linearity

allows us to superimpose the solutions to the above problem for a continuous
range of t′ to compose θ(z, t):

θ(z, t) =

t∫

0

Ts(t
′)Qt(z, t− t′)dt′ (7.29)

which is the desired result. ¥

Using Eqn. (7.27) and the definition of the error function, erf(), given in
Chapter (5), we find

Qt(z, t− t′) =
ze

−z2

4(t−t′)

2
√

π(t− t′)
3
2

(7.30)

Equating Gz(0, t
′; z) with Qt(z, tf − t′) gives

G(0, t′; z) =
e

−z2

4(tf−t′)

√
π(tf − t′)

1
2

(7.31)

Thus, the solution to the forward problem is given by

θ(z, tf ) =

tf∫

0

Ts(t
′)

ze
−z2

4(tf−t′)

2
√

π(tf − t′)
3
2

dt′ (7.32)

We shall make use of this formal expression to derive the solution of the
inverse problem.
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7.4 A Family of Inverse Probems

Before outlining our approach to the inverse heat diffusion problem, it is
important to distinguish between three related inverse problems. The first
problem is termed ill posed and is intractable. The second and third probems
are least squares problems. We shall solve the third problem in two separate
manners using either the mathematical apparatus of integral equations and
finite differences.

7.4.1 Inverse Problem 1.

Given borehole data θb(z) and a definition of the heat transfer physics (i.e.,
a specification of Gz(0, t; z)), find Ts(t) using the relation

θb(z) =

tf∫

0

Ts(t)Gz(0, t; z)dt (7.33)

¤ A schematic view of the temporal and spatial domain associated with this
inverse problem is given in Fig. (7.2).

To see why Inverse Problem 1 is ill posed, recall the problem of fitting
an isochron to the lead-isotope data in Chapter (1). That simple line-fitting
problem was ill posed because there were more than two lead-isotope data
points, and they did not happen to be colinear. We found that there could
be no solution to the line-fitting problem that was exact; at best, we could
only determine an isochron which satisfies the data in the least squares sense.

We run into a similar difficulty with Problem 1. Unless the borehole
data, θb(z), satisfies the strict mathematical properties required of solutions
of the heat-transfer equations (i.e., that the function θb(z) be smooth in some
restricted sense), Inverse Problem 1 has no solution. For example, there is no
surface temperature history that is capable of introducing a step discontinuity
in the temperature depth profile of a homogeneous, semi-infinite material.
Thus, if θb(z) posesses a step discontinuity, say as a result of measurement
error, Inverse Problem 1 cannot be solved.
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z
t

t f

Ts(t)

θ=0

θ  =0

θ = θb

z

θ  = θ
t zz

t=0
z=0

Figure 7.2: The domain in which the inverse borehole temperature problem
is solved. Boundary conditions are known on three sides of the “box” (at
t = 0, at t = tf , and at z = −∞), and are unknown on one side (at z = 0).
Within the box, the constraint θt = θzz applies.
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In the world of borehole paleothermometry, borehole data θb(z) is rarely
free of serious measurement error, and is determined by the interpolation
of discrete point measurements of temperature and depth. Most interpola-
tion functions that are used to express the data as a continuous profile lack
the strict mathematical properties required of solutions of the heat-transfer
equations. Interpolation polynomials, for example, are not analytic (differ-
entiable up to an infinite number of times). This is why we are forced to
adopt a least squares approach to the paleothermometry problem.

Another difficulty with Inverse Problem 1 is that Eqn. (7.33) is an integral
equation of the first kind, that is, Ts(t) appears only under the integral sign
(Courant and Hilbert, 1953, p. 159). This kind of integral equation can have
a null space, i.e., there might be a function (or functions) T̃s(t) 6= 0 such that

tf∫

0

κGz(0, t; ξ) T̃s(t)dt = 0 (7.34)

By setting the right-hand side of Eqn. (7.34) to zero, we mean 0 Kelvin;
in other words, the history T̃s has no effect on the borehole temperature
profile. If solutions satisfying Eqn. (7.34) exist, then arbitrary improvement
in accuracy of the borehole measurements can never overcome the fact that
an arbitrary factor times T̃s(t) can be added to Ts(t) without changing the
predicted borehole profile.

On intuitive grounds, this situation is physically unlikely; i.e., it is unre-
alistic to think that there are climate histories which have literally no effect
on borehole temperatures at time tf . What is intuitively more reasonable, is
that finite-precision arithmetic and limited borehole-measurement sensitivity
makes the possibility expressed in Eqn. (7.34) a certainty in practical sit-
uations. Finite-precision arithmetic (such as that which is performed on a
computer) suggests that some temperature histories T̃s(t) cannot be operated
on by the integral transform expressed by Eqn. (7.33) without serious arith-
metic error. In fact, this arithmetic error may make the associated borehole
temperature profile that results from T̃s to be zero. Limited-measurement
sensitivity implies that there are an infinite number of borehole tempera-
ture profiles θ̃(z) that cannot be distinguished from zero. The T̃s(t) associ-
ated with these profiles, or which cannot be transformed accurately by Eqn.
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(7.33), constitute the null space of Inverse Problem 1. In this circumstance,
no inverse method can guide us in the choice between the infinite number
of equally satisfactory solutions to Eqn. (7.33) which differ only by their
projection into the null space of Eqn. (7.33).

7.4.2 Inverse Problem 2.

Approximate the solution of Inverse Problem 1 in a least-squares sense. ¤

Here we define a least-squares performance index, and make use of the
expression (7.33)

J =

0∫

−∞




tf∫

0

Gz(0, t; z) Ts(t)dt− θb(z)




2

dz (7.35)

Henceforth, the distinction between profiles θb(z, t) which do satisfy the
mathematical properties of solutions to the heat-transfer problem and pro-
files which don’t is no longer important. This is indeed the main benefit of
adopting a least-squares approach to the inverse heat-diffusion problem.

Inverse Problem 2 is solved by choosing a Ts(t) which minimizes J . This
is normally done by using the calculus of variations to determine an Euler-
Lagrange condition which, when satisfied, ensures δJ = 0 under arbitrary
variations of Ts(t), where δJ is the variation of J . A second version of
Inverse Problem 2 is defined by introducing an auxilliary constraint, such as
a climatology. We will focus on this second version because it provides a
means to deal with difficulties which arise from finite-precision arithmetic.

7.4.3 Inverse Problem 3.

Approximate the solution of Inverse Problem 1 in a least-squares sense, but
add subsidiary performance conditions, such as a cost function that depends
on deviations between Ts(t) and “climatology” φ(t). ¤
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In this circumstance, the performance index J of Inverse Problem 2 is
modified as follows

J = (1− α)

0∫

−∞




tf∫

0

Gz(0, t; z) Ts(t)dt− θb(z)




2

dz + α

tf∫

0

[Ts(t)− φ(t)]2 dt

(7.36)
The “mixture” parameter 0 < α < 1 describes the trade-off between the fit to
borehole data and the fit to climatology. Observe that when α = 0, borehole
misfit is the only consideration used to determine the surface-temperature
history (Inverse Problem 3 becomes Inverse Problem 2); and, when α = 1,
borehole misfit becomes irrelevant, only deviation from climatology is impor-
tant. (We note that α could be defined as a function of time. For simplicity,
we have refrained from doing so here.)

To minimize the J defined in Eqn. (7.36), we determine the Euler-
Lagrange equation, namely the condition under which δJ = 0 for arbitrary
δTs. We begin by rewriting Eqn. (7.36) in a manner which isolates explicit
dependence of J on Ts(t):

J = (1− α)

{ 0∫

−∞




tf∫

0

Gz(0, t; z) Ts(t)dt− θb(z)




+




tf∫

0

Gz(0, t′; z) Ts(t
′)dt′ − θb(z)


 dz

}

+α

tf∫

0

[Ts(t)− φ(t)]2 dt (7.37)

Expanding the products expressed in the integrands, we get

J = (1 − α){
0∫

−∞

tf∫

0

tf∫

0

Ts(t)Ts(t
′)Gz(0, t; z)Gz(0, t′; z)dtdt′dz

−2

0∫

−∞

tf∫

0

Ts(t)Gz(0, t; z)θb(z)dtdz
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+

0∫

−∞

θ2
b (z)dz}

+α

tf∫

0

[
T 2

s (t)− 2Ts(t)φ(t) + φ2(t)
]
dt (7.38)

In the second term of the first integral of Eqn. (7.38) we have made a
substitution of the dummy variable of integration from t′ to t. This does
not change J . We may also swap the order of integration in Eqn. (7.38) as
follows

J = (1 − α){
tf∫

0

[

tf∫

0

0∫

−∞

Ts(t)Ts(t
′)Gz(0, t; z)Gz(0, t′; z)dzdt′

−2

0∫

−∞

Ts(t)Gz(0, t; z)θb(z)dz]dt

+

0∫

−∞

θ2
b (z)dz}

+α

tf∫

0

[
T 2

s (t)− 2Ts(t)φ(t) + φ2(t)
]
dt (7.39)

Observe that Gz(0, t; z) and θb(z) are known functions of z, thus the integra-
tions over z in Eqn. (7.39) may be done at this stage. If we define

K(t, t′) =

0∫

−∞

Gz(0, t; z)Gz(0, t′; z)dz (7.40)

and

Θb(t) =

0∫

−∞

Gz(0, t; z)θb(z)dz (7.41)

Eqn. (7.39) becomes

J = (1− α){
tf∫

0

[

tf∫

0

Ts(t)Ts(t
′)K(t, t′)dt′
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−2Ts(t)Θb(z)]dt

+

0∫

−∞

θ2
b (z)dz}

+α

tf∫

0

[
T 2

s (t)− 2Ts(t)φ(t) + φ2(t)
]
dt (7.42)

We are now ready to take the variation:

δJ = 2(1− α){
tf∫

0

[

tf∫

0

δTs(t)Ts(t
′)K(t, t′)dt′

−2δTs(t)Θb(z)]dt}

+2α

tf∫

0

[δTs(t)Ts(t)− δTs(t)φ(t)] dt (7.43)

To ensure δJ = 0 for arbitrary δTs(t), we must insist that the integrand of
the integral over t be zero. This gives the Euler-Lagrange condition,

(1 − α)

tf∫

0

Ts(t
′)K(t, t′)dt′ + αTs(t) = (1 − α)Θb(t) + αφ(t) (7.44)

Equation (7.44) is an integral equation of the second kind (Courant and
Hilbert, 1953, p. 112), and the kernel K(t, t′) is symmetric. The solution of
Eqn. (7.44) constitutes what we define here to be the least-squares solution
to the paleothermometry problem.

In focussiong our attention on Inverse Problem 3, we have subtly changed
the mathematical nature of the paleothermometry problem. Inverse Problem
1 leads to an integral equation of the first kind, which may have no solution
due to the incompatibility between the data, θb(z), and solutions of heat-
transfer equations (i.e., analyticity). Inverse Problem 3, however, leads to
an integral equation of the second kind which always has a solution (or many
solutions). Inverse Problems 1 and 3 also differ by the fact that K(t, t′) is a
symmetric kernel whereas Gz(0, t; z) is not. In addition, the data in Inverse
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Problem 1, θb(z), can be “rough”; whereas, the data in Inverse Problem
3, Θb(t), is “smoothed” by the integral transform implied by Eqn. (7.41).
From what we know about singular value decomposition (SVD), we expect
the kernel K(t, t′) to have eigenvalues that are near zero. This motivates
the introduction of climatology η(t) and a non-zero α. Even with all the
advantages gained by abandoning Inverse Problem 1 in favour of Inverse
Problem 3, we still must keep in mind the fact that the kernel K(t, t′) may
have singularities (i.e., may not be square-integrable), and so may be very
difficult to work with.

7.5 Least Squares Solution: Continuous Case

If the symmetric kernel K(t, t′) in Eqn. (7.44) is square-integrable (contin-
uous, for example), then we could exploit the fact that it has eigenvalues
{µi}∞i=1 and eigenfunctions { ψ i(t)}∞i=1 which span the Hilbert space of con-
tinuous functions on the interval 0 < t < tf (Courant and Hilbert, 1953, p.
122) where

tf∫

0

K(t, t′)ψ i(t)dt′ = µi ψ i(t) (7.45)

tf∫

0

ψ i(t
′) ψ j(t

′)dt′ = δij (7.46)

where δij = 0 if i 6= j and δij = 1 if i = j. By square integrability we mean

tf∫

0

tf∫

0

[K(t, t′)]2dt dt′ ≤ M (7.47)

where M < ∞ is a fixed bound. Inspection of the functional form of
Gz(0, t; z) assures us that the K(t, t′) is not square integrable. Strictly speak-
ing, we cannot use the mathematical machinery associated with the eigen-
values and eigenfunctions.

The fact that K(t, t′) is not square integrable is an indication of the great
difficulty of the inverse heat-diffusion problem. Even with the benefits gained
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by adopting a least-squares approach, the problem is still intractable owing
to the singularities we anticipate in K(t, t′). Once a numerical method is
adopted, however, the question of square-integrability is no longer crucial
to the development of the solution. We shall thus proceed and make use
of the eigenvalue and eigenfunction approach in spite of the lack of square-
integrability. We must keep in mind, however, that an essential element of
the continuous version of the problem is being lost when we do this.

We proceed formally from now on and denote with {µi}∞i=1 and { ψ i(t)}∞i=1

the eigenvalues and eigenfunctions associated with K(t, t′) (Courant and
Hilbert, 1953, p. 122). Then, if we expand Ts, Θb and φ as follows

Ts(t) =
∞∑

i=1

ai ψ i(t) (7.48)

Θ(t) =
∞∑

i=1

bi ψ i(t) (7.49)

φ(t) =
∞∑

i=1

ci ψ i(t) (7.50)

substitute these expressions into Eqn. (??), and make use of the orthogo-
nality of the eigenfunctions, we get an expression which relates the unknown
coefficents ai to the known coefficients bi and ci:

[(1− α)µi + α]ai = (1− α)bi + αci for i = 1, . . . ,∞ (7.51)

The solution Ts(t) thus becomes

Ts(t) =
∞∑

i=1

(1− α)bi + αci

(1 − α)µi + α
ψ i(t) (7.52)

We have now produced a description of the formal solution to the continu-
ous version of the least-squares paleothermometry problem with climatology
(Inverse Problem 3).

We can now address the question of trade-off between the fit to borehole
data and the fit to climatology expressed in the definition of J for Inverse
Problem 3. The mixture parameter, α, determines the importance of the
coefficients of the climatology, ci, relative to the coefficients of the borehole
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data bi in determining the coefficients of the surface-temperature history ai.
An objective choice of α will depend on an evaluation of the relative confi-
dence ascribed to the borehole temperature measurements (which determine
the bi’s) and the climatology (which determine the ci’s). For example, one

might choose α
(1−α) =

σ2
b

σ2
c
, where σ2

b is a measure of temperature-measurement

uncertainty and σ2
c is a measure of the uncertainty in the climatology.

Another important role is played by the mixture parameter α, and this
must also be considered when selecting the numerical value of α. It serves
to regularize the problem of determining Ts(t). Even without specifying the
symmetric kernel K(t, t′), we can anticipate that the eigenvalues µi will tend
to converge to 0 as i →∞ (Courant and Hilbert, 1953, p. 130). Thus, when
α = 0 (i.e., when we force our solution to depend only on achieving the best fit
between predicted borehole temperatures and data), the series expansion for
Ts(t) could become divergent because of zeros, or extremely small numbers,
in the denominator of the expansion coefficients defined by Eqn. (7.52). By
specifying α > 0, the denominator remains finite when µi → 0. The series
expressions thus is well-behaved from an arithmetic standpoint. The benefit
of regularizing the problem is offset by the fact that the retrodicted surface-
temperature history depends more on the climatology φ(t) and less on the
borehole temperature data.

7.6 Discrete Version of the Forward Problem

The above analysis is impractical from the standpoint that an integral equa-
tion must be solved for an unknown continuous function. Typically in the
analysis of geophysical data, numerical methods are preferred. We thus re-
develop the least squares solution to the paleothermometry problem using
the finite difference technique. We shall see that there are many parallels
between the finite-difference and continuous forms of the least-squares solu-
tion.

The finite difference version of the forward problem Eqns. (7.7)-(7.10)
can be developed by defining finite-difference versions of the borehole data
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θb (down to a finite depth in the earth), the temperature depth profile θ[n]

(at time t = n∆t and down to a finite depth), and the surface-temperature
history Ts:

θb =




θb(0)
θb(−∆z)

...
θb(−(M − 1)∆z)




(7.53)

θ[n] =




θ(0, (n− 1)∆t)
θ(−∆z, (n− 1)∆t)

...
θ(−(M − 1)∆z, (n− 1)∆t)




(7.54)

Ts =




Ts(0)
Ts(∆t)

...
Ts((N − 1)∆t)




(7.55)

where ∆z = Do/(M − 1), Do is the depth of the bottom of the borehole,
∆t = tf/(N − 1), M is the number of grid points in the vertical where the
temperature is measured, and N is the number of time steps. We make
one alteration to the forward problem to accomodate a finite depth, Do, of
borehole measurement. Instead of requiring θz → 0 as z → −∞, we require
θz = 0 at z = −Do.

The continuous partial differential equation (7.7) is converted to an alge-
braic equation using the following finite-difference expressions for the deriva-
tives of θ:

θt(−(j − 1)∆z, (n + 1/2)∆t) →
θ

[n+1]
j − θ

[n]
j

∆t
(7.56)

θzz(−(j − 1)∆z, n∆t) →
θ

[n+1]
j+1 + θ

[n+1]
j−1 − 2θ

[n+1]
j

∆z2
(7.57)

θz(−Do, n∆t) = 0 → θ
[n+1]
M − θ

[n+1]
M−1 = 0 (7.58)

With these changes, the algebraic equations representing implicit time step-
ping of (7.7) may be written

Aθ[n] −Bθ[n−1] = CT [n−1]
s (7.59)
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where T [n−1]
s is the (n− 1)th component of Ts, and

A =
1

∆z2
·




∆z2 0 0 0 . . .
−1 ∆z2

∆t
+ 2 −1 0 . . .

0 −1 ∆z2

∆t
+ 2 −1 . . .

...
...

...
. . .

...
. . . 0 −1 ∆z2

∆t + 2 −1
. . . 0 0 −1 1




(7.60)

B =




0 0 0 0 . . .
0 1

∆t
0 0 . . .

0 0 1
∆t 0 . . .

...
...

...
. . .

...
. . . 0 0 1

∆t 0
. . . 0 0 0 0




(7.61)

and,

C =




1
0
...
0


 (7.62)

Equation (7.59) is said to be an implicit representation of the diffusion opera-
tor because the diffusion term is evaluated at t = n∆t (corresponding to time
step n+1) whereas the corresponding evaluation of the time-derivative term
is at t = (n− 1/2)∆t. An implicit representation is preferable to an explicit
representation (where the diffusion term is evaluated at time t = (n− 1)∆t
or at time step n) because it is unconditionally stable to numerical pertur-
bations. An explicit formulation will blow up (computer-hacker jargon for
unbounded arithmetic growth) if the time-step size ∆t is not small enough.

The solution of the forward problem in the finite difference formulation
is found by recursively applying Eqn. (7.59). This is a tedious operation,
but the result is readily seen by inspecting the first few steps of the recursive
application:

θ[2] = A−1Bθ[1] + A−1CTs(0)
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θ[3] = A−1Bθ[2] + A−1CTs(∆t)

= [A−1B]2θ[1] + A−1B[A−1CTs(0)] + A−1CTs(∆t) (7.63)
...

The recursion formula is

θ[k] = [A−1B]k−1θ[1] +
k−1∑

n=1

[A−1B]k−n−1A−1CTs((n− 1)∆t) (7.64)

The initial condition is homogeneous, i.e., θ[1] = 0, thus we may write
the solution to the forward problem as follows

θ[N ] = GTs (7.65)

where the finite-difference analogue G to the continuous Green’s function
G(0, t; z) is given by

Gmn =

{ [
(A−1B)N−nA−1C

]
m

n < N − 1

0 n = N
(7.66)

Zeros appear in the last column of G because the temperature profile at time
(N −1)∆t does not depend on Ts((N −1)∆t). Observe that G is a mapping
from RN to RM ; thus, G is a rectangular matrix if N 6= M .

7.7 Discrete Version of the Least-Squares So-

lution

The path set by our consideration of the continuous versions of Inverse Prob-
lems 1 - 3 guides us in our deliberations on the discrete analogues of Inverse
problems 1 - 3. For example, the discrete version of Inverse Problem 1

θb = GTs (7.67)

where θb is the discrete version of the measured borehole temperatures, is
immediately recognized as ill-posed because G is a rectangular matrix which
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cannot be inverted. The discrete version of Inverse Problem 3 is solved by
choosing a Ts that minimizes the following least-squares performance index

J = (1− α)(GTs − θb)
′(GTs − θb) + α(Ts − φ)′(Ts − φ) (7.68)

where φ is the discretized version of the climatology φ(t),

φ =




φ(0)
φ(∆t)

...
φ((N − 1)∆t)




(7.69)

It is readily shown that the minimum of J is achieved when

(1− α)G′GTs + αTs = (1− α)G′θb + αφ (7.70)

If we define
K = G′G (7.71)

Θb = G′θb (7.72)

Equation (7.70) becomes

(1− α)KTs + αTs = (1− α)Θb + αφ (7.73)

We remark, in analogy to what we have said before concerning Inverse Prob-
lems 1 and 3, that Eqn. (7.73) offers several advantages over Eqn. (7.67).
Foremost of these advantages is the fact that the matrix K is square and
symmetric; whereas, G is not.

To solve Eqn. (7.73) for the unknown surface-temperature history Ts,
we must perform three steps. First, we must select a climatology φ. Second,
we must choose an α. Third, we must find a way to solve the linear-algebra
problem posed by Eqn. (7.73). Often, the last step will be difficult because
of the fact that the square, symmetric matrix K may be ill-conditioned. (By
ill-conditioned, we mean that it’s determinant is close to zero. We shall delve
into this point below.)
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7.8 Least-Squares Solution: Discrete Case

The solution to Eqn. (7.73) can be expressed formally in terms of the eigen-
values and eigenvectors associated with the symmetric matrix K : RN →
RN . Let {Ψi}N

i=1 and {µ}N
i=1, respectively, denote the eigenvectors and eigen-

values of K. In other words, let

KΨi = µiΨi (7.74)

The symmetry of K assures us that the eigenvectors {Ψi}N
i=1 are complete

and can be made orthonormal, and will span the vector space RN . (By
complete, we mean that any arbitrary vector in RN can be expressed as a
linear combination of the vectors in the set {Ψi}N

i=1.) Thus we may expand
Ts, φ and Θb as follows

Ts =
N∑

i=1

aiΨi (7.75)

Θb =
N∑

i=1

biΨi (7.76)

φ =
N∑

i=1

ciΨi (7.77)

where the coefficients {ai}N
i=1, {bi}N

i=1, and {ci}N
i=1 (note that we have chosen

‘b’ for borehole data and ‘c’ for climatology) are given by

ai = T′
sΨi (7.78)

bi = Θ′
bΨi (7.79)

ci = φ′Ψi (7.80)

Substituting these series expansions into Eqn. (7.73), and making use of
Eqn. (7.74), gives a relation between the unknown coefficients {ai}N

i=1 and
the known coefficients {bi}N

i=1 and {ci}N
i=1

[(1 − α)µi + α]ai = (1 − α)bi + αci (7.81)
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The solution of the discrete form of the paleothermometry problem is thus

Ts =
N∑

i=1

(1− α)bi + αci

(1 − α)µi + α
Ψi (7.82)

The advantage gained by expressing Ts in terms of the eigenvectors of K
as opposed to the equally valid, but less formal, expression

Ts = [(1− α)K + αI]−1{(1− α)Θb + αφ} (7.83)

is that the mathematical properties of Ts can be immediately appreciated.
The fact that {Ψi}N

i=1 are independent of the borehole data and climatology
tells us how the solution depends on the physics of the heat-transfer process.
The eigenvectors depend solely on the matrix K which depends, in turn,
on a statement of the discrete form of the forward problem. Typically, these
eigenvectors are oscillatory; thus we can expect the solution to the paleother-
mometry problem to also oscillate even in situations where we know that the
“true” surface-temperature history does not.

7.9 Limits to Resolution of Past Thermal His-

tory

An important issue to be addressed in borehole paleothermometry concerns
the fact that diffusion makes the surface-temperature history of the distant
past very difficult to recover, i.e., there is limited “thermal memory”. The
quantification of this source of uncertainty is a key step in the analysis of a
paleothermometry problem [Dahl-Jensen et al., 1993; MacAyeal et al., 1993].
One approach to estimating the uncertainty involves the model-resolution
matrix R which has been discussed in the context of the underdetermined
least-squares problems of Chapter ().

Suppose that we have the ability to measure a discrete version of the
borehole temperature profile with perfect precision and resolution (in other
words, suppose that we have data which is free of measurement error). Would

152



our inverse method produce the “exact” surface-temperature history? Let’s
denote the exact history by Te

s and the history inferred from the “perfect”
data by Tinf

s . The thermal memory issue is quantified by finding the relation
between Tinf

s and Te
s is provided by the series expansion for Tinf

s given in
Eqn. (7.82). For this purpose, we revise consider a solution of the inverse
problem in which climatology is not accounted for (i.e., α = 0). Using Eqn.
(7.82) we have

Tinf
s =

N∑

i=1

bi

µi
Ψi (7.84)

In practical circumstances, the matrix K may be ill-conditioned to the point
where we can only recover M < N of it’s eigenvalues. In this situation, we
would have

Tinf
s =

M∑

i=1

bi

µi
Ψi (7.85)

We recall that, by definition, the error-free borehole temperature data is
related to the exact surface temperature history by Θb = G′GTe

s, and write
bi, using Eqn. (7.79), as follows:

bi = Θ′
bΨi

= [G′GTe
s]
′Ψi

= [KTe
s]
′Ψi (7.86)

With the above identity, Eqn. (7.85) becomes

Tinf
s =

M∑

i=1

[KTe
s]
′Ψi

µi
Ψi

= RTe
s (7.87)

where R, the model-resolution matrix, is defined by

R =
M∑

i=1

ΨiΨ
′
i (7.88)

and where we have made use of the symmetry of K and the relation KΨi =
µiΨi. We note, in passing, that the expression in Eqn. (7.88) is similar to
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the expression we could use to write the identity matrix I, i.e.,

I =
N∑

i=1

ΨiΨ
′
i (7.89)

The fact that the upper limit of the summation index in Eqn. (7.88) is M
and not N indicates that R will not, in general, be the same as the identity
matrix. Indeed, the difference between R and the identity matrix represents
a measure of the lack of resolution brought about by the limitation to thermal
memory.

It is interesting to note that the off-diagonal spread in the model-resolution
matrix, depends only on the properties of K (i.e., it’s eigenvalues, eigenvec-
tors, and M the number of significant eigenvalues). Thus, the degree to
which Te

s is degraded by diffusive heat transfer can be evaluated in advance
of any field project without having to have any borehole data actually in
hand.

7.10 Uncertainty

Having described a crucial source of uncertainty, limited thermal memory,
we touch on the question of estimating the covarience of the derived surface-
temperature history Ts. Following the proceedure in § (3.3.2), we assume
the following relationships between T̂s, θ̂b, φ̂ and their respective errors ζ, ε,
and γ:

ζ = T̂s −Ts (7.90)

ε = θ̂b − θb (7.91)

γ = φ̂− φ (7.92)

where the ·̂ denotes quantities that are measured or derived from measure-
ments. We assume at the outset that the covarience matrices Q and S
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associated with ε and γ, respectively, are known:

〈εε′〉 = Q (7.93)

〈γγ′〉 = S (7.94)

and that
〈εγ′〉 = 0 (7.95)

Our goal is to estimate E = 〈TsT
′
s〉, the covarience of the derived surface-

temperature history.

From Eqn. (7.83), we have

ζ = [(1− α)K + αI]−1{(1− α)G′ε + αγ} (7.96)

Substitution of Eqn. (7.96) into the expression for E yields the result

E = (1 − α)2 [(1− α)K + αI]−1 G′QG
[
[(1− α)K + αI]−1

]′

+α2 [(1− α)K + αI]−1 S
[
[(1− α)K + αI]−1

]′
(7.97)

It will be seen, from the exercises associated with this chapter, that E is not
diagonal and suggests that errors in the inferred surface-temperature history
increase with increasing age.

7.11 Paleothermometry by Control Methods

In the preceeding development, the solution to the paleothermometry prob-
lem (Problem 2 or Problem 3 of §(7.4) has been presented using the mathe-
matical formalism associated with integral equations (continuous case) and
linear algebra (discrete case). MacAyeal it et al. [ 1992] suggest that con-
trol methods might also work well in solving the paleothermometry problem.
Here we develop a control-method approach, and show that it is formally
equivalent to the solutions derived previously in this chapter. We also sug-
gest ways in which the control method might offer technical advantages over
the approaches derived above.
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7.11.1 Continuous Version of a Control Method

We formally derive the continuous version of a control-method approach by
minimizing the following performance index J

J =
1

2

0∫

−∞

dz (θ(z, tf)− θb)
2 (7.98)

subject to Eqns. (7.7)-(7.10) as constraints. These constraints may be conve-
niently accounted for in the minimization of J through the use of a Lagrange-
multiplier function λ(z, t):

J =
1

2

0∫

−∞

dz (θ(z, tf )− θb)
2 +

tf∫

0

dt

0∫

−∞

dzλ [θt − θzz] (7.99)

At this stage, we do not represent the boundary conditions or initial condition
associated with the forward problem using the Lagrange-multiplier approach
(although, this would be possible to do). We must therefore keep in mind
when we use the calculus of variations to derive the Euler-Lagrange conditions
which ensure a minimization of J that variations of θ at the boundaries or
the initial time t = 0 may not be allowed.

Application of the calculus of variations gives an expression for the vari-
ation of J , δJ :

δJ =

0∫

−∞

dt2δθ(z, tf ) (θ(z, tf )− θb)

+

tf∫

0

dt

0∫

−∞

dzδλ [θt − θzz]

+

tf∫

0

dt

0∫

−∞

dzλ [δθt − δθzz] (7.100)

The last term on the right-hand side of Eqn. (7.100) may be simplified by
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integration by parts:

tf∫

0

dt

0∫

−∞

dzλ [δθt + δθzz] =

0∫

−∞

dz [λδθ]
tf
0 −

tf∫

0

dt [λδθz]
0
−∞

+

tf∫

0

dt [λzδθ]
0
−∞ −

tf∫

0

dt

0∫

−∞

dzδθ [λt + λzz] (7.101)

Recalling the boundary and initial conditions of the forward problem, we
recognize that variations in the boundary values and initial conditions are not
allowed, i.e., δθ(z, t = 0) = δθz(−∞, t) = 0. Combining these simplifications,
substituting Eqn. (7.101) into Eqn. (7.100), and insisting that δJ = 0 for
arbitrary δλ and δθ we arrive at the following set of Euler-Lagrange equations:

θt = θzz (7.102)

θ(z, t = 0) = 0 (7.103)

θ(z = 0, t) = Ts(t) (7.104)

θz(z → −∞, t) = 0 (7.105)

λt = −λzz (7.106)

λ(z, t = tf ) = − (θ(z, t = tf )− θb) (7.107)

λ(z = 0, t) = 0 (7.108)

λz(z = −∞, t) = 0 (7.109)

λz(z = 0, t) = 0 (7.110)

Equations (7.102)-(7.105) may be recognized as the forward problem. Equa-
tions (7.106)-(7.109) represent the adjoint form of the forward problem, and
this leads to the convention of referring to λ as the “adjoint trajectory”.
Equation (7.110) represents the extra condition needed ultimately to deter-
mine Ts. A cursory look at the adjoint equations (Eqns. 7.106 - 7.109) might
cause alarm. The normal diffusion term λzz appears on the right-hand side
of Eqn. (7.106) with a minus sign. The governing equation for λ is thus
the backward diffusion equation which is notoriously ill conditioned. A more
careful examination, however, reassures us that the adjoint problem will not
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be intractable. In particular, the initial condition in the adjoint equation is
not applied at t = 0, but is applied at the terminal time t = tf . This location
of the initial condition on λ circumvents the otherwise ill-conditioned nature
of the backward diffusion equation.

To see the correspondence between the solution to the paleothermometry
problem derived previously and represented by Eqn. (7.44) (with α = 0)
and that obtained when the above Euler-Lagrange equations are solved, we
proceed to solve Eqns. (7.102)-(7.110). The first step is to notice the cor-
respondence between the adjoint problem (Eqns. 7.106 - 7.109) and Eqns.
(7.11)-(7.14) which define the Green’s function G(z, t; ζ). Making use of this
Green’s function, we can immediately write the solution to the adjoint prob-
lem:

λ(z, t) =

0∫

−∞

dζ (θ(ζ, tf )− θb)G(z, t; ζ) = 0 (7.111)

With this expression, Eqn. (7.110) may be written

λz(z = 0, t) =

0∫

−∞

dζ (θ(ζ, tf)− θb) Gz(0, t; ζ) (7.112)

Substituting the Green’s function representation of θ(ζ, tf ) given by Eqn.
(7.22), i.e.,

θ(ζ, tf ) =

tf∫

0

dt′Ts(t
′)Gz(0, t

′; ζ) (7.113)

into Eqn. (7.112), we obtain

0∫

−∞

dζ

tf∫

0

dt′Ts(t
′)Gz(0, t′; ζ)Gz(0, t; ζ)−

0∫

−∞

dζθb(ζ)Gz(0, t; ζ) = 0 (7.114)

Recalling the definitions of K and Θb(t) given in Eqns. (7.40) and (7.41), we
obtain a result which is identical to that derived previously:

tf∫

0

dt′K(t, t′)Ts(t
′) = Θb(t) (7.115)
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Having shown the correspondence between the control-method approach
and the least-squares approach derived previously, we next consider the prac-
tical advantages associated with solving a discrete version of the paleother-
mometry problem using a control method.

7.11.2 Discrete Version of a Control Method

An excellent description of how to apply the control method to ice-sheet
borehole temperature data is provided by Firestone [1992]. Here we provide
only a cursory sketch on how a control method might be implimented to solve
the discrete version of the problem developed in §(7.7). Our goal is to chose
a vector Ts (having components that represent the surface temperature at
discrete time steps) which minimizes

J =
[
θ[N ] − θb

]′ [
θ[N ] − θb

]
(7.116)

subject to the N − 1 constraints

Aθ[n] −Bθ[n−1] = CT [n−1]
s (7.117)

for n = 2, . . . , N . A convenient way to enforce the constraints represented by
Eqn. (7.117) is to use a sequence of Lagrange-multiplier vectors λ[n], n =
2, . . . , N . Doing so requires us to minimize the following augmented perfor-
mence index:

J =
[
θ[N ] − θb

]′ [
θ[N ] − θb

]
+

N∑

n=2

[
λ[n]

]′ [
Aθ[n] −Bθ[n−1] −CT [n−1]

s

]
(7.118)

There are several approaches that we may choose from for the minimiza-
tion of J as defined in Eqn. (7.118). The approach we have adopted so far in
this Chapter is to use calculus to define the derivatives of J with respect to
the unknown (free) parameters, to set these derivatives to zero, and solve us-
ing linear algebra the resulting Euler-Lagrange equations. Another approach
is to view J as a multi-variate function of the unknowns T [n]

s , n = 1, . . . , N−1,
and use a standard search algorithm to find it’s minimum. Search algorithms
we might appeal to in finding the minimum might include steepest decent,

159



conjugate gradient, or many of the other methods that have been customized
for various purposes. (A good review of search algorithms useful in finding
the minima of functions is provided by Press et al. [1989]. The optimiza-
tion toolbox implimented by Matlabr contains numerous algorithms that
can be convienently programed in solving an inverse problem such as that
represented by the minimization of J discussed here.)

The method we will adopt to minimize J as defined in Eqn. (7.118) is
iterative. We develop a “down-gradient search” strategy which is summarized
as follows: Step 1. We guess T [n]

s , n = 1, . . . , N − 1. Step 2. We compute
J . Step 3. We compute ∂J/∂T [n]

s for all the n = 1, . . . , N − 1. Step 4.
We test to see if ∂J/∂T [n]

s = 0 (or close to zero). Step 5. If the test in
Step 4 is affirmative, then the process stops, if not, the process continues by
estimating an improvement to the initial guess T [n]

s , n = 1, . . . , N − 1 using
an algorithm (not discussed here) that makes use of ∂J/∂T [n]

s . Step 6. We
substitute the improved guess (from Step 5) for the initial guess formed in
Step 1 and proceed to Step 2.

The hardest step is Step 5. It is hard because we must improve the
original guess using only our knowledge of which “direction” in the vector
space of all possible Ts is “downhill”. In other words, we have only the
particular values of J and ∂J/∂T [n]

s for n = 1, . . . , N associated with our
initial guess to work with in improving the guess. Despite the difficulty of
this problem, many “canned” software routines are available for this task, and
can be implimented with great ease using Matlabr . We shall not consider
the algorithms associated with such software procedures here. Instead we
shall simply give reference to the section on conjugate-gradient methods in
Press et al. [1989].

To impliment this search algorithm, we make use of the Euler-Lagrange
equations associated with J . First and second, we make use of the Euler-
Lagrange equations generated when we require that ∂J/∂θ[n] = 0, n =
2, . . . , N and ∂J/∂λ[n] = 0 n = 1, . . . , N − 1:

Aθ[n] −Bθ[n−1] = CT [n−1]
s for n = 2, . . . , N (7.119)

θ[1] = 0 (7.120)
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A′λ[n−1] −B′λ[n] = 0 for n = N, . . . , 2 (7.121)

A′λ[N ] = −
[
θ[N ] − θb

]
(7.122)

Equations (7.119) and (7.120) represent the forward problem, and Eqns.
(7.121) and (7.122) represent the adjoint problem.

In Step 2 (described above), we must calculate J from a guessed Ts.
Equations (7.119) and (7.120) are what we use to impliment Step 2. We
plug the values of the guessed T [n]

s , n = 1, . . . , N into Eqns. (7.119) and
(7.120), solve for θ[n], n = 2, . . . , N (our interest being predominantly to
determine θ[N ]). Once θ[N ] is calculated, we plug it into Eqn. (7.116) to give
the explicit value of J associated with the initial guess.

Equations (7.121) and (7.122) represent the adjoint problem, and are
needed to compute λ[n], n = N−1, . . . , 1. (We will postpone for the moment
a discussion of why we might be interested in knowing λ[n], n = N−1, . . . , 1.)
To compute λ[n], n = N − 1, . . . , 1, we take the mismatch between θ[N ] (de-
rived from solving the forward problem) and θb to form the initial condition
for λ[N ] represented by Eqn. (7.121). We then recursively apply Eqn. (7.120)
to generate λ[n], n = N − 1, . . . , 1.

Armed with the λ[n], n = N −1, . . . , 1, we proceed to Step 3, the calcula-
tion of ∂J/∂T [n]

s for n = 1, . . . , N−1. Taking the derivative of the expression
in Eqn. (7.118) we obtain

∂J

∂T
[n]
s

= C′λ[n+1] for n = 1, . . . , N − 1 (7.123)

Armed with the derivatives expressed in the above formula, we then proceed
with Steps 4 and 5.

One might wonder what advantage has been gained from calculating
λ[n], n = N − 1, . . . , 1 using the adjoint problem. The answer concerns the
work we would have had to perform to compute ∂J/∂T [n]

s for n = 1, . . . , N−1
using a finite-difference algorithm (e.g., by computing J N times with
slightly perturbed values of the initial guess Ts and forming difference ap-
proximations to the derivatives of J with respect to the components of Ts).
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To impliment a finite-difference algorithm, we would have to compute J N
times. This would necessitate running the forward problem N times to deter-
mine the values of θ[N ] needed to substitute into Eqn. (7.116). In contrast, by
the control method described above, the N − 1 derivatives of J with respect
to the N−1 T [n]

s variables necessitates solving the forward problem once and
solving the adjoint problem once. Considering the great similarity between
the adjoint and forward problems in terms of computational difficulty, the
control method effectively achieves what the finite-difference method achieves
with a factor of 2/N less computational work. This is the main advantage
for adopting the control method over other, less sophisticated methods.
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7.13 Laboratory Exercise: Warming Anomaly

in Permafrost of Northern Alaska

Recent analysis of geothermal temperature profiles in Northern Alaska by
Lachenbruch and Marshall [1986] suggests that the climate has been warming
during the last several decades to a century. Is this the first signal of the
coming CO2-greenhouse effect?

Problem 1 Assume that the Earth’s climate has warmed over the last 100
years according to the time series displayed in Pollack and Chapman
[1993]. Determine the present-day temperature anomaly in a borehole
of depth 300 m that is associated with this warming time series. (Data
will be found in the Matlabr load file associated with this lab.)

Problem 2 Using the temperature anomaly generated in Problem 1, θb(z),
determine a surface-temperature history T inf

s (t) using the least-squares
inverse method described in this chapter. For the pre-concieved surface-
temperature climatology, φ(t), use a running 10-year mean of the time-
series used to generate the temperature anomaly. Use α = 0.5. Com-
pare your result with the actual surface temperature history from Pol-
lack and Chapman [1993].

Problem 3 Perform the analysis in Problem 2, except use α = 0, 0.25, and
0.75. Compare your results with the actual surface temperature history
and with the result of Problem 2.

Problem 4 Compute the model resolution matrix R for the best-fitting and
worst-fitting results of Problems 2 and 3. Display the matrix by graph-
ing the value of its components along select rows as a function of the
column number. By inspection of these graphs, how does the retrodic-
tion of ”recent” temperature history compare with the retrodiction of
”ancient” temperature history?

Problem 5 Using the same data as that used by Lachenbruch and Marshall
[1986], compute the surface temperature history of Northern Alaska.
Do you think that Lachenbruch and Marshall’s claim of climate warm-
ing is justified?
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Chapter 8

Kalman Smoother: Estimation
of Atmospheric Trace-Gas
Emissions

8.1 Overview

In many scientific research areas, particularly in those which involve systems
like the atmosphere and ocean which may be monitored for operational fore-
casting reasons, we are faced with the problem of blending noisy observations
with a description of the system’s dynamics to achieve an improved estimate
of the system’s state. In huricane forecasting, for example, we might wish to
use observations about the prior drift of the storm center to update a fore-
cast model. In chemical oceanography, we might use a time series of noisy
tracer-concentration measurements and a numerical ocean circulation model
to better describe the time-average ocean circulation regime. In atmospheric
chemistry, we might wish to estimate the source of a particular chemical
constituent, such as the now-outlawed chloroflorocarbons, using only mea-
surements of the consituent’s concentration in the stratosphere.

All of these problems may be treated using a class of inverse methods
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known as “filtering, smoothing and prediction”. One specific member of this
class of methods known as the Kalman filter has risen to prominence in the
meteorological and oceanographic literature. We shall focus on this method
here and use use as a vehicle to explore this method a simple atmospheric
chemistry problem.

8.2 An Idealized Atmospheric-Chemistry Model

For the purpose of teaching the conceptual basis of the Kalman filter, we will
consider a idealized diffusive model of chemical transport in the atmosphere.
In this model, we disregard vertical variation of chemical constituents, and
proceed as if the atmosphere were simply a spherical surface as depicted in
Fig. (8.1).

Let c(t, θ) be the vertically and zonally averaged concentration of a par-
ticular chemical constituent as a function of time t and latitude θ. Let s(t, θ)
be the emission (or absorbtion, if less than zero) of this chemical due to natu-
ral (e.g., photochemical) or anthropogenic processes. The diffusion equation
which governs c is assumed, for the sake of illustration, to be

ct =
D

Re cos θ
(cos θcθ)θ + s (8.1)

where D is the diffusivity, Re is the mean radius of the earth, and subscripts
denote partial differentiation with respect to the subscripted variable. For a
unique solution to the above equation, an initial condition must be specified.
(Boundary conditions are not necessary because the domain, the earth’s at-
mosphere, is considered to be a two-dimensional spherical surface.) Here, we
require

c = 0 at t = 0 (8.2)

It is best to simplify the above description of chemical tracer diffusion as
much as possible prior to investigating the properties of it’s solution. The
first simplification is to adopt non-dimensional variables, specifically

t → R2
e

D (8.3)

166



c → Coc (8.4)

s → CoD
R2

e
s (8.5)

The second step is to change coordinates from θ to x = sin θ. The resulting
statement of the dimensionless atmospheric diffusion problem is

ct = ((1 − x2)cx)x + s (8.6)

c = 0 at t = 0 (8.7)

8.3 A Simple Inverse Problem

The inverse problem we will focus on as a means of developing the Kalman
filter may be defined as follows. Suppose that both the source and con-
centration of a particular chemical consituent are ovserved over a time in-
terval [0, T ]. Let these observations be denoted by sobs(x, t) and cobs(x, t),
respectively. Furthermore, assume that the errors associated with these two
observations (e.g., errors due to measurement inaccuracy and the effects of
over-simplified physics) have known statistics. In other words, let

so = s + ξ(x, t) (8.8)

co = c + ζ(x, t) (8.9)

where ξ and ζ represent random errors which possess the following statistical
properties

〈ξ(x, t)〉 = 0 (8.10)

〈ζ(x, t)〉 = 0 (8.11)

〈ξ(x, t)ζ(x′, t′)〉 = 0 (8.12)

〈ξ(x, t)ξ(x′, t′)〉 = Q(x, x′)δ(t− t′) (8.13)

〈ζ(x, t)ζ(x′, t′)〉 = R(x, x′)δ(t− t′) (8.14)

where the expectation operator 〈a(x, t)〉 of an arbitrary variable a(x, t) is
defined by

〈a(x, t)〉 =

∞∫

−∞

Pa(λ, x, t)a(x, t)dλ (8.15)
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and where Pa(λ, x, t) is the probability that the random variable a(x, t) will
have value λ at position x and at time t. Eqns. (8.15) and (8.16) indicate
that the errors in the observations of the source and concentration have
zero mean. Eqn. (8.12) indicates that errors in the observations of the
source are uncorrelated with errors in the observations of the concentration.
Eqns. (8.13) and (8.14) indicate that errors in the observations of source and
concentration are uncorrelated in time, but correlated in space according to
the correlation functions Q(x, x′) and R(x, x′). We assume Q and R to be
known to us at the outset of the analysis.

The inverse problem we wish to solve is this: Find an estimate of s(x, t)
and c(x, t) that is based on the observations and that satisfies Eqns. (8.6)
and (8.7). To make this inverse problem challenging, we assume at the outset
that so and co do not satisfy Eqns. (8.6) and (8.7).

8.4 Green’s Function Approach to the For-

ward Problem

To gain greater appreciation for the difficulty of the inverse problem defined
above, we develop a Green’s function approach to the solution of Eqns. (8.6)
and (8.7). We begin this development by separating the variables x and t
to split the homogeneous form (s = 0) of Eqn. (8.6) into a pair of ordinary
differential equations involving one variable only. Accordingly, we write

c(x, t) = X(x)T (t) (8.16)

where X and T are functions of x only and t only, respectively. Substitution
of (8.16) into Eqn. (8.6), and division by XT , gives

T ′

T
= γ =

(
1− x2

) X ′′

X
− 2x

X ′

X
(8.17)

where γ is an undetermined constant, and primes denote differentiation. (We
know that γ is a constant, and not a function of x or t, because the far left and
far right sides of Eqn. (8.17) are functions of t only and of x only, respectively.
Functions of t and of x can only be equal when they are constants.) Eqn.
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(8.17) is satisfied when the following two ordinary differential equations are
satisfied:

(
1− x2

)
X ′′ − 2xX ′ − γX = 0 (8.18)

T ′ − γT = 0 (8.19)

8.4.1 Legendre Equation

Eqn. (8.18) is known as Legendre’s equation. It is solved by assuming that
X has the form of a power series

X(x) =
∞∑

n=0

anxn+α (8.20)

where the an, n = 0, . . . ,∞ are unknown coefficients and α is an unknown
exponent. Substitution of (8.20) into Eqn. (8.18), and the requirement that
coefficient of each power of x be zero separately, gives the following three
conditions:

α(α − 1)a0 = 0 (8.21)

α(1 + α)a1 = 0 (8.22)

an+2 =
(n + α)(n + α + 1) + γ

(n + α + 2)(n + α + 1)
an for n = 2, . . . ,∞ (8.23)

Eqn. (8.23) suggests that both a0 and a1 cannot be zero simuletaneously
without resulting in the trivial solution where all the an are zero. We thus
consider separately two cases where either a0 6= 0 or a1 6= 0. These two cases
will yield series representations of X which either involve only even powers
of x or odd powers of x (depending on the choice of α). We make note of the
fact that, regardless of which coefficient a0 or a1 is taken to be non-zero, the
choice of α = 0 will ensure that Eqns. (8.21) and (8.22) are satisfied.

To ensure that the power series representation of X is convergent when
x = ±1, we must insist that the series be truncated at some finite level. In
other words, we must choose the undefined constant γ in a manner such that
for some integer l

al+2 = 0 (8.24)
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For α = 0, Eqn. (8.23) demonstrates the above condition is met when
γ = −l(l + 1).

8.4.2 Legendre Polynomials

We recognize the series representation for X for each l to be one of the
Legendre polynomials [Arfken, 1970]. Denoting these polynomials as Pl(x),
Eqn. (8.18) can be written

(
1− x2

)
P ′′

l − 2xP ′
l + l(l + 1)Pn = 0 (8.25)

The Legendre polynomials arise commonly in diffusion problems involving
spherical geometry. Two of the properties which make these polynomials
particularly useful is that they are orthonormal and complete. In other words,

1∫

−1

Pn(x)Pm(x)dx = 2
2n+1δnm (8.26)

∞∑

n=0

2n + 1

2
Pn(x)Pn(x′) = δ(x − x′) (8.27)

These two properties of the Legendre polynomials tell us that any arbitrary
function f(x) defined on the interval x ∈ [−1, 1] can be expressed as a series
of Pn’s

f(x) =

1∫

−1

f (x′)δ(x− x′)dx′

(8.28)

=

1∫

−1

f(x′)
∞∑

n=0

2n+1
2 Pn(x)Pn(x′)dx′

(8.29)

=
∞∑

n=0

fnPn(x) (8.30)
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where the expansion coefficients fn are given by

fn =
2n + 1

2

1∫

−1

f(x′)Pn(x′)dx′ (8.31)

We will make use of this ability to express arbitrary functions as series of
Pn’s to simplify the inverse problem.

A text on mathematical methods may be consulted to see the details
associated with the definitions of the Legendre polynomials [e.g., Arfken,
1970]. The first 5 Legendre polynomials are listed here for reference,

P0(x) = 1

P1(x) = x

P2(x) = 1
2 (3x2 − 1)

P3(x) = 1
2
(5x3 − 3x)

P4(x) = 1
8
(35x4 − 30x2 + 3)

P5(x) = 1
8 (63x5 − 70x3 + 15x)

8.4.3 Time Dependence

Having determined the general form of X(x) in terms of Legendre polyno-
mials, we next solve Eqn. (8.19) for T (t). The constant γ was required to be
−l(l + 1) inorder to make the power series solution of Eqn. (8.18) converge,
thus Eqn. (8.19) may be written

T ′ = −l(l + 1)T (8.32)

The solution is
T (t) = Cle

−l(l+1)t (8.33)

where Cl is an coefficient determined by the initial conditions.
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8.4.4 General Solution to Homogeneous Forward Prob-

lem

Using the results of the previous two subsections, the general solution to the
homogeneous form of the forward problem (where s = 0) may be expressed
as

c(x, t) =
∞∑

l=0

Cle
−l(l+1)tPl(x) (8.34)

We will make use of this expression to determine the Green’s function nec-
essary to solve the non-homogeneous form of the forward problem (where
s 6= 0).

8.4.5 The Inhomogeneous Forward Problem

To solve Eqns. (8.6) and (8.7), we define the Green’s function G(x,t;x’) which
satisfies

Gt = − ((1− x2)Gx)x (8.35)

G(x, t′;x′) = δ(x− x′) (8.36)

where x′ is a parameter (the location where G(x, t′) is a delta-function),
and t′ is the time when a terminal condition is applied in lieu of an initial
condition. We construct the solution to the inhomogeneous forward problem
by examining the following integral which we know to be zero due to Eqns.
(8.6) and (8.35):

t′∫

0

1∫

−1

{
G

(
ct −

((
1− x2

)
cx

)
x
− s

)
+ c

(
Gt +

((
1− x2

)
Gx

)
x

)}
dxdt (8.37)

Integration by parts, and use of the initial and terminal conditions on c and
G (Eqns. (8.7) and (8.36)) yields the following simplifications:

t′∫

0

1∫

−1

{Gct + cGt} dxdt
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=

t′∫

0

1∫

−1

(Gc)t dxdt

=

1∫

−1

(c(x, t′)G(x, t′; x′)− c(x, 0)G(x, 0;x′)) dx

= c(x′, t′) (8.38)

t′∫

0

1∫

−1

(
−G

((
1− x2

)
cx

)
x
+ c

((
1− x2

)
Gx

)
x

)
dxdt

=

t′∫

0

1∫

−1

((
−G

(
1− x2

)
cx

)
x
+

(
c

(
1− x2

)
Gx

)
x

)
dxdt

+

t′∫

0

1∫

−1

((
Gx

(
1− x2

)
cx

)
−

(
cx

(
1− x2

)
Gx

))
dxdt

= 0 (8.39)

Use of the above simplifications in Eqn. (8.37), gives the Green’s function
form of the solution to the inhomogeneous forward problem:

c(x′, t′) =

t′∫

0

1∫

−1

G(x, t; x′)s(x, t)dxdt (8.40)

Eqn. (8.40) represents the linear integral operator which determines the
tracer concentration at (x′, t′) from the source emissions s(x, t) at times 0 <
t < t′.

The solution to the homogeneous forward problem given by Eqn. (8.34)
can be used to express G(x, t; x′) in terms of the Legendre polynomials. First,
however, we must recognize that the transformation τ = t′ − t is necessary
to render Eqns. (8.35) and (8.36) into a form suitable for application of Eqn.
(8.34). After making this transformation, we have

G(x, τ ; x′) =
∞∑

l=0

Gl(x
′)e−l(l+1)(t′−t)Pl(x) (8.41)

173



where the Gl are determined from the initial condition (at τ = 0) as in Eqn.
(8.31):

Gl(x
′) =

2l + 1

2

1∫

−1

G(x, τ = 0; x′)Pl(x)dx (8.42)

Using Eqn. (8.27) to express G(x, τ = 0; x′), and recognizing the orthago-
nality condition Eqn. (8.26), we obtain

Gl(x
′) =

2l + 1

2
Pl(x

′) (8.43)

which ultimately yields

G(x, τ ; x′) =
∞∑

l=0

2l + 1

2
e−l(l+1)(t′−t)Pl(x)Pl(x

′) (8.44)

Eqns. (8.44) and (8.40) provide a complete formal description of the solution
to the inhomogeneous atmospheric tracer diffusion problem.

8.4.6 Spectral Form of the Solution

The form of the Green’s function indicated by Eqn. (8.44) and the complete-
ness of the Legendre polynomials suggests that the complexities of spatial (x)
dependence in the problem can be eliminated by considering only the time
dependent coefficients for the Legendre-polynomial series representations of
c and s. Using series representations for c and s in Eqn. (8.40) and the
identity for G given in Eqn. (8.44), we obtain

cl(t) =

t∫

0

sl(t
′)gl(t, t

′)dt′ (8.45)

where
gl(t, t

′) = e−l(l+1)(t′−t) (8.46)

We shall work with this spectral representation of the solution to the inho-
mogeneous forward problem in our development of the continuous form of
the solution to the inverse problem.
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8.5 Inverse Problem Restated

Suppose that we have observations so
l (t) and co

l (t) over the time period t ∈
[0, T ] and for all l. Suppose further that we know the covarience of the
observation errors in advance, i.e.,

so
l (t) = sl(t) + ξl(t) (8.47)

co
l (t) = cl(t) + ζl(t) (8.48)

where,

〈ξl(t)ξl(t
′)〉 = Qlδ(t− t′) (8.49)

〈ζl(t)ζl(t
′)〉 = Rlδ(t− t′) (8.50)

〈ξl(t)ζl(t
′)〉 = 0 (8.51)

The inverse problem is to determine estimates ŝl(t) and ĉl(t) which satisfy
Eqn(8.45) and which are, in some sense, more accurate than the observations
so

l and co
l .

One way to achieve these estimate is to apply the Kalman filter [Bryson
and Ho, 1975] to the observations. The Kalman filter yields a linear function
of so

l and co
l which minimizes the following measure of accuracy denoted by

J :

J =

T∫

0

〈(ŝl(t)− sl(t))
2〉dt (8.52)

8.6 Continuous Version of the Kalman Filter

We derive the Kalman filter by assuming that ŝl(t) is equal to so
l (t) plus a

correction that depends on the misfit between co
l (t) and

t∫
0

so
l (t

′)gl(t, t
′)dt′,

ŝ(t) = so(t) +

T∫

o

K(t, t′)





co(t′)−
t′∫

0

so(t′′)g(t′, t′′)dt′′





dt′ (8.53)
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Observe that subscripts l are dropped to simplify the notation. It should be
understood that the above definition holds for each sl, l = 1, . . . ,∞. The
kernel K(t, t′) is an undetermined function of t and t′ referred to as the gain
function. It will be determined below by applying the calculus of variations
to minimize J defined in Eqn. (8.52). Before proceeding to determine K(t, t′),
we note the following simplification:

ŝ− s = ŝ− so + so − s (8.54)

Using Eqns. (8.53) and (8.47), we obtain

ŝ(t)− s(t) =

T∫

0

K(t, t′)





co(t′)−
t′∫

0

g(t′, t′′)so(t′′)





dt′ + ξ(t) (8.55)

We further make use of Eqn. (8.48), and assume that the true, exact functions
s and c satisfy Eqn. (8.45):

co(t) = c(t) + ζ(t) =

t∫

0

g(t, t′)s(t′)dt′ + ζ(t) (8.56)

Substitution of Eqn. (8.56) into Eqn. (8.55), and making further use of Eqn.
(8.47), we obtain

ŝ(t)− s(t) =

T∫

0

K(t, t′)





ζ(t′)−
t′∫

0

g(t′, t′′)ξ(t′′)dt′′





dt′ + ξ(t) (8.57)

Substitution of the above result into the definition of J given by Eqn. (8.52),
and taking care to keep dummy variables of integration t′, τ and τ ′ distinct,
gives J in the following form

J =

T∫

0

〈




T∫

0

K(t, t′)





ζ(t′)−
t′∫

0

g(t′, t′′)ξ(t′′)dt′′





dt′ + ξ(t)




·




T∫

0

K(t, τ )



ζ(τ )−

τ∫

0

g(τ, τ ′)ξ(τ ′)dτ ′



 dτ + ξ(t)


〉dt (8.58)
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The expectation operator 〈·〉 commutes with the linear integral operators
in Eqn. (8.58), thus the above expression (in Eqn. (8.58)) reduces to the
sum of four terms

J =

T∫

0

dt

T∫

0

dt′
T∫

0

dτK(t, t′)K(t, τ )〈ζ(t′)ζ(τ )〉

+

T∫

0

dt

T∫

0

dt′
T∫

0

dτ

t′∫

0

dt′′
τ∫

0

dτ ′K(t, t′)K(t, τ )g(t′, t′′)g(τ, τ ′)E(ξ(t′′)ξ(τ ′))

−2

T∫

0

dt

T∫

0

dt′
t′∫

0

dt′′K(t, t′)g(t′, t′′)〈ξ(t′′)ξ(t)〉

+

T∫

0

dt〈ξ(t)ξ(t)〉

(8.59)

Use of the definitions (8.49)-(8.51) and careful integration over the range
of variables which appear as arguments to the δ-functions simplifies the above
expression for J

J =

T∫

0

dt

T∫

0

dt′K(t, t′)K(t, t′)R

+

T∫

0

dt

T∫

0

dt′
T∫

0

dτK(t, t′)K(t, τ)K(t′, τ )Q

−2

T∫

0

dt′
t′∫

0

dt′′K(t′′, t′)g(t′, t′′)Q

+

T∫

0

dtQ (8.60)
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where

K(t′, τ ) =

t′∫

0

dt′′g(t′, t′′)g(τ, t′′) (8.61)

The expression in Eqn. (8.60) may be simplified further by introducing an
integration over τ in the first term on the right hand side (necessitating the
multiplication of the integrand by δ(t′− τ )) and by boosting the upper limit
of integration over dt′′ in the third term to T (necessitating the multiplication
of the integrand by the Heaviside function H(t′′ − t′) which is zero when t′′

is greater than t′ and 1 otherwise). The result is

J =

T∫

0

dt

T∫

0

dt′
T∫

0

dτK(t, t′)K(t, τ ) {Rδ(t′ − τ ) + QK(t′, τ )}

−2

T∫

0

dt′
T∫

0

dt′′K(t′′, t′)g(t′, t′′)H(t′′ − t′)Q +

T∫

0

dtQ (8.62)

We are now ready to employ the calculus of variations to define the Euler-
Legrange condition needed to define K(t, t′). Taking the variation of J with
respect to K(t, t′) (and recognizing that the variable of integration t′′ in the
second term in the above equation is a dummy variable and may be replaced
with t), we obtain

δJ = 2

T∫

0

dt

T∫

0

dt′
T∫

0

dτδK(t, t′)K(t, τ ) {Rδ(t′ − τ ) + QK(t′, τ )}

−2

T∫

0

dt′
T∫

0

dtδK(t, t′)g(t′, t)H(t− t′)Q

(8.63)

For δJ = 0 for arbitrary δK(t, t′), the integrand of the integrals over t and t′

in the above expression must be zero. This is the Euler-Lagrange condition
we need to determine K:

T∫

0

dτK(t, τ) {Rδ(t′ − τ) + QK(t′, τ)} − g(t′, t)H(t− t′)Q = 0 (8.64)
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The above expression is an integral equation of the second kind (owing to
the δ-function in the integrand on the left-hand side).

The inverse problem is now solved, at least formally. Equation (8.64) is
solved to produce the gain kernel K(t, t′) which, in turn, is used in Eqn. (8.53)
with the data (so(t) and co(t)) to define the estimate ŝ(t). This estimate is
then stuffed into the Green’s function representation of the solution to the
forward problem (Eqn. (8.45)) to yield the estimate ĉ(t).

8.7 Discrete Version of the Kalman Filter

In the previous section we defined the Kalman filter as the linear integral
operator given in Eqn. (8.53) where the kernel K is chosen to minimize the
expectation value of the error denoted by J in Eqn. (8.52). In this section,
we derive a finite-difference version of the inverse problem which may be of
use in circumstances where continuous function analysis is impractical.

8.7.1 Finite-Difference version of the Forward Prob-
lem

As stated previously, the tracer diffusion problem representing the forward
problem is

ct =
((

1− x2
)

cx

)
x

+ s (8.65)

c(x, t = 0) = 0 (8.66)

As suggested by the analysis of the continuous version of the problem, it is
appropriate to express both c and s in terms of the Legendre polynomials

c =
∞∑

l=0

cl(t)Pl(x) (8.67)

s =
∞∑

l=0

sl(t)Pl(x) (8.68)
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Noting the fact that
((

1− x2
) dPl

dx

)

x

= −l(l + 1)Pl(x) (8.69)

the forward problem represented by Eqns. (8.65) and (8.66) reduces to a
system of ordinary differential equations for the cl(t)’s:

ċl = −l(l + 1)cl + sl (8.70)

cl(t = 0) = 0 (8.71)

which hold for l = 1, . . . ,∞.

A finite difference version of Eqns. (8.70) and (8.71) is

cn+1
l − cn

l

∆t
+ l(l + 1)cn+1

l = sn+1
l (8.72)

cn=1
l = 0 (8.73)

In the above equations, superscripts denotes the discrete time level. Using
vector notation,

cl =




c1
l

c2
l
...
cn
l
...

cN
l




(8.74)

sl =




s1
l

s2
l
...
sn

l
...

sN
l




(8.75)

where (N − 1)∆t = T and ∆t is the time-step size.

The solution to the forward problem expressed in Eqns. (8.70) and (8.71)
may be expressed as

cl = Glsl (8.76)
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where
Gl = A−1

l B (8.77)

and

Al =




1 0 0 . . . 0 0 0 . . . 0
. . .

0 −1
∆t

(
1

∆t + l(l + 1)
)

. . .




(8.78)

B =




0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

. . .




(8.79)

8.7.2 Inverse Problem in Discrete Form

The discrete, finite difference version of the inverse problem we wish to con-
sider is to determine estimates of sl and cl, denoted by ŝl and ĉl, which
are linear functions of observations so

l and co
l , which satisfy Eqns. (8.76)

and (8.77), and which minimize the expectation value of the trace J of the
covarience matrix El defined by

El = 〈(ŝl − sl)(ŝl − sl)
′〉 (8.80)

In other words, we wish to select a linear combination of ŝl and ĉl such that

J =
N∑

i=1

(El)ii (8.81)

is minimized.

As in the continuous version of the inverse problem, we know in advance
the covarience matricies representing observation error:

so
l = sl + ξ

l
(8.82)

co
l = cl + ζ

l
(8.83)
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with covarience

〈ξ
l
ξ′

l
〉 = Ql (8.84)

〈ζ
l
ζ ′

l
〉 = Rl (8.85)

〈ξ
l
ζ ′

l
〉 = 0 (8.86)

where the matricies Ql and Rl are diagonal (zeros on off-diagonal elements)
but may have different values for each of the diagonal elements depending
on the nature of the observational noise.

8.7.3 Matrix Form of the Kalman Filter

We assume at the outset that ŝ is a linear function of so and the misfit
between co and Gso (henceforth, we shall drop subscripts l for notational
simplicity),

ŝ = so + K(co −Gso) (8.87)

where the matrix K is the gain matrix to be determined by minimization of
J .

We proceed as in the continuous case by first noting the identity

ŝ− s = ŝ− so + so − s

= K (co −Gso) + ξ

= K
(
c + ζ −Gso

)
+ ξ

= K
(
ζ −G (so − s)

)
+ ξ

= K
(
ζ −Gξ

)
+ ξ

= (I−KG) ξ + Kζ (8.88)

The index we wish to minimize thus becomes (recalling that the expectation
operator commutes with the matrix operations)

J = tr
(
(I−KG) 〈ξξ′〉 (I−G′K′) + K〈ζζ ′〉K′

)

= tr ((I−KG)Q (I−G′K′) + KRK′) (8.89)
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In component notation,

J = (δij −KikGka)Qab(δbi −GlbKil) + KikRklKil (8.90)

Taking the derivative of J with respect to the αβ’th component of K,
and setting to zero gives

1

2

∂J

∂Kαβ
= −GβaQab(δbα −GlbKαl) + RβlKαl = 0 (8.91)

Recognizing the fact that the zero on the right-hand side of the above equa-
tion defines the αβ’th element of a matrix, we derive the following matrix
representation of Eqn. (8.91)

−GQ(I−G′K′) + RK′ = 0 (8.92)

This matrix equation can be readily solved to find K:

K′ = [GQG′ + R]
−1

GQ (8.93)

To solve the inverse problem, i.e., to determine ŝ and ĉ, the gain matrix
specified above is substituted into Eqn. (8.87) to determine ŝ which, in turn,
is substituted into Eqn. (8.76) to determine ĉ. The linear operator defined
by Eqn. (8.87) is referred to as the Kalman filter, and is named after the
famous applied mathmatician R. E. Kalman.

8.7.4 Estimate Covarience

An explicit expression for the the covarience matrix E defined by Eqn. (8.80)
is readily obtained from the Kalman filter derived above. First we note that

E = (I−KG)Q(I−G′K′) + KRK′

= K(GQG′ + R)K′ −KGQ + Q(I−G′K′) (8.94)

Using Eqn. (8.93), we observe that

(GQG′ + R)K′ = GQ (8.95)
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Substitution of the above identity into Eqn. (8.94) gives

E = Q(I−G′K′) (8.96)

Future analysis (that I intend to perform) will show that the covarience E
is reduced in magnitude by the use of the Kalman filter. In other words,
treatment of the data by the Kalman filter yields a better estimate of the
tracer source function than the original observation.
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θ

Figure 8.1: Geometry of atmospheric tracer problem.
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Chapter 9

Backus-Gilbert Method: Free
Oscillations of Lake Michigan

9.1 Introduction

In this chapter, we will use the frequency spectrum of the free oscillations of
a shallow, narrow lake (Lake Michigan) to determine its longitudinal depth
profile. The formulation of this problem and it’s solution is intended to intro-
duce the techniques used to infer the internal density structure of the earth
from seismic data, and the famous inverse method developed by G. Backus
and F. Gilbert [1967, 1968] for solving this internal density structure problem.
The Backus-Gilbert method can be differentiated from the minimum-norm
technique discussed previously in that its objective is to optimize the res-
olution of undetermined model parameters. As with the Kalman smoother
described in Chapter (8), fitting data takes a back seat to optimization of a
fundamental skill property of the inverse method (e.g., the model-covarience
matrix or the model-resolution matrix).

At the conclusion of this chapter, we shall investigate the formal differ-
ences between the Backus-Gilbert method and the minimum-norm method
described in Chapter (2). We shall prove that the minimum-norm inverse is
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identical to the Backus-Gilbert inverse in circumstances where the number of
non-zero singular values resulting from the SVD K is equal to the dimension
of the undetermined model space N . In circumstances where K < N , the
Backus-Gilbert inverse is not a minimum-norm inverse. This does not mean
that the Backus-Gilbert inverse is less appropriate than the minimum-norm
inverse. It does, however, suggest that a somewhat arbitrary penalty associ-
ated with model simplicity is being paid when the Backus-Gilbert inverse is
chosen over the minimum-norm inverse.

9.2 Free-Oscillations of a Long, Narrow Lake

In the mid 1960’s, two exceptionally gifted seismologists named George Backus
and Freeman Gilbert derived a technique for determining the density struc-
ture and elastic properties of the earth from observations of the earth’s vi-
brational frequencies. To be specific, they used the first ten or so vibration
frequencies (corresponding to the most grave spatial structure of the vibrat-
ing planet) to determine the planet’s density, bulk modulus, shear modulus,
and the local quality factor (a variable which determines the attenuation due
to non-elastic properties), all as a function of radial position. The astounding
aspect of their work, aside from the creative use of data, was the inventive
nature of the inverse method used to solve the inverse problem. This inverse
method has become widely used in the geophysical community, and is known
as the “Backus-Gilbert” method.

Our goal will be to understand the Backus-Gilbert method in the same
context as it was originally invented. To reach this goal, however, we will
abandon the original problem posed by Backus and Gilbert (1967 and 1968),
and formulate a similar, but much simpler problem involving a long and nar-
row lake (such as Lake Michigan). The physics of planetary free oscillations
is too demanding for our purposes; thus we replace the elastic planet with a
lake and consider a much simpler system which possesses the same intrinsic
property: the tendency to oscillate at discrete frequencies.

To this end, we now consider the infinatessimally small free-oscillations
of the surface of a long, narrow, and shallow lake such as Lake Michigan. We
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emphasize that the lake must be long, narrow, and shallow so that a one-
dimensional analysis which neglects the rotation of the earth can be used to
describe the mass continuity and momentum balance of the water in the lake.
(For an in-depth analysis of lacustrian wave dynamics, refer to Hutter [1993].)
In actuality, Lake Michigan probably does not satisfy these conditions, but
we shall proceed under the assumption that earth rotation may be neglected.
The momentum and mass continuity equations for this body of water can be
simplified to the following form (again, a strict development of the conditions
which must be met for such simplification to be valid is provided elsewhere
[Hutter, 1993]):

∂v

∂t
= −g

∂η

∂x
(9.1)

∂η

∂t
= − ∂

∂x
(hv) (9.2)

where v(x, t) is the z-independent horizontal velocity (directed longitudinally
along the lake), η(x, t) is the perturbation of the free surface of the lake about
its position of rest, h(x) is the depth, g = 9.81 m/sec2 is the gravitational
acceleration, x is the longitudinal spatial coordinate, and t is time. Equations
(9.1) and (9.2) apply whenever the depth of the lake is small compared to
the horizontal scale of the motions being considered, when the lake water is
homogeneous, and when the perturbations to the free surface (or velocities)
are sufficiently small that non-linear effects need not be considered. The
boundary condition to be applied at x = 0 and x = L, where 0 and L are
the x-coordinates of the lake’s ends, is the no-flux condition

v = 0 (9.3)

Using Eqn. (9.1), the no-flux boundary condition implies that

∂η

∂x
= 0 at x = 0, L (9.4)

As shown in Fig. (1), the lake is taken to be a long, canal-like body of
depth h(x). These two equations can be combined into a single, second order
partial differential equation, known as a wave equation, by taking the time
derivative of Eqn. (9.2) and using (9.1):

∂2η

∂t2
= g

∂

∂x

(
h

∂η

∂x

)
(9.5)
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Equation (9.5) is termed “separable” because h(x) is a function of x-only.
In this circumstance, η can be written as a products of two functions, X(x)
and T (t), which are functions of a single variables only, x or t, respectively:

η(x, t) = X(x)T (t) (9.6)

By writing η this way, we can reduce the partial differential equation (9.5)
to two separate ordinary differential equations involving functions of a single
variable only:

d2T

dt2
= −ω2T (9.7)

g
d

dx

(
h

dX

dx

)
+ ω2X = 0 (9.8)

Equation (9.7) can be easily solved in terms of T (t):

T (t) = A cos(ωt) + B sin(ωt) (9.9)

The constants A and B are normally determined by an initial condition.
In the study of free oscillations, we need not concern ourselves with initial
conditions; thus we leave A and B undetermined.

The frequency ω is yet to be determined. All of the information available
in the time-dependent equation (9.7) is now exhausted. We thus look to Eqn.
(9.8) to provide an evaluation of ω. The theory of differential equations tells
us that there exists a class of functions {Xn(x)}∞n=1 which are eigenfunc-

tions of the operator
[
g ∂

∂x

(
h(x) ∂

∂x

)
+ ω2

]
and which satisfy the boundary

conditions:
dX

dx
= 0 at x = 0, L (9.10)

Associated with each eigenfunction Xn is an eigenfrequencies ωn which can
be grouped together in ascending order, {ωn}, n = 1, ...,∞ with ωn ≤ ωn +1.
In this circumstance, the function T (t) associated with a particular Xn(x) is
also associated with a corresponding ωn. Thus the functions Tn(t) are also
given the subscript n.

189



Orthagonality of Eigenfunctions

An important property of the Xn(x) is their orthogonality:

L∫

0

XnXm dx = 0 if n 6= m (9.11)

L∫

0

XnXm dx = 1m3 if n = m (9.12)

Here we remark that the eigenfunctions have dimensions of length. This
will make the analysis to come somewhat awkward. Use of non-dimensional
variables would eliminate this awkward character.

Proof. We consider the integral of the product of Xm with Eqn. (9.8)
evaluated with Xn:

L∫

0

Xm ·
{
ω2

nXn + g
d

dx

(
h

dXn

dx

) }
dx = 0 (9.13)

After itegration by parts, we obtain:

ω2
n

L∫

0

Xm ·Xn dx+ g
{ L∫

0

d

dx

(
Xm · h ·

dXn

dx

)
dx−

L∫

0

dXm

dx
·h · dXn

dx
dx

}
= 0

(9.14)
The first part of the second term (contained in brackets) is zero, because
of the boundary conditions stated by Eqn. (9.10). The remaining part of
the second term (contained in brackets) can be integrated by parts again, to
give:

ω2
n

L∫

0

Xm·Xn dx−g
{ L∫

0

d

dx

(
Xn · h ·

dXm

dx

)
dx−

L∫

0

Xn·
d

dx

(
h · dXm

dx

)
dx

}
= 0

(9.15)
Boundary conditions can again be used to assure that the first part of the
second term (contained in brackets) is zero. Finally, Eqn. (9.8) can again be
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used to rewrite the derivatives of Xm in terms of ω2
m:

(ω2
n − ω2

m)

L∫

0

Xm ·Xn dx = 0 (9.16)

By assumption, ω2
n 6= ω2

m when n 6= m. Thus, for the expression on the
left-hand side of Eqn. (9.16) to be zero when n 6= m, the integral must be
zero. This proves that Xn and Xm are orthogonal. ¥

9.3 Eigenfunctions and Eigenfrequencies of a

Flat-Bottomed Lake

If the lake depth is constant, h(x) = ho, the {ωn}∞n=1 and {Xn}∞n=1 can be
determined without difficulty. In this case, Eqn. (9.8) reduces to

gho
d2Xn

dx2
+ ω̄2X = 0 (9.17)

where the overbar denotes the eigenfunctions and eigenfrequencies associated
with a flat-bottomed lake. The solution of this equation, subject to the
boundary conditions (9.3), is

X̄n(x) =

√
2

L
cos

(
nπx

L

)
(9.18)

The frequencies associated with these eigenmodes, ω̄n, are

ω̄n = nπ

√
gh0

L
(9.19)

The fraction appearing on the right-hand side of Eqn. (9.19) deserves com-
ment. The numerator

√
gho represents the magnitude of the phase (and

group) velocity of shallow-water gravity waves on a shallow lake. The fre-
quencies thus can be interpreted in terms of the time taken for a shallow-water
gravity wave to cross the length of the lake. This interpretation is relevant
because the free-oscillations of the Lake can be thought of as the constructive
interference between travelling waves which reflect off the two closed ends of
the lake.
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Completeness

It is important to record for future reference that the eigenfunctions associ-
ated with a flat-bottomed lake are not complete in the sense that an arbitrary
function of x, say h(x), cannot necessarily be expressed as a linear combi-
nation of the X̄n’s. The X̄n’s are all cosine functions. Sine functions must
be added to the set {X̄n}∞n=1 to yield a complete set of functions that, for
example, could represent h(x) as a linear combination.

9.3.1 A Discretized Analysis of the Flat-Bottomed Lake

It is worth mentioning briefly a numerical technique for determining the
frequencies and eigenfunctions. Such a technique would be needed if h(x)
were not a simple function of x. For the case of a flat bottomed lake, the
finite-difference version of Eqn. (9.17) and the boundary condition (9.3) can
be written:

gho

∆x2

(
X̄i+1 − 2X̄i + X̄i−1

)
+ ω̄2X̄i = 0 for i = 2, ..., l − 1 (9.20)

X̄2 − X̄1 = 0 (9.21)

X̄l − X̄l−1 = 0 (9.22)

where the subscripts denote the gridpoint at which X is evaluated, and l is
the number of gridpoints. The index i runs from 1 to l; thus the value of
∆x is L/(l − 1). Equations (9.20)-(9.22) can be represented using matrix
notation as follows: (

A + ω̄2I
)
X̄ = 0 (9.23)

where the matrix A is a l× l square matrix with elements given by:

Aii =
−2gho

∆x2
if i = 2, ..., l− 1 (9.24)

Aii−1 =
gho

∆x2
for i = 2, ..., l − 1 (9.25)
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Aii+1 =
gho

∆x2
for i = 2, ..., l − 1 (9.26)

A11 = 1 (9.27)

A12 = −1 (9.28)

All = 1 (9.29)

Al−1 l = −1 (9.30)

Aij = 0 otherwise (9.31)

and I is the l × l identity matrix, X̄ is the column vector containing the
values of X̄ at the l gridpoints, and ω̄2 is a scalar.

Equation (9.23) can be recognized as the problem which must be solved
for −ω̄2 to find the eigenvalues and eigenvectors of the matrix A. (Notice
that the eigenvalues λn of A are identified with −ω̄2

n.) As demonstrated
below, it is easy to determine the eigenfrequencies and eigenvectors of A
using the Matlabr routines set up for this purpose. One problem that
routinely crops up with a finite-difference approach is that the accuracy of the
eigenfrequencies ωn degrades as n → l, where l is the mumber of eigenvalues
of A. This is a well-known flaw of centered finite-difference methods applied
to wave-propagation and free-oscillation problems.

Example: Free-Oscillations of a Flat-Bottomed Lake Michigan

We use the above finite-difference formulation to estimate the ω̄n for Lake
Michigan. We take ho = 150m, L = 650 km, g = 9.81 m s−1, and l = 50.
The following Matlabr routine is used to generate the eigenvalues and
eigenfunctions of the matrix A above:

g=9.81;

h naut=150;

L=650e3;

omega bar = [pi*[1:50]*sqrt(g*h naut)/L]’;

T bar= (2*pi)*ones(size(omega bar))./omega bar;

%The above determines the unperturbed frequencies

Ngrid=50;
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dx=L/(Ngrid-1);

A=zeros(Ngrid,Ngrid);

A=A+2*g*h naut/dx2̂ *eye(size(A));

A=A-diag(ones(Ngrid-1,1)*(g*h naut/dx^ 2),-1);

A=A-diag(ones(Ngrid-1,1)*(g*h naut/dx^ 2),1);

A(1,2)=-1/dx;

A(Ngrid,Ngrid-1)=-1/dx;

A(1,1)=1/dx;

A(Ngrid,Ngrid)=1/dx;

omega=sqrt(eig(A));

%Discard zero-frequency mode (steady solution):

omega=sort(omega);

omega=omega(2:Ngrid);

plot(omega); hold on; plot(omega bar)

title(’Analytic vs. Finite-Difference Frequencies’)

xlabel(’Mode Number’)

ylabel(’1/sec’)

pause

[V,D]=eig(A);

hold off

clg

[s,I]=sort(diag(D));

plot(V(:,I(2)))

hold on

plot(V(:,I(3)))

title(’First Two Eigenmodes of Lake Michigan’)

xlabel(’Normalized distance along lake (L=50 units)’)

ylabel(’Free-surface elevation (m)’)

Figures (9.1) and (9.2) display the results of the above Matlabr al-
gorithm. Figure (9.1) suggests that the finite-difference method for deter-
mining the frequencies of free oscillation will be accurate only for the lowest
frequency modes. Figure (9.2) demonstrates the finite-difference representa-
tion of the cosine solutions given by Eqn. (9.18) for two of the most grave
modes (n = 1, 2).
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Figure 9.1: The frequencies of free-oscillation ω̄n plotted against n for a flat-
bottomed Lake Michigan of depth 150 m and length 650 km. The straight
line represents the exact analytic result given by Eqn. (9.19). The curved
line represents the result that comes from the finite-difference algorithm.
(Note that the finite-difference approach creates 50 eigenvalues. The first
is zero and is associated with the X =constant solution. The above graph
reflects the fact that the zero-frequency eigenvalue and eigenfunction were
discarded.) The finite-difference calculated ω̄n fall below the analytic values
as n becomes large. Note that the slope of the finite-difference line goes to
zero for large n. This defect is associated with the fact that grid-point-to-
grid-point oscillations will contaminate the finite difference calculation when
forced with freely propagating waves.
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Figure 9.2: The two most grave eigenfunctions (n = 1, 2) of free-oscillation
X̄n plotted against distance (where L = 50 plotting units) for a flat-bottomed
Lake Michigan of depth 150 m and length 650 km. Both functions exhibit
zero slope at x = 0, L as required by the no-flux boundary conditions.
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9.4 An Inverse Problem

Given the M lowest frequencies of free oscillation, ωn, n = 1, . . . , M , observed
using the time-series analysis of a tide guage record, determine the h(x) =
ho + ζ(x) depth profile of the lake. In other words, determine ζ(x) from the
partial frequency spectrum {ωn}M

n=1. ¥

As mentioned before, this inverse problem is similar to that embraced
by Backus and Gilbert [1968]. Their interest was in the reconstruction of
the internal structure of the earth. The data they used to make this recon-
struction was a subset of the frequency spectrum of the earth’s free oscilla-
tions. We have chosen to focus on the free oscillations of a long narrow lake
(Lake Michigan) to avoid the complexity of the physics associated with elas-
tic deformation of the earth. The added complexity of the original problem
solved by Backus and Gilbert adds nothing to the mathematical nature of
the Backus-Gilbert inverse which we will develop below.

9.5 Linearization of the Inverse Problem

What makes the above inverse problem so difficult is that the observed eigen-
frequencies, ωn, are related by Eqn. (9.8) to two unknown functions of x: the
depth perturbation ζ(x) which is what we want to determine, and the set of
M eigenfunctions {Xn}M

n=1. The relationship between the observed ωn and
ζ(x) can be simplified when ζ(x) is small, i.e., when ζ(x)/ho << 1. In this
circumstance, the unknown Xn’s in Eqn. (9.8) may be linearized about the
known X̄n’s associated with a flat-bottomed lake of depth ho. As we shall
see below, performing this linearization yields a linear relationship between
ζ and the observed ωn which only involves the functions X̄n.

We begin with Eqn. (9.8), which we write again

(hX ′
n)
′
+

ω2
n

g
Xn = 0 (9.32)

The variation of the above equation may be expressed in terms of the varia-
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tions δh = ζ(x), δXn, δωn and their derivatives:

(δhX ′
n)
′
+ (hδX ′

n) +
ω2

n

g
δXn + 2δωn

ωn

g
Xn = 0 (9.33)

Multiplying by Xm and integrating over [0, L] we obtain

L∫

0

Xm (δhX ′
n)
′
dx +

L∫

0

Xm (hδX ′
n)
′
dx

+

L∫

0

ω2
n

g
XmδXndx + 2δωn

ωn

g

L∫

0

XmXndx = 0 (9.34)

The first term on the left-hand side of Eqn. (9.34) may be integrated by
parts,

L∫

0

Xm (δhX ′
n)
′
dx =

L∫

0

(XmδhX ′
n)
′
dx −

L∫

0

δhX ′
mX ′

ndx

= 0−
L∫

0

δhX ′
mX ′

ndx (9.35)

Where we have made use of the assumption that variations in X ′
n are zero at

the boundaries x = 0, L due to the the boundary conditions X̄ ′
n = X̄ ′

m = 0
at x = 0, L. Integration by parts twice on the second term of the left-hand
side of Eqn. (9.34), and use of the boundary conditions again gives

L∫

0

Xm (hδX ′
n)
′
dx =

L∫

0

(hX ′
m)

′
δXndx (9.36)

Substitution of Eqns. (9.35) and (9.36) into Eqn. (9.34), and rearrangement
of terms, gives

−
L∫

0

δhX ′
mX ′

ndx +

L∫

0

[
(hX ′

m) +
ω2

n

g
Xm

]
δXndx

+2δωn
ωn

g

L∫

0

XmXndx = 0 (9.37)
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Taking m = n, and making use of the relation (hX ′
n)′ + ω2

n

g
Xn = 0, gives a

relation between δh and δωn:

g

2ωn

L∫

0

δhX ′
nX

′
ndx

L∫

0

XnXndx

= δωn (9.38)

We can use the above equation to determine the relationship between small
deviations from a flat-bottomed bathymetry and the deviations in frequency
from those expressed in Eqn. (9.19) by setting δh = ζ(x), δωn = ∆ωn =
ωn−ω̄n, where ωn is the observed frequency and ω̄n is the computed frequency
for a flat-bottomed lake of depth ho, and by replacing Xn with X̄n. This gives
the relation,

g

2ω̄n

L∫

0

ζ(x)X̄ ′
nX̄ ′

ndx

L∫

0

X̄nX̄ndx

= ∆ωn (9.39)

which holds for each of the M observations of ∆ωn. Note that the orthonor-

mality of the Xn’s,
L∫
0

X̄nX̄ndx = 1 m2 (dimensional form) can allow the above

expression to be simplified. We retain the integral in the denominator on the
left-hand side of the above expression as a reminder of the dimensions that
are associated with the X̄n’s.

We have achieved a powerful result in deriving Eqn. (9.39). The unknown
perturbation ζ(x) is linearly related to the observations ∆ωn, n = 1, . . . , M .
We will exploit this linear relationship to derive the Backus-Gilbert inverse.
Before doing so, however, it is important to restate Eqn. (9.39) in such a
way as to demonstrate explicitly the underdetermined nature of the inverse
problem.
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9.6 A Fourier-Series Approach

Before developing a means to invert Eqn. (9.39) for the unknown ζ , we
can gain considerable insight by recognizing that the integral operator in
Eqn. (9.39) is reminicent of the projection operator which determines the
coefficients of the Fourier-series representation of ζ(x). We begin with an
analysis of the kernel X̄ ′

nX̄ ′
n.

The equation for the X̄n’s (Eqn. 9.17) may be written

X ′′ + ρ2X = 0 (9.40)

where ρ2 = ω2

gho
. The solutions, as stated before, are

X̄n(x) =

√
2

L
sin(

nπx

L
) (9.41)

Our interest is in the product X̄ ′
nX̄ ′

n which appears in Eqn. (9.39). Defining,

U = X ′X ′ (9.42)

we can show that

U ′ = −2ρ2X ′X

U ′′ = −2ρ2U + 2ρ4X2

Taking a third derivative of U , and making use of the expression for U ′ given
above, we arrive at a differential equation for U :

(
U ′′ + 4ρ2U

)′
= 0 (9.43)

The general solution of the above equation is of the form

U = A [1 + B cos 2ρx + C sin 2ρx] (9.44)

Boundary conditions, X ′ = 0 at x = 0, L, imply

U(0) = 0

U(L) = 0

U ′(0) = 0
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These boundary conditions allow us to determine B = −1, C = 0, and
ρ = nπ

L . We thus find a set of eigenfunctions Un:

Un(x) = A
[
1− cos

2nπx

L

]
(9.45)

The constant A = n2π2

L3 is chosen to equate U with X̄ ′
nX̄ ′

n. (Note that the
dimensional units of X̄n are assumed to be m−1/2 for the constant A to make
dimensional sense. This awkward aspect of the analysis could have been
avoided by converting to dimensionless variables at the outset.)

The linear relation between ζ and ∆ωn in Eqn. (9.39) may now be re-
stated in terms of the {Un}M

n=1:

n2π2g

2L3ω̄n

L∫

0

ζUndx

L∫

0

X̄nX̄ndx

= ∆ωn (9.46)

We can identify the above integral operator with the operator necessary
to determine the n’th coefficient of the expansion of ζ as a series of terms
involving the Un. What is important to realize at this stage is the fact
that the set {Un}M

n=1 do not form a complete set of functions which span
the interval [0, L]. This is due to the restriction imposed on the Un by the
boundary conditions. To be more explicit, substitution of Eqn. (9.45) into
Eqn. (9.46) gives

n2π2g

2L3ω̄n

L∫

0

ζ
(
1− cos

2nπx

L

)
dx

L∫

0

X̄nX̄ndx

= ∆ωn (9.47)

Making use of the Fourier-series expansion,

ζ(x) = ζo +
∞∑

i=0

αi cos
nπx

L
+

∞∑

i=0

βi sin
nπx

L
(9.48)
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and making use of the orthonormality (in dimensional form) of the X̄n’s, the
above equation becomes

gn2π2

2ω̄nL2

(
ζo −

α2n

2

)
= ∆ωn (9.49)

for n = 1, . . . , M . (The awkward nature of not having used dimensionless
variables is aleviated in the above expression. A quick check shows that the
dimensions of the above expression are balanced across the equals sign.)

Equation (9.49) provides important guidance to the solution of the inverse
problem. First, it shows us that the relation between the unknown ζ and
the data ∆ωn is linear. Second, it shows us that the observations ∆ωn, n =
1, . . . , M , constrain only M + 1 unknown scalar parameters in the Fourier-
series expansion of ζ(x). This tells us what we can expect from the data: only
the first M even-numbered coefficients α2n of the cosine expansion of ζ and
the constant ζo are related to the data. The structure of ζ not related to the
data is undetermined, and cannot be determined no matter how accurately
we are able to measure the frequencies of free oscillation. We can anticipate
the result of a minimum-norm solution: the odd-numbered coefficients α2n−1

of the cosine expansion up to n = M , all the coefficients αn for n > 2M , and
all the coefficients βn of the sine expansion will be zero.

9.7 A Minimum-Norm Solution

The inverse problem posed above reduces to the determination of M + 1
coefficients of the Fourier-series expansion of ζ using the M equations repre-
sented by Eqn. (9.49). This problem may be written in matrix notation as
follows:

Am = d (9.50)

where m ∈ RM+1 is the unknown vector of expansion coefficients

m =




ζo

α2
...

α2M




(9.51)
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the vector d ∈ RM contains the data

d =




∆ω1

∆ω2
...

∆ωM




(9.52)

and the M × (M + 1) matrix A : RM+1 →RM is defined by

Aij =





n2π2g

2L2ω̄i
if j = 1

−n2π2g

4L2ω̄i
if j = i + 1

0 otherwise

(9.53)

The minimum-norm solution of Eqn. (9.50) is obtained using the methods
developed in Chapter (2):

m = A′ [AA′]
−1

d (9.54)

The model-resolution matrix associated with the above minimum-norm so-
lution is

Rmn = A′ [AA′]
−1

A (9.55)

9.8 Example: Minimum-Norm Solution with

Lake Michigan Data

To demonstrate a minimum-norm solution to the above inverse problem,
we estimate 11 coefficients of the Fourier-series representation of ζ using
observations of the 10 ∆ωn’s associated with the 10 lowest frequencies of
Lake Michigan’s free oscillations. The demonstration is entirely theoretical,
i.e., the observations will be generated using a known bathymetry function

203



ζ(x), then an estimated bathymetry will be derived from the observations.
The known bathymetry function for this example is:

h(x) = ho + ζ(x) (9.56)

where

ζ(x) = ζo +
20∑

n=1

αn cos
nπx

L
+

20∑

n=1

βn sin
nπx

L

= 12 + 5 cos
πx

L
− 3 cos

2πx

L
+ 7 sin

6πx

L
(9.57)

Our demonstration will proceed as follows. First, we will linearize the
inverse problem around a flat-bottom bathymetry with ho = 150 m. This
will allow us to generate the ω̄n’s and X̄n’s. Second, we will use the above
expression for ζ to generate “perturbed” frequencies of free oscillation, ωn.
These steps will give us the data, ∆ωn, n = 1, . . . , 10. Third, we will “invert”
the data using the minimum-norm inverse to obtain an estimate of ζ denoted
by ζ̂ :

ζ̂(x) = ζ̂o +
10∑

n=1

α2n cos
2nπx

L
(9.58)

Finally, we will compare ζ with our minimum-norm estimate ζ̂ and compute
the model-resolution matrix Rmn.

Finite-Difference Generation of ∆ωn

To generate the data, we adopt the finite-difference approach described in §
(9.3.1). The finite-difference version of Eqn. (9.8) with variable depth h(x)
is written:

g

2∆x2
[(hi+1 + hi)Xi+1 − (hi+1 + 2hi + hi−1)Xi + (hi + hi−1) Xi−1]

+ω2Xi = 0 (9.59)

for i = 2, . . . , l − 1, with boundary conditions,

X̄2 − X̄1 = 0 (9.60)
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X̄l − X̄l−1 = 0 (9.61)

As before, the above finite-difference equations may be expressed by
(
A + ω2I

)
X = 0 (9.62)

where the l × l matrix A is given by:

Aij =





−g
2∆x2 (hi+1 + 2hi + hi−1) if i = j

g
2∆x2 (hi+1 + hi) if j = i + 1

g
2∆x2 (hi + hi−1) if j = i− 1

1 if (i, j) = (1, 1), (l, l)

−1 if (i, j) = (1, 2), (l, l− 1)

(9.63)

The following Matlabr script was used to generate the eigenvalues of A
defined above for the bathymetry function given in Eqn. (9.57). For consis-
tency, the finite-difference algorithm instead of the exact analytic expression
was used to calculate the ω̄n. With this practice, the inherent inaccuracy
of the finite-difference determination of the ωn does not adversely affect the
determination of ζ̂ .

g=9.81;

h naut=150;

L=650e3;

Ngrid=50;

%

h=h naut*ones(Ngrid,1);

dx=L/(Ngrid-1);

A=zeros(Ngrid,Ngrid);

for i=2:Ngrid-1

A(i,i)=g*(h(i+1)+2*h(i)+h(i-1))/(2*dx^ 2);

A(i,i-1)=-g*(h(i-1)+h(i))/(2*dx^ 2);

A(i,i+1)=-g*(h(i+1)+h(i))/(2*dx^ 2);

end

A(1,2)=-1/dx;
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A(Ngrid,Ngrid-1)=-1/dx;

A(1,1)=1/dx;

A(Ngrid,Ngrid)=1/dx;

omega bar=sqrt(eig(A));

%Discard zero-frequency mode (steady solution):

omega bar=sort(omega bar);

omega bar=omega bar(2:Ngrid);

%

% The above determines the unperturbed frequencies in a computationally

% consistent fashion.

%

Ngrid=50;

x=linspace(0,L,Ngrid)’;

h=(h naut+12)*ones(Ngrid,1)+5*cos(pi/L*x)-3*cos(2*pi/L*x)+7*sin(6*pi/L*x);

dx=L/(Ngrid-1);

A=zeros(Ngrid,Ngrid);

for i=2:Ngrid-1

A(i,i)=g*(h(i+1)+2*h(i)+h(i-1))/(2*dx^ 2);

A(i,i-1)=-g*(h(i-1)+h(i))/(2*dx^ 2);

A(i,i+1)=-g*(h(i+1)+h(i))/(2*dx^ 2);

end

A(1,2)=-1/dx;

A(Ngrid,Ngrid-1)=-1/dx;

A(1,1)=1/dx;

A(Ngrid,Ngrid)=1/dx;

omega pert=sqrt(eig(A));

%Discard zero-frequency mode (steady solution):

omega pert=sort(omega pert);

omega pert=omega pert(2:Ngrid);

plot(omega pert); hold on; plot(omega bar)

title(’Perterbed vs. Unperturbed Bathymetry’)

xlabel(’Mode Number’)

ylabel(’1/sec’)

Delta omega(1:10)=omega pert(1:10)-omega bar(1:10);

pause

hold off

clg
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plot(Delta omega)

title(’Observed Frequency Difference’)

xlabel(’Mode Number’)

ylabel(’1/sec’)

The data {∆ωn}10
n=1 are displayed in Fig. (9.57)

The Minimum-Norm Inverse

Using the {∆ωn}10
n=1 generated above, we now turn out attention to solving

Eqn. (9.50) with M = 10 and N = M + 1 = 11. The following Matlabr

routine was used to construct A : RM+1 →RM and find the minimum-norm
solution m ∈ RM+1 with data d ∈ RM .

% This routine finds the minimum-norm inverse of Am=d

d=Delta omega’;

% A is a 10 row by 11 column matrix:

g=9.81;

L=650e3;

A=zeros(10,11);

for i=1:10

A(i,1)=g*i^ 2*pi^ 2/(2*L^ 2*omega bar(i));

A(i,i+1)=-g*i^ 2*pi^ 2/(4*L^ 2*omega bar(i));

end

%

m=A’*inv(A*A’)*d
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Figure 9.3: The ∆ωn, n = 1, . . . , 10, generated by a finite difference method
using the bathymetry function given in Eqn. (9.57).

208



The solution obtained by the above, minimum-norm algorithm is

m̂ =




11.5828
−3.5864
−0.7416
−0.0386
−0.6121
−0.4402
−0.3304
−0.2155
−0.0885
0.0528
0.2090




(9.64)

This minimum-norm solution can be compared with what m should have
been for the ζ expressed in Eqn. (9.57):

m =




12
−3
0
0
0
0
0
0
0
0
0




(9.65)

A comparison between ζ(x) given by Eqn. (9.57) and the ζ̂(x) constructed
using the Fourier-coefficients derived from m̂ above is shown in Fig. (9.4).
It is clear from the figure that the retrodicted ζ̂(x) differs greatly from the
known ζ(x) used to generate the data. This difference emphasizes the con-
sequence of the fact that the data constrain only the 10 even terms in the
cosine expansion of ζ(x).

The model-resolution matrix Rmn associated with the minimum-norm
solution is displayed in Fig. (9.5). The example worked here suggests that
the minimum-norm inverse does a good job in resolving the m.
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Figure 9.4: A comparison between the ζ(x) used to generate the data ∆ωn,
n = 1, . . . , 10, and the ζ̂(x) resulting from the minimum-norm inverse.
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Figure 9.5: The model-resolution matrix Rmn associated with the minimum-
norm inverse. Each pixel of the above image represents an element Rij of
Rmn. The darker the color, the higher the value of the corresponding element.
The dark swath down the diagonal of the matrix indicates that the minimum-
norm inverse does a fairly good job of resolving ζo and the even-numbered
coefficients of the cosine expansion of ζ(x).
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9.9 Dirichlet Spread of the Model-Resolution

Matrix

The Backus-Gilbert inverse differs from the minimum-norm inverse by virtue
of the fact that it is designed to optimize a particular quality of the model-
resolution matrix known as the Backus-Gilbert spread. Before explaining
what the Backus-Gilbert spread is, we define the Dirichlet spread and show
that the minimum-norm solution optimizes (minimizes) this quantitative
measure of the model-resolution matrix.

Definition. The Dirichlet spread, Sd of a N ×N model-resolution matrix R
is defined by the following measure of how R differs from the identity matrix
I:

Sd =
N∑

i,j=1

(Rij − δij)
2 (9.66)

¥

Minimization of Sd

It is easy to show that the minimum-norm inverse A′(AA′)−1 = A−mn min-
imizes Sd.

Proof: Let A? denote the inverse of A which minimizes the Dirichlet spread,
Sd of the model-resolution matrix. Our goal is to prove that A? = A−mn.
The model-resolution matrix associated with A? is A?A. Thus,

Sd = ‖A?A− I‖2

=
N∑

i,j=1

(R?
ij − δij)

2

=
N∑

i,j=1

{
(

M∑

α=1

ajαAαi)− δij

}2

=
N∑

i=1

[ N∑

j=1

{
(

M∑

α=1

ajαAαi)− δij

}2
]

(9.67)
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where alk is the l, k’th element of A?.

Differentiating with respect to the unknown element αjβ, and noting the
fact that ajβ enters just once in the above expression, we obtain

∂Sd

∂ajβ
= 2

N∑

i=1

[{
(

M∑

α=1

ajαAαi)− δij

}
Aβi

]
(9.68)

If the above expression is set to zero, we obtain a condition that must be
satisfied by A? to minimize Sd:

M∑

α=1

[
N∑

i=1

AβiAαi] ajα = Aβj (9.69)

which, in matrix notation is,

(AA′)(A?)′ = A (9.70)

i.e.,
(A?)′ = (AA′)−1A (9.71)

Taking the transpose gives the result we desire:

A? = A′(AA′)−1

= A−mn (9.72)

In other words, the minimum-norm inverse minimizes the Dirichlet spread of
the model-resolution matrix. ¥

9.10 The Backus-Gilbert Spread of the Model-

Resolution Matrix

Backus and Gilbert proposed a slightly different measure of spread and de-
signed an inverse method for the purpose of optimizing model resolution.
The Backus-Gilbert spread Sbg of the model-resolution matrix R is defined
as follows:
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Definition. The Backus-Gilbert spread, Sbg of a N × N model-resolution
matrix R is defined by the following measure of how R differs from the
identity matrix I:

Sd =
N∑

i,j=1

(i− j)2 (Rij − δij)
2

=
N∑

i,j=1

(i− j)2
(
R2

ij − 2Rijδij + δij2
)

=
N∑

i,j=1

(i− j)2R2
ij (9.73)

¥

The Backus-Gilbert spread differs from the Dirichlet spread Sd because
of the appearance of the term (i−j)2. The introduction of this term suggests
that Sbg measures not only the deviation of the model-resolution matrix from
the identity matrix, but also the tendency of the model-resolution matrix to
be diagonally dominant (have it’s largest values arrayed along the diagonal).

9.11 Derivation of the Backus-Gilbert Inverse

The Backus-Gilbert inverse for the general problem

Am = d (9.74)

is defined as the N ×M matrix G : RM →RN , which gives

m̃ = Gd (9.75)

The model-resolution matrix Rbg associated with the Backus-Gilbert inverse
is defined as

Rbg = GA (9.76)

The Backus-Gilbert inverse is chosen to minimize the Sbg of Rbg subject
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to the auxilliary constraint that rows of Rbg add up to one, viz.

N∑

j=1

Rij − 1 = 0 (9.77)

for i = 1, . . . , N . This extra constraint is added for two reasons. First, the
Sbg does not reference the diagonal elements of Rbg at all, so they would be
undetermined without the constraint. Second, it is desireable for the rows
of Rbg to represent weighted-averaging operators which act on m to obtain
each component of m̃. Using a Lagrange multiplier vector λ to enforce the
constraint, the condition defining G is the minimization of the following
scalar quantity:

H =
N∑

i,j=1

(i− j)2R2
ij +

N∑

i=1

2λi




N∑

j=1

Rij − 1




= (i− j)2 (GikAkj)
2 + 2λi ((GilAlj)− 1) (9.78)

where the summation convention of repeated indices has been adopted to
avoid excessive notational complexity.

The derivatives of H with respect to the unknown Gαβ and λγ are

∂H

∂Gαβ
= 2(α− i)2GαkAkjAβj + 2λαAβj (9.79)

∂H

∂λγ
= 2 (GγlAlj − 1) (9.80)

Setting the derivatives to zero yields the Euler-Lagrange equations which
may be solved to obtain G.

The solution of the Euler-Lagrange equations is tricky in the present
situation, because it is difficult to write them in a format which is amenable
to linear algebra. We can overcome this difficulty by solving for the rows of
G one at a time. Accordingly, we define a set of N vectors gα ∈ RM which
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represent the N rows of the matrix G, i.e.,

G =




g′1
g′2
...

g′N




(9.81)

or,

gα =




Gα1

Gα2
...

GαN




(9.82)

With this convenient definition, the Euler-Lagrange equations may be broken
down into a set of N equations of the form

Kαgα + λαu = 0 (9.83)

g′αu− 1 = 0 (9.84)

where, the matrix Kα : RM → RM is defined by the relation [Kα]kβ =
(α−j)2AkjA

′
jβ , and the vector u ∈ RM is defined by by the relation uβ = Aβj .

Dropping momentarily the subscript α for notational convenience, we
solve Eqns. (9.83) and (9.84) for λ and g. First, we multiply Eqn. (9.83)
by K−1 (we assume K−1 exists because K is an M ×M square matrix) and
solve for an expression which gives g in terms of λ:

g = −λK−1u (9.85)

Next, we substitute the above expression into Eqn. (9.84) and solve for λ:

λ =
( −1

u′K−1u

)
(9.86)

Observe that
(

−1
u′K−1u

)
is a scalar. Finally, we substitute the above expression

into Eqn. (9.83) to yield an expression for g:

g =
( −1

u′K−1u

)
K−1u (9.87)
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The above solution for each of the {gα}N
α=1 gives the Backus-Gilbert inverse

G.

The model-resolution matrix associated with the Backus-Gilbert inverse
is readily shown to be

Rbg =




g′1
g′2
...

g′N



A (9.88)

Making use of Eqn. (9.87), we obtain

Rbg =




(
−1

u′K1
−1u

)
K1

−1u′

(
−1

u′K2
−1u′

)
K2

−1u′

...(
−1

u′KN
−1u

)
KN

−1u′




A (9.89)

9.12 Example: Backus-Gilbert Solution with

Lake Michigan Data

We demonstrate the Backus-Gilbert inverse by applying it to the same prob-
lem discussed in S (9.8). Using the same {∆ωn}10

n=1 data generated previ-
ously, we use the following Matlabr routine to generate m̃ = Gd:

% This routine computes the Backus-Gilbert inverse.

% m tilde = G * d

d=Delta omega’;

% A is a 10 row by 11 column matrix:

g=9.81;

L=650e3;

A=zeros(10,11);

for i=1:10
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A(i,1)=g*i^ 2*pi^ 2/(2*L^ 2*omega bar(i));

A(i,i+1)=-g*i^ 2*pi^ 2/(4*L^ 2*omega bar(i));

end

%

% Construct G, the Backus-Gilbert inverse:

%

G=zeros(11,10);

g alpha transpos=zeros(10,11);

u=zeros(10,1);

for beta=1:10

for j=1:11

u(beta)=u(beta)+A(beta,j);

end

end

%

for alpha=1:11

K=zeros(10,10);

%

for m=1:10

for beta=1:10

for j=1:11

K(m,beta)=K(m,beta)+ (alpha-j)^ 2*A(m,j)*A(beta,j);

end

end

end

%

g alpha transpos(:,alpha)=(1/(u’*inv(K)*u))*inv(K)*u;

%

end

%

G=g alpha transpos’;

m tilda=G*d

R bg=G*A
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The solution m̃ obtained from the above Backus-Gilbert algorithm is:

m̃ =




25.6460
26.7519
23.9071
23.2042
23.7776
23.6057
23.4959
23.3811
23.2540
23.1127
22.9565




(9.90)

The Backus-Gilbert solution is unsatisfactory because it bears virtually no
resemblance to what is expected. A comparison of the retrodicted ζ̃(x) using
the Backus-Gilbert inverse, the minimum-norm result ζ̂(x), and the true ζ(x)
is provided in Fig. (9.6). For comparison with the minimum-norm model-
resolution matrix Rmn shown in Fig. (9.5), the Rbg is shown in Fig. (9.7).

Another defect of the Backus-Gilbert solution is that it fails to satisfy the
data. In particular, the expression Am̃ = d̃ yields the following version of
the ∆ωn’s:

d̃ = 1.0e− 04




0.0746
0.1667
0.2566
0.3356
0.4228
0.5104
0.5993
0.6898
0.7823
0.8769




(9.91)
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Figure 9.6: The true (top), minimum-norm (middle) and Backus-Gilbert
(bottom) derived bathymetry functions ζ(x). While neither the minimum-
norm nor the Backus-Gilbert methods yield an accurate result, the Backus-
Gilbert bathymetry is grossly inaccurate, and fails spectacularly in compar-
ison with the minimum-norm result.
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Figure 9.7: The model-resolution matrix Rbg associated with the Backus-
Gilbert inverse. Each pixel of the above image represents an element Rij of
Rbg. The darker the color, the higher the value of the corresponding ele-
ment. The structure of this matrix suggests that the Backus-Gilbert method
does not do a particularly good job of resolving ζo and the even-numbered
coefficients of the cosine expansion of ζ(x).
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The data vector d, for reference, is:

d = 1.0e− 04




0.0814
0.1455
0.2120
0.2900
0.3605
0.4314
0.5020
0.5721
0.6416
0.7104




(9.92)

It is important to remember that the minimum-norm solution m̂ satisfies the
data exactly (Am̂ = d). The above comparison suggests that a great price
has been paid to minimize the Backus-Gilbert spread of the model-resolution
matrix.

9.13 An Alternative Definition of the Backus-

Gilbert Spread

The poor performance of the Backus-Gilbert method in the above example
demonstrates the problems that can arise when the issue of fitting data be-
comes secondary to the issue of model resolution. Backus and Gilbert [1968]
suggested that the criteria used to determine G could be modified to suit
each particular application. In this section we shall show that the subsidiary
constraint given by Eqn. (9.77), namely

N∑

j=1

Rij − 1 = 0 (9.93)

was at the root of the poor performance of the Backus-Gilbert method. We
repeat the derivation of the Backus-Gilbert inverse and compute m̄ for the
Lake-Michigan problem posed above using a different subsidiary constraint:

Rii − 1 = 0 (9.94)
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for i = 1, . . . , N . This alternative subsidiary condition requires the diagonal
elements of R to be 1. No constraints are imposed, however, on the sums of
the rows of R.

Following the approach used previously, the Backus-Gilbert inverse G is
found by minimizing the following performance index:

H =
N∑

i,j=1

(i− j)2R2
ij +

N∑

i=1

2λi (Rii − 1)

= (i− j)2 (GikAkj)
2 + 2λi ((GilAli)− 1) (9.95)

where the summation convention of repeated indices has been adopted to
avoid excessive notational complexity. The Euler-Lagrange equations asso-
ciated with the above definition of H yield the following equations for the
α = 1, . . . , M rows of G

Kαgα + λαuα = 0 (9.96)

g′αuα − 1 = 0 (9.97)

where, the matrix Kα : RM → RM is defined as before by the relation
[Kα]kβ = (α − j)2AkjA

′
jβ, and the vector uα ∈ RM is defined by by the

relation uβ = Aβα.

The following Matlabr routine gives the solution to the Lake Michigan
bathymetry problem using the solution of Eqns. (9.96) and (9.97) to define
G:

% This routine computes the Backus-Gilbert inverse.

% m tilde = G * d

d=Delta omega’;

% A is a 10 row by 11 column matrix:

g=9.81;

L=650e3;

A=zeros(10,11);

for i=1:10

A(i,1)=g*i^ 2*pi^ 2/(2*L^ 2*omega bar(i));

A(i,i+1)=-g*i^ 2*pi^ 2/(4*L^ 2*omega bar(i));

end

223



G=zeros(11,10);

g alpha transpos=zeros(10,11);

for beta=1:10

end

for alpha=1:11

K=zeros(10,10);

u=zeros(10,1);

for beta=1:10

u(beta)=A(beta,alpha);

end

for m=1:10

for beta=1:10

for j=1:11

K(m,beta)=K(m,beta)+ (alpha-j)^ 2*A(m,j)*A(beta,j);

end

end

end

g alpha transpos(:,alpha)=(1/(u’*inv(K)*u))*inv(K)*u;

end

G=g alpha transpos’;

m bar=G*d

R bg2=G*A

The solution obtained using the above algorithm, m̄, is:

m̄ =




12.8230
−6.3393
0.1876
0.5940
−0.3314
−0.0678
−0.0383
−0.0147
0.0146
0.0619
0.2396




(9.98)
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and comes closer to satisfying the data (but not exactly):

Am̄ = 1.0e − 04




0.0973
0.1549
0.2289
0.3169
0.3927
0.4716
0.5509
0.6306
0.7102
0.7863




6= 1.0e− 04




0.0814
0.1455
0.2120
0.2900
0.3605
0.4314
0.5020
0.5721
0.6416
0.7104




(9.99)

The model-resolution matrix associated with this improved version of the
Backus-Gilbert inverse is displayed in Fig. (9.8).

9.14 Conclusion

We have focussed on an interesting problem in this chapter, namely, how to
extract bathymetric structure from observations of the frequency of free os-
cillation. What we have learned is that minimum-norm and Backus-Gilbert
methods provide a relatively unsatisfactory result. At best, all we can hope
to recover from our measurements of frequencies are the even numbered co-
efficients of the cosine-series expansion of the unknown bathymetry. To get
the full bathymetric structure, we anticipate having to augment the observed
frequencies with observations relating to the eigenmodes Xn’s.

An important conclusion can be drawn as a result of the comparison
between the Backus-Gilbert inverse and the minimum-norm inverse. The
improvement of the Backus-Gilbert method’s model-resolution matrix comes
at a terrible price: the solution can be extremely inaccurate, and the data are
no longer satisfied. It is for these reasons that the Backus-Gilbert method is
not recommended for most underdetermined inverse problems.
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Figure 9.8: An improved model-resolution matrix Rbg2 associated with the
Backus-Gilbert inverse derived under a subsidiary constraint that Rii = 1,
for i = 1, . . . , N . Each pixel of the above image represents an element Rij

of Rbg2. Clearly, this version of the Backus-Gilbert inverse yields a more
satisfactory model resolution matrix than that depicted in Fig. (9.7).

226



9.15 Bibliography

Backus, G. and F. Gilbert, 1968. The resolving power of gross earth data.
Geophysical Journal of the Royal Astronomical Society, 16, 169-205.

Backus, G. and F. Gilbert, 1968. Constructing P -velocity models to fit
restricted sets of travel-time data. Bulletin of the Seismological Society of
America, 59, 1407-1414.

Hutter, K, 1993. Waves and oscillations in the ocean and in lakes. Continuum
Mechanics in Environmental Sciences and Geophysics. (CISM Courses and
Lectures No. 337, International Centre for Mechanical Sciences, K. Hutter,
editor) 80-240.

227


