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1 Analysis of a new iterated map

Consider the system defined by xn+1 = f(xn, a), where

f(x, a) = ax cos(x) (1)

You are to perform a complete analysis of the behavior of this system.
Using a mapExplorer object, and the orbitDiagram.py script will help you
in your exploration. This exploration requires a combination of analytic work
(i.e. using mathematics on paper) and computer simulations. Note that in
some cases, you may not be able to find an analytic expression for some of
the answers you need (e.g. the maxima of the function x cos(x)). In such
cases, feel free to get an approximation by writing a Python script that helps
you get an answer, e.g. by printing out a table of values or using a Newton
Method iteration.

The following provides some guidelines for your exploration. In all cases,
it is implicit that you should discuss how things change as the parameter a
is varied.

• Where are the fixed points? Discuss their stability

• If x is initially in the interval [0, π
2
] under what circumstances will it

stay there? What can you say if x is outside this interval?

• When does a stable period-2 orbit appear? When does this go unstable?
Discuss what kinds of other periodic orbits appear after the period-2
orbit becomes unstable
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• When does the system appear to have a dense set of unstable periodic
orbits?

• Show that this system exhibits ”unpredictability,” once it goes chaotic,
in the sense that initially close orbits diverge. Estimate the Lyapunov
exponent. Show an example of a chaotic orbit.

Solution: (Run the accompanying Python script to see the accompanying
figures).

Note that I have generalized some of the results to the entire positive
Real axis, though I am only expecting that the student will have explored
the dynamics in the interval [0, π/2].

Fixed points: Set f(x) = x. There is always a fixed point at x=0.
f ′(0) = a, so this fixed point is stable if and only if |a| < 1. The other fixed
points satisfy a cos x = 1, i.e. x = cos−1(a−1). There are an infinite number
of these on the real axis if |a| ≥ 1. Thus, the additional fixed points appear
precisely when the fixed point at x = 0 goes unstable. By looking at a plot
of y = f(x) on the same graph as a plot of y = x you can see that this isn’t
accidental. If f ′(0) > 1, then since the slope starts out greater than the slope
of y = x, and since f(π/2) = 0, it is inevitable that the curve will cross the
line y = x at some positive value.

To determine the stability of the rest of the fixed points we evaluate
f ′(Xj), where Xj is the jth fixed point. Let X0 be the nonzero fixed point
which lies in the interval [0, π/2]. For a just slightly above 1, X0 is close to
zero. As a gets large X0 approaches π/2. The rest of the fixed points are at
X0 + 2π,−X0 + 2π, X0 + 4π,−X0 + 4π, .... Now,

f ′(Xj) = a cos Xj − aXj sin Xj = 1−Xj

√
a2 − 1 (2)

The positive fixed points are then stable when Xj

√
a2 − 1 < 2. For any j,

this is always satisfied for a sufficiently close to 1, but the larger j is, the
closer a has to be to 1 for the fixed point to be stable. For the first positive
fixed point, the fixed point is unstable for a > 2.1093. For the second,
the stability boundary is a = 1.0129 and for the third it is at a = 1.0123.
You can get these stability boundaries by using Newton’s method to solve
(± cos−1(a−1) + 2πj)

√
a2 − 1 = 2

Confinement of the orbit: To find out when the orbit stays in the
interval [0, π

2
], we maximize f(x) over this interval. The maximum occurs
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where 0 = f ′(x) = a sin x − ax cos x, i.e. where tan x = x−1 independent of
a. Denoting this point by xm, the maximum value is

f(xm) = axm cos(xm) = ± ax2
m√

x2
m + 1

(3)

The sign on the right hand side alternates from one interval to the next,
according to whether the point is a maximum or a minimum. There is
one maximum or minimum on each of the subintervals between the zeros of
cos x. We find the first positive maximum by applying Newton’s method to
x tan x − 1; it is at .8603, where the value of f is .561096. Hence the orbit
stays in the subinterval as long as a < (π/2)/.561096 = 2.799.

For the subsequent maxima/minima xm becomes large, 1/xm becomes
small, and so the extrema are located quite near to the zeros of tan(x),
namely x = jπ. The values of f near at these maxima are approximately
±ajπ. This is already a quite good approximation for the first positive
minimum and the second positive maximum; one can do better by doing a
Taylor series expansion of tan about jπ. This is left to the student.

If x > π/2 initially, then a must be smaller to guarantee confinement. If x
initially exceeds π/2, the next iterate can become negative, but can the orbit
escape to infinity? For example, if−3π/2 < x < 3π/2, the maximum possible
value at the next iterate has |x| < aπ, using the lowest order approximation to
the maxima/minima in this interval. Hence, the orbit remains in the interval
if aπ < 3π/2, i.e. a < 3/2. In this range, the map has a stable fixed point
only in the smaller sub-interval [−π/2, π/2]. It has unstable period-2 orbits
in the broader interval, but by playing around with plotOrbit, it appears
that almost all other initial conditions in the large interval eventually are
attracted to a stable fixed point in the smaller interval. On the other hand,
when a > 3/2, the solutions can run off to infinity. It is left to the student
to generalize the result to larger intervals.

Here’s something else interesting to explore: When a is slightly above
2.799 it is possible to have orbits starting in the interval [−π/2, π/2] which
make transitions between positive and negative values. For what range of
a are such orbits ”typical” for initial conditions in the interval? Do orbits
eventually escape the interval? For cases where the orbits do not blow up,
explore the statistics of transitions between positive and negative values.
What is the probability that the orbits remain positive for N consecutive
iterations? How does this persistence probability vary with a?

3



Periodic Orbits: We suspect a period-2 orbit is born just above the
value of a where the fixed point goes unstable. We verify this using the
plotComposition method with a = 2.2. By plotting an orbit, we see that
the period-2 orbit we have found is stable. (This is also evident from the slope
in the composition graph). See the Python script for details and output.

Determining the stability boundary for the period-2 orbit analytically is
intractible, so we use the mapExplorer and plotOrbit to hunt around and
see when the orbit goes unstable. This happens near a = 2.39. The stability
can also be determined using the findPeriodicOrbits method. By using
plotComposition, we see that a stable period-4 orbit is introduced at this
point.

Onset of dense periodic orbits: We run the orbitDiagram function
to look at the introduction of new periodic orbits as a is increased. We vary a
from the value where the period-2 orbit goes unstable, to the maximum value
that keeps the orbit confined to the interval. From looking at the result, we
see that the set of periodic orbits start to look dense somewhere between
a = 2.5 and a = 2.6. The orbits are not dense in the whole interval; there
are gaps.

Chaotic orbits: We set a = 2.7, which is well within the range where
periodic orbits appear to be dense. As a first demonstration, we plot two
orbits on the same graph, starting from slightly different initial conditions.
Then, we plot a graph of the log of the difference. The difference grows until
it is comparable to the width of the interval, and then it can grow no more.
By estimating the slope during the exponentially growing stage, we find that
the Lyapunov exponent – the exponential rate of separation of trajectories –
is about .47. That means that an initially small error grows like exp .47n.

The moral of the story: In the range of a where the orbits are confined
to the interval [0, π/2] the overall picture we see for this map is rather similar
to what we saw for the logistic map. There is a sequence of period-doubling
bifurcations, leading to a dense set of periodic orbits, and then chaos. The
chaotic orbits are characterized by exponential separation of initially close
orbits. This all suggests that all ”one-hump” maps produce behavior which
is, in some sense, the same. It gives us some common things to look for in
chaotic systems.
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2 Programming project: Computing a his-

togram

Solution: See accompanying Python script.
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