Equations with separation of variables

To solve equations

$$
\begin{equation*}
y^{\prime}=f(x) g(y) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M(x) N(y) d x+P(x) Q(y) d y=0 \tag{2}
\end{equation*}
$$

you need to find such an expression multiplying or dividing by which both sides you come to equation with x in one side and y in the other.

Example

$$
\begin{gather*}
x^{2} y^{2} y^{\prime}+1=y \tag{3}\\
x^{2} y^{2} \frac{d y}{d x}=y-1 \quad x^{2} y^{2} d y=(y-1) d x \tag{4}
\end{gather*}
$$

Dividing both sides of the equation by $x^{2}(y-1)$ you get

$$
\begin{equation*}
\frac{y^{2}}{y-1} d y=\frac{d x}{x^{2}} \tag{5}
\end{equation*}
$$

The variables are separated. Integrating both side of equation you get

$$
\begin{equation*}
\int \frac{y^{2}}{y-1} d y=\int \frac{d x}{x^{2}} ; \quad \frac{y^{2}}{2}+y+\ln |y-1|=-\frac{1}{x}+C \tag{6}
\end{equation*}
$$

Equations like

$$
y^{\prime}=f(a x+b y)
$$

are reduced to equations with separation of variables by substitution

$$
z=a x+b y
$$

or

$$
z=a x+b y+c
$$

Homogeneous equations

Homogeneous equation can be written as

$$
\begin{equation*}
y^{\prime}=\frac{y}{x} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{8}
\end{equation*}
$$

where $M(x, y)$ and $N(x, y)$ are homogeneous functions of the same order \{Function $M(x, y)$ is homogeneous of order n, if $\left.M(k x, k y)=k^{n} M(x, y)\right\}$. To solve this problem you make a substitution

$$
\begin{equation*}
y=t x \tag{9}
\end{equation*}
$$

Example

$$
\begin{equation*}
x d y=(x+y) d x \tag{10}
\end{equation*}
$$

This is homogeneous equation. Let

$$
y=t x
$$

then

$$
\begin{equation*}
d y=t d x+x d t \tag{11}
\end{equation*}
$$

substituting

$$
\begin{equation*}
x(x d t+t d x)=(x+t x) d x ; \quad x d t=d x \tag{12}
\end{equation*}
$$

Solving this equation with separated variables

$$
\begin{equation*}
d t=\frac{d x}{x} ; \quad t=\ln |x|+C . \tag{13}
\end{equation*}
$$

Coming back to the original variable y, you get

$$
\begin{equation*}
y=x(\ln |x|+C) \tag{14}
\end{equation*}
$$

Equations like

$$
\begin{equation*}
y^{\prime}=f\left(\frac{a_{1} x+b_{1} y+c_{1}}{a x+b y+c}\right) \tag{15}
\end{equation*}
$$

are reduced to homogenous equations by moving the origin of coordinates to the intersection point of lines

$$
a x+b y+c=0 ; \quad a_{1} x+b_{1} y+c=0
$$

If these lines do not intersect, then

$$
a_{1} x+b_{1} y=k(a x+b y)
$$

hence these equations are

$$
\begin{equation*}
y^{\prime}=F(a x+b y) . \tag{16}
\end{equation*}
$$

It's reduced to an equation with separated variables by substitution

$$
z=a x+b y
$$

or

$$
z=a x+b y+c
$$

Some equations can be reduced to homogeneous by substitution

$$
y=z^{m}
$$

Usually m is known. In order to find it, you make substitution $y=z^{m}$. The requirement of homogeneity of the equation gives you m, if it exists. If it doesn't exist, then you can't reduce the equation to homogeneous.

Example

$$
\begin{equation*}
2 x^{4} y y^{\prime}+y^{4}=4 x^{6} \tag{17}
\end{equation*}
$$

Let's make a substitution

$$
y=z^{m}
$$

then the eq(17) is

$$
\begin{equation*}
\left.2 m x^{4} y y^{\prime}+y^{4} z^{2 m-1} z^{\prime}+z^{(} 4 m\right)=4 x^{6} \tag{18}
\end{equation*}
$$

This equation is homogeneous if orders of all terms are equal, e.i.

$$
4+(2 m-1)=4 m=6
$$

That could be satisfied if $m=\frac{3}{2}$. Hence, you can reduce (17) to homogeneous equation by substitution

$$
y=z^{3 / 2}
$$

First order linear equations

An equation is linear if it has form

$$
\begin{equation*}
y^{\prime}+a(x) y=b(x) \tag{19}
\end{equation*}
$$

To solve it, you need to solve

$$
\begin{equation*}
y^{\prime}+a(x)=0 . \tag{20}
\end{equation*}
$$

first. Then replace a constant by unknown function $C(x)$, and substitute found solution into (20).
Some equations become linear if you interchange $y(x)$ with independent variable x.

Example

$$
\begin{equation*}
y(x)=\left(2 x+y(x)^{3}\right) y(x)^{\prime} \tag{21}
\end{equation*}
$$

Let's rewrite it like

$$
\begin{equation*}
y d x-\left(2 x+y^{3}\right) d y=0 . \tag{22}
\end{equation*}
$$

Since x and $d x$ are linear, then the equation is linear, if you look for solution $x(y)$. Then

$$
\begin{equation*}
\frac{d x}{d y}-\frac{2}{y} x=y^{2} \tag{23}
\end{equation*}
$$

This equation is solved similar to (19).

Bernoulli equation

$$
\begin{equation*}
y^{\prime}+a(x) y=b(x) y^{n} \tag{24}
\end{equation*}
$$

You have to divide both sides by y^{n} and make substitution

$$
1 / y^{n-1}=z
$$

After that you get a linear equation which you already know how to solve.

Linear equations with constant coefficients

Homogeneous equation

To solve equation

$$
\begin{equation*}
a_{0} y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n-1} y^{\prime}+a_{n} y=0 \tag{25}
\end{equation*}
$$

construct the characteristic equation

$$
\begin{equation*}
a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n-1} \lambda+a_{n}=0 \tag{26}
\end{equation*}
$$

and find all his roots. The general solution of (30) is

$$
\begin{equation*}
y=\sum_{k=1}^{k=N} C_{k} e^{\lambda_{i} x}+\sum_{p=1}^{p=M}\left(C_{p+1}+C_{p+2} x+C_{p+3} x^{2}+\ldots+C_{p+m} x^{m-1}\right) e^{\lambda x} \tag{27}
\end{equation*}
$$

where k is a single root and p is a multiple root of order m.
Example

$$
\begin{equation*}
y^{V}-2 y^{V I}-16 y^{\prime}+32 y=0 \tag{28}
\end{equation*}
$$

The characteristic equation is

$$
\begin{equation*}
\lambda^{5}-2 \lambda^{4}-16 \lambda+32=0 . \tag{29}
\end{equation*}
$$

Five roots of this equation are

$$
\lambda_{1}=\lambda_{2}=2, \quad \lambda_{3}=-2, \quad \lambda_{4}=2 i, \quad \lambda_{5}=-2 i .
$$

Hence, the solution for (28) is

$$
y=\left(C_{1}+C_{2} x\right) e^{2 x}+C_{3} e^{-2 x}+C_{4} \cos 2 x+C_{5} \sin 2 x .
$$

Nonhomogeneous linear equation with constant coefficients

$$
\begin{equation*}
a_{0} y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n-1} y^{\prime}+a_{n} y=f(x) . \tag{30}
\end{equation*}
$$

A solution of this equation with any $f(x)$ is found by method of constant variation. First, find a solution of corresponding homogeneous equation (30), and replace your unknown constants by functions of x

$$
y=C_{1}(x)+y_{1}+\ldots+C_{n}(x) y_{n}
$$

. Unknown functions $C_{i}(x)$ are defined from the system of equation

$$
\begin{aligned}
C_{1}^{\prime} y+\ldots+C_{n}^{\prime} y_{n} & =0 \\
C_{1}^{\prime} y^{\prime}+\ldots+C_{n}^{\prime} y_{n}^{\prime} & =0 \\
\ldots & \\
C_{1}^{\prime} y_{1}^{(n-2)}+\ldots+C_{n}^{\prime} y_{n}^{(n-2)} & =0 \\
a_{0}\left(C_{1}^{\prime} y_{1}^{(n-1)}+\ldots+C_{n}^{\prime} y_{n}^{(n-1)}\right) & =0
\end{aligned}
$$

