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Chapter 1

Getting Started with Python

This chapter is not meant to be a comprehensive introduction to the Python language and all its
features. It provides just enough Python to get you started and give you the tools to start doing
significant and interesting computations. More advanced language constructs are introduced in
later chapters, in the context of scientific and mathematical problems for which these constructs
can form a useful part of the computational strategy.

1.1 Python 2 or Python 3?

1.2 Ways to interact with Python

You should read this chapter with your favorite Python interpreter at your side, typing in the
examples to make sure you can get them to work. Then you should make up some similar examples
of your own, and also do the suggested exercises as you read along. At the start, examples are
simple enough that they can be done by just typing into the interpreter. As the examples get more
complex, it becomes better to type the example into an editor and save it, then execute the file
in a way that leaves you in the interpreter (e.g. python -i, or executing the file in an integrated
development environment) so that you can do further experimentation with the things defined in
the file.

1.3 Basic operations and data types

Let’s start with a few operations with integers (whole numbers). In Python, a number without a
decimal point is an integer. If you type an expression into the interpreter, Python will evaluate
it and give you the result. The symbols used for addition and subtraction are the usual + and -

signs. The - sign followed by a number (without any spaces) denotes a negative number. The
symbol used for multiplication is *. Here is an example, just as you would see it when you type
the expressions into the interpreter after each command prompt >>>.

>>> 2*3

6

3
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>>> 2-3

-1

>>> -1 + 3

2

>>> 1*2*3*4*5

120

>>> 1+2+3+4+5

15

In the last two examples, it doesn’t matter in what order the computer carries out the
operations, since multiplication of integers is commutative (i.e. a ∗ b = b ∗ a) as is addition
(a+ b = b+ a). In cases where the order of operations matters, you need to be aware of the rules
dictating the order in which operations are carried out. The operations are not done in sequential
left-to-right order, but instead use rules of precedence. First all the multiplications are carried
out, then all the additions. If you want some other order of operations, you specify the order by
grouping terms with parentheses. The following example illustrates the general idea.

>>> 2*3 + 1

7

>>> 1+2*3

7

>>> 2*(3+1)

8

We’ll introduce a few more rules of precedence as we introduce additional operators, but generally
speaking it never hurts to group terms with parentheses, and you should do so if you are not
absolutely sure in what order the computer will carry out your operations.

Python integers can have an arbitrary number of digits. No integer is too big, at least until
you run out of memory on your computer. For example, we can find the product of the first 26
integers as follows:

>>> 1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20*21*22*23*24*25*26

403291461126605635584000000L

The L at the end serves as a reminder that the result is a ”long” integer, which can have an
arbitrary number of digits. All Python integers are treated as long (rather than fixed length)
integers when they get long enough to need it. For the native integer data type, the distinction
between fixed-length and long integers is removed in Python 3.

For integers, defining division is a bit tricker, since you can’t divide any two integers and
always get an integer back. Clearly, we want 4 divided by 2 to yield 2, but what should we do with
5 divided by 2? The actual answer is 2.5, which is not an integer, but we get a very useful integer
to integer operation if we round the result to the next lower integer to the actual result (in this
case 2). Note that this definition has some unintuitive implications when we do an integer divide
into a negative number: the integer divide of -5 by 2 is -3, and not -2 as might have been thought.
Python represents integer division of this sort with the operator //. Here are a few examples:

>>> 5//2

2
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>>> -5//2

-3

>>> 5//-2

-3

>>> 5 - 2*(5//2)

1

The third example here illustrates the property that if m and n are integers, then the remainder
m ∗ (n//m) − n is a positive integer in the sequence 0, 1, ...(n − 1). In mathematics, this kind of
remainder is represented by the expression n(modm), where ”mod” is short for ”modulo”. Python
uses the symbol % for this operation, as in

>>> 5%2

1

>>> 5%3

2

>>> -5%2

1

>>> 720%3

0

The mod operator is a very convenient way to tell if an integer n is divisible by another integer
m, since divisibility is equivalent to the statement that n(modm) (implemented as n%m in Python)
is zero. Testing divisibility is often used in number theory, but beyond that, in writing programs
one often wants to perform some operation (such as writing out a result) every m steps, and the
easiest way to do this is to keep some kind of counter and then do the required operation whenever
the counter is divisible by m.

Exponentiation is represented by the operator **, as in:

>>> 2**100

1267650600228229401496703205376L

Exponentiation takes precedence over all the other arithmetic operators we have introduced so far.
That includes the unary - operator, so that -1**2 evaluates to -1, since the order of operations
says first we exponentiate 1 and then we take its negative. If we wanted to square -1, we’d have
to write (-1)**2 instead.

You can store intermediate results in a named container using the assignment operator,
which is the = sign in Python. Once a result is stored, it can be used in other operations by name
later, and the contents of the container can be printed by simply typing the name of the container.
Container names can be any text without spaces, so long as it doesn’t begin with a digit, and is
not one of the words reserved for Python commands or other elements of the Python language
itself. Python will warn you if you use one of these by accidents. Here are some examples.

>>> x = 2 ; y=3

>>> z = x*x + y*y

>>> z

13

Here, we have also illustrated the fact that multiple Python statements can be put on a single
line, separated by a semicolon. Containers fulfill a role loosely similar to ”variables” in algebra,
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in that they allow us to specify operations to be performed on some quantity whose value we may
not know. Really containers just define a new name for whatever is on the right hand side of the
= sign. As we start working with objects in Python other than simple numbers, it will become
necessary to pay some attention to whether the container refers to a separate copy of the thing
on the right hand side, or is referring directly to the very same object, though by an alternate
name. The real power of containers will come later, when we introduce ways to define operations
on containers whose values have not yet been assigned, and which will not be carried out until we
plug in the values we want.

In mathematics, expressions that increment a variable by either adding a quantity or multi-
plying by a quantity are so common that Python has shorthand assignment operators of the form
+= and *=. For example the assignment x += 1 is equivalent to the assignment x = x+1, and the
assignment x *= 2 is equivalent to the assignment x = x*2. This works for all Python data types
for which the respective operations are defined.

A great deal of mathematics, and probably most of physical science, is formulated in terms of
real numbers, which characterize continuous quantities such as the length of a line or the mass of an
object. Almost all real numbers require an infinite number of digits in order to be specified exactly.
Nothing infinite can fit in a computer, so computations are carried out with an approximation to
the reals known as floating point numbers (or floats for short). The floating point representation is
based on scientific notation, in which a decimal fraction (like 1.25) is followed by the power of ten
by which it should be multiplied. Thus, we could write 12000.25 as 1.200025·104, or .002 as 2·10−3.
In Python, the exponent is represented by the letter e immediately preceded by a decimal fraction
or integer, and immediately followed by an integer exponent (with a minus sign as necessary; A
plus sign is allowed but not necessary). Further, you can write the number preceding the exponent
with the decimal point whereever you find convenient. Thus, 12000. could be written 1.2e4,
12e3 or .12e5, as well as any number of other ways. If the exponent is zero, you can leaave it
out, so 12. is the same number as 12e0 . Unlike Python integers, floating point numbers retain
only a finite number of digits. Although numbers (both integer and floating point) are by default
given in the decimal system for the convenience of the user, inside the computer they are stored
in binary form. When dealing with a decimal fraction that cannot be represented exactly by a
string of binary digits short enough for the computer to handle, this introduces a small amount of
round-off error. There is also a maximum number of binary digits assigned to the exponent, which
limits the largest and smallest floating point numbers that can be represented. The values of these
limits are specific to the kind of computer on which you are running Python.

Python will treat a number as a float if it includes a decimal point, or if it includes an
exponent specification (regardless of whether the preceding digits include a decimal point. Thus
1., 1.0 , 1e20 and 1.e20 are all floats. In displaying the value of a float, by default Python writes
it out as a decimal fraction without the exponent if the number of digits is not too big, but puts
it in standardized scientific notation if the number would get too long. For example:

>>> 15.5e10

155000000000.0

>>> 15.5e30

1.55e+31

This is just a matter of display. 12000 and 1.2e4 are the same number inside the computer and
handled identically. In Section 1.14 we will discuss how to control the way a number is displayed.

The arithmetic operators + , - , * ,** work just the way they do for integers, except
they now keep track of the decimal point. Floating point division is represented by / .
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>>> 2.5e4*1.5 + 3.

37503.0

>>> 1./3.

0.3333333333333333

>>> 3.*0.33333333333333333

1.0

Division has equal precedence with multiplication, so in a term involving a sequence of
* and / operations, the result is evaluated left-to-right unless a different order is specified with
parentheses:

>>> 2.*3./4.*5.

7.5

>>> 2.*3./(4.*5.)

0.3

This can easily lead to unintended consequences, so it is usually best to be on the safe side and
enclose numerator and denominator expressions in parentheses. The same remark applies to integer
division // .

Though the modulo operator is conventionally defined just for integers in number theory,
in Python, it is also defined for floats. An expression like x%y will subtract enough multiples of y
from the value x to bring the result into the interval extending from zero to y. This can be very
useful for periodic domains, where, for example, the point x + nL is physically identical to the
point x for any integer n.

Exponentiation can be carried out with negative or fractional exponents, e.g. 2.**.5 is
the same as

√
2 and 2.**-1 is the same as 1./2.. Negative floats can be raised to an integer

power, but if we try to raise a negative float to a non-integer power Python responds with an error
message:

>>> (-1.5)**3

-3.375

>>> (-1.5)**3.0

-3.375

>>> (-1.5)**-3

-0.2962962962962963

>>> (-1.5)**3.1

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: negative number cannot be raised to a fractional power

This is because the result of raising a negative number to a fractional power is not a real number.
We’ll see shortly that this operation is perfectly well defined if we broaden our horizon to include
complex numbers, but Python does not do complex arithmetic unless it is explicitly told to do so.
Note that, as shown by the second example, Python knows when a number written as a float has
an integer value, and acts accordingly.

In any operation involving two different types, all operands are promoted to the ”highest”
type before doing the operation, with a float being considered a higher type than an integer. Thus,
the expression 1 + 1.5 yields the float result 2.5. The exponentiation operator also promotes
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operands to float when using negative exponents, even if everything is an integer. Thus 2**-2

evaluates to 0.25 but 2**2 yields the integer 4.

What do you do if you want to divide two integers and have the result come out like a
floating point divide? One way to do that is to just put a decimal point after at least one of
the integers so that Python treats the division as floating point – you only really need to do this
to one thing in the numerator or denominator, since everything else will be promoted to a float
automatically. Thus, 1./2 or 1/2. will both evaluate to .5. But suppose you have two variables
a and b which might contain integers, but you want the floating-point quotient of them? One way
to do that is to force a conversion to a float by multiplying either the numerator or denominator
by 1. There are other ways to do a type conversion, which you’ll learn about shortly, but this
will do for now. Then if a=1 and b=2 we get the desired result by typing (1.*a)/b. It is a bit
silly to have to do this to force a float division when we would generally use // if we really wanted
integer division, but in Python 2.x this is indeed what you need to do. It will still work in Python
3, but Python 3 made the sensible division to always treat a/b as float division even if a and b are
integers.

Python has complex numbers as a native (i.e. built-in) data type. The symbol j is used
for
√
−1, and the imaginary part of a complex constant is given by a floating point number

immediatedly followed by j, without any spaces. Note that even if you want to represent
√
−1 by

itself, you still need to write it as 1j, since an unadorned j would be interpreted as a reference to
a container named j. Here are some examples of the use of complex arithmetic:

>>> z1 = 7.5+3.1j ; z2 = 7.5-3.1j

>>> z1+z2

(15+0j)

>>> z1*z2

(65.86+0j)

>>> z1**.5

(2.7942277489593965+0.5547149836219465j)

>>> (-1+0j)**.5

(6.123233995736766e-17+1j)

It often happens that you need to create a complex number out of two floats that have previously
been stored in containers. Here is one way you can do this:

>>> x=1.;y=2.

>>> z = x + y*1j

>>> z

(1+2j)

Note that simply writing z=x+yj will not work, since Python will try to interpret yj as the name
of a container.

In the promotion hierarchy, complex is a higher type than float, so operations mixing
complex and tt float values will yield a complex result. The final example above comes out a
little bit differently from the exact answer 0 + 1j because of the finite precision of computer
arithmetic. Depending on the precision of the computer you are using, the answer you get may
differ slightly from the example.This example also illustrates how Python guesses whether you wish
an operation to be carried out using complex or real arithmetic – if there is any complex number
involved, the whole operation is treated as complex. If you instead tried (-1.)**.5 you would get
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an error message, since it would be assumed the operation is meant to be carried out over the real
numbers. Try evaluating (-1.)**1j, and check the answer against the expected result (which you
can determine using the identity eiπ = −1). Also try evaluating (-1.)**3., (-1.+0j)**3.1 and
(-1.)**3.1. Why do the first two work, whereas the last causes an error message?

The real and imaginary parts of native Python complex numbers are always interpreted as
floats whether or not you include a decimal point. Complex integers (known to mathematicians
as Gaussian integers) are not a native data type in Python, though in Chapter ?? you will learn
how to define new data types of your own, including Gaussian integers.

Python also allows Boolean constants, which can take on only the values True or False.
Various logical operations can be carried out on Boolean expressions, the most common of which
are and, or and not. Here are a few examples of the use of Boolean expressions.

>>> ToBe = True

>>> ToBe or (not ToBe)

True

>>> ToBe and (not ToBe)

False

When applied to Boolean data, the ampersand (&) is a synonym for the keyword and, and the
vertical bar (| ) is a synonym for or.

Boolean expressions will prove useful when we need to make a script do one thing if some
conditions are met, but other things if different conditions are met. They are also useful for
selecting out subsets of data contingent on certain conditions being satisfied. Relational operators
evaluate to Boolean constants, for example

>>> 1 < 2

True

>>> 1 > 2

False

>>> 1 == 2

False

Note the use of the == operator to test if two things are equal, as distinct from = which represents
assignment of a value to a container. The compound relational operators are >= (”Greater than
or equal to”) and <= (”Less than or equal to). Since relational expressions evaluate to Boolean
values, they can be combined using Boolean operators, as in

>>> (1>2) or not (6%5 == 0)

which evaluates to True

The final basic data type we will cover is the string. A string consists of a sequence of
characters enclosed in quotes. You can use either single quotees (’ or double quotes (") to define
a string, so long as you start and end with the same kind of quote; it makes no difference to
Python which you use. Strings are useful for processing text. For strings, the + operator results in
concatenation when used between two strings, and the * operator results in repetition when used
with a string and a positive integer. Here are some examples:

>>> hobbit1 = ’Frodo’; hobbit2=’Bilbo’
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>>> hobbit1 +’ ’ + hobbit2

’Frodo Bilbo’

>>> hobbit1 + 2*hobbit2

’FrodoBilboBilbo’

This is a good example of the way operations can mean different things according to what kind
of object they are dealing with. Python also defines the relational operator in for strongs. If s1
and s2 are strings, then s1 in s2 returns True if the string s1 appears as a substring in s2, and
False otherwise. For example:

>>> crowd = ’Frodo Gandalf Samwise’

>>> ’Frodo’ in crowd

True

>>> ’Bilbo’ in crowd

False

>>> ’Bilbo’ not in crowd

True

The relational operators < , == and > are also defined for strings, and are interpreted in terms of
alphabetical ordering.

In some computer languages, called typed languages, the names of containers must be de-
clared before they are used, and the kind of thing they are meant to contain (e.g. float, int, etc.
) must be specified at the time of declaration. Python is far more free-wheeling: a container is
created automatically whenever it is first used, and always takes on the type of whatever kind of
thing has most recently been stored in it, as illustrated in the following:

>>> x = 2. ; y = 4.

>>> x+y

6.0

>>> x = "We were floats,"; y = " but now we are strings!"

>>> x+y

’We were floats, but now we are strings!’

Python’s let-it-be approach to containers is very powerful, as it makes it possible to easily write
commands that can deal with a wide variety of different types of inputs. This puts a lot of power
in the hands of the user, but with this power comes a lot of responsibility, since Python itself isn’t
continually looking over your shoulder checking whether the type of thing put into a container is
appropriate for the intended use. A well designed command (as we shall learn to write) should
always do whatever checking of types is necessary to ensure a sensible result, though Python does
not enforce this discipline.

1.4 A first look at objects and functions

Everything in Python is an object. Objects in the computer world are much like objects in the
physical world. They have parts, and can perform various actions. Some of the parts (like the
pistons in an automotive engine) are meant to be the concern of the designer of the object only
and are normally hidden from the user. Others (like the steering wheel of a car) are meant to
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interface with other objects (the driver) and cause the object to carry out its various purposes.
Complex objects can be built from simpler objects, and one of the prime tenets in the art of
object-oriented programming is to design objects that are versatile and interchangeable, so they
can be put together in many ways without requiring major re-engineering of the components.

The parts of an object are called attributes. Attributes can be data, or they can be things
that carry out operations, in which case they are called methods. in fact, the attributes of an
object can be any object at all. In this section you will get a glimpse of how to use objects that
somebody else has created for you. Later in this chapter you’ll learn the basics needed to craft your
own custom-designed objects, and later chapters will develop more facility with objects, through
case-studies of how they can be used to solve problems.

The attributes of an object are indicated by appending the name of the attribute to the name
of the object, separated by a period. For example, an object called shirt can have an attribute
called color, which would be indicated by shirt.color. Since attributes can themselves be
objects, this syntax can be nested to as many levels as needed. For example, if an object called
outfit has shirt as an attribute, then the color of that shirt is outfit.shirt.color.

As an example, let’s consider the complex number object z which is created for you when
you write z = 1+2j. This has two data attributes, which give the real and imaginary parts as
shown in the following example:

>>> z.real

1.0

>>> z.imag

2.0

>>> z.real**2 + z.imag**2

5.0

The last command in this example illustrates the fact that you can use attributes in any Python
expression for which any other objects of their type (floats, in this case) can be used.

When an attribute is a method rather than simple data, then typing its name only gives
you some information on the method. In order to get the method to actually do something, you
need to follow its name with a pair of matched parentheses, (). For example, a complex number
object has a method called conjugate, which computes the complex conjugate of the number as
illustrated in the following example

>>> z.conjugate

<built-in method conjugate of complex object at 0x2c3590>

>>> z.conjugate()

(1-2j)

>>> z*z.conjugate()

(5+0j)

>>> (z*z.conjugate()).real

5.0

In this example, the conjugate method returns a value, which is itself a complex number, though
in general methods can return any kind of object. Some methods do not return anything at all,
but only change the internal state of their object, e.g the values of the attributes. The final part
of the example shows that you can get an attribute of an object without assigning a name to the
object.
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Many methods require additional information in order to carry out their action. The addi-
tional information is passed to the method by putting it inside the parentheses, and takes the form
of one or more objects placed within the parentheses, separated by commas if there are more than
one. These items are called arguments, following the mathematical terminology in which one refers
to an argument of a function. The type of object that can be passed as an argument depends on
what the method expects, and a well-designed method will complain (by giving an error message)
if you hand it an argument of a type it doesn’t know how to handle.

For example, string objects have a method upper which takes no arguments and returns
an all-capitalized form of the string. They also have a method count which takes a string as
its argument and returns an integer giving the number of times that string occurs in string to
which the method belongs. The replace method takes two strings as arguments, and replaces all
occurrences of the first argument with the second. For example, if s = ’Frodo Bilbo Gandalf’,
then

>>> s.upper()

’FRODO BILBO GANDALF’

>>> s

’Frodo Bilbo Gandalf’

>>> s.count(’o’)

3

>>> s.count(’Gan’)

1

>>> s.replace(’Bilbo’,’Samwise’)

’Frodo Samwise Gandalf’

Note that in in the upper and replace examples, the original string is left unchanged, while the
method returns the transformed string.

Some arguments are optional, and take on default values if they are not explicitly specified.
For example, the strip method of a string object, by default, strips off leading and trailing blanks
if it is not given any arguments. However, if you can optionally give it a string containing the
characters you want to strip off. Here’s an example of how that works if s = ’ ---Frodo--- ’:

>>> s.strip()

’---Frodo---’

>>> s.strip(’- ’)

’Frodo’

Causing a method to do something is known as invoking the method, rather like invoking a
demon by calling its name. This is also referred to as calling the method. Objects can themselves
be callable, in which case one calls them by putting the parentheses right after the object name,
without the need to refer to any of the object’s methods.

In computer science, a callable object is often referred to as a function, because one of
the things a callable object can do is define a mapping between an input (the argument list)
and an output (the value or object returned by the function). This is pretty much the way
mathematicians define functions. However, functions in a computer language are not precisely
analogous to functions in mathematics, since in addition to defining a mapping, they can change
the internal state of an object, or even change the state of objects contained in the argument list.
Because of the generality of what they can do, functions in Python need not return a value, and
for that matter need not have any argument list within the parentheses.
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Nonetheless, many functions in Python do behave very much like their counterparts in
mathematics. For example, the function abs implements the mathematical function which returns
the absolute value of an argument x, namely |x|. Just as in mathematics, the definition of the
function depends on the type of argument, the allowable types being real (called float in Python)
and complex. For a complex argment z with real part x and imaginary part y, the absolute value
is defined as

√
x2 + y2, whereas for a real argument, the absolute value of x returns x itself if x ≥ 0

and −x if x < 0. A well behaved computer function checks for the type of its argument list and
behaves accordingly; it also makes sure the number of arguments is appropriate.

>>> abs(-1.)

1.0

>>> abs(1+1j)

1.4142135623730951

>>> abs(1,2)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: abs() takes exactly one argument (2 given)

Python includes a small number of predefined functions (like abs) which are available as
soon as the interpreter is started. Many of these convert data items from one type to another.
For example, the function int converts its argument to an integer. If the argument is a float,
the conversion is done by truncating the number after the decimal point. Thus, int(2.1) returns
the integer 2, and int(-2.1) returns the integer -2. Similarly, the function float converts its
argument to a float. The function complex, when called with two integer or float arguments,
returns a complex number whose real part is the first argument and whose imaginary part is the
second argument. This function provides a further indication of the versatility of Python functions,
as the function examines its argument list and acts accordingly: you don’t need a different function
to convert pair of int data types vs. a pair of float data types, or even one of each. For that
matter, if complex is called with just a single argument, it produces a complex number whose real
part is the float of the sole argument and whose imaginary part is zero. Thus, complex(1,0)
and complex(1.) both return the complex number 1.+0.j. The ability to deal with a variety
of different arguments goes even further than this, since the type conversion functions can even
convert a string into the corresponding numerical value, as illustrated in the following example:

>>> x = ’1.7 ’;y=’ 1.e-3’

>>> x+y

’1.7 1.e-3’

>>> float(x)+float(y)

1.7009999999999998

(note the effect of roundoff error when the addition is performed). This kind of conversion is very
useful when reading in data from a text file, which is always read in as a set of strings, and must be
converted before arithmetical manipulations can be performed. Going the other way, when writing
out results to a text file, it is useful to be able to convert numerical values to strings. This is done
by the function str, whose use is illustrated here:

>>> x=2;y=3

>>> str(x) + ’ plus ’ + str(y) + ’ equals ’ + str(x+y)

’2 plus 3 equals 5’
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Python functions and methods can have optional arguments of two types: positional ar-
guments, which follow the obligatory arguments but can be left off if not needed, and keyword
arguments, which come at the end of the argument list and specify arguments by name, in the
form name = value. For example, the function round(...) can be called with a single argument
and in that case rounds the argument to the nearest integer. If called with an optional integer
second argument, the second argument specifies the number of digits to round to:

>>> round(1.666)

2.0

>>> round(1.666,2)

1.67

A function f with an obligatory argument x and a keyword argument called power would be called
using a statement like f(0.,power= 2). We will encounter specific examples of such functions a
bit later.

You will learn how to access more extensive libraries of mathematical functions in Section
1.5, and how to define your own functions in Section 1.10.

Unlike objects in the physical world, software objects, if well designed come equipped with
a built-in manual that can’t be lost. Python has extensive built-in help functions, which allow the
user to find out what is in an object and how it can be used. Given that so much of Python is found
in various language extensions the Python community has written, the availability of embedded
documentation is beholden to the good behavior of the programmer. Python fosters a culture of
good behavior, and tries to make it easy for developers to provide ample help and documentation
integrated with the tools they have developed.

The main ways of getting help in Python are the help() and dir() functions. For example,
you have learned about the strip() method that is one of the methods available to strings.
Suppose you didn’t know what methods or data attributes went along with a string, though?
Rather than going to a handbook, you can use the dir() function to find out this sort of thing.
For example, if a is a string, you can type dir(a) to get a list of all its methods, and also all
its data attributes (e.g. its length). Then, if you want to know more about the strip() method
you can type help(a.strip) (Warning: don’t type help(a.strip()), which would look for help
items on the words in the content of the stripped string!). Both strings and lists have many useful
and powerful methods attached to them. Many of these will be illustrated in the course of the
examples given in the rest of this Workbook, but you are encouraged to explore them on your own,
by finding out about them using dir() and help(), and then trying them out.

Typically, when you do a dir on an object, several of the attributes returned will have names
the begin and end with a double underscore, e.g. ’__gt__’ in the case of strings, which the string
object uses in order to determine whether one string is considered greater than another. This is
the naming convention Python uses for private attributes. Private attributes are mainly for the
object’s own internal use, and are not generally meant to be accessed directly by the user. Some
object-oriented languages actually completely hide private methods from the user, but in Python
the distinction is purely informative, and the naming convention is just meant to provide a hint to
the user as to which methods are likely to be of most interest.

So when in doubt, try help and dir. One or the other will give you some useful information
about just about anything in Python.
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1.5 Modules

To do almost any useful science or mathematics with Python, you will need to load various libraries,
known as modules. Actually, a module can be just an ordinary Python script, which defines various
functions and other things that are not provided by the core language. A module can also provide
access to high-performance extensions written using compiled languages.

To make use of a module with name myModule, you just type: import myModule. Objects
in the module are accessed by prepending the module name to the object name, separated by a
period, just the way you refer to attributes of an object. In fact, a module is itself a Python object,
and the various things defined in it are its attributes. The attributes of a module can be constants,
functions, or indeed any object that can be defined in Python.

For example, the standard math functions are in the module math, and you make them
available by typing import math. To see what’s there, type dir(math), as you would for any
other object. Now, to compute sin(π/7.) for example, you type math.sin(math.pi/7.). To
find out more about the function math.sin, just type help(math.sin). If you don’t like typing
math.sin, you can import the module using from math import * instead, and then you can just
use sin,cos, etc. without the prefix. Python also allows you to refer to a module with a name of
your choosing. For example, if you import the math module using the command import math as

m, you can refer to the functions in the module as m.sin and so forth. This way of importing is
often used to provide a shorthand for a module that has a long or unwieldy name.

The math module contains all the common trigonometric functions (sin, cos, tan) and their
inverses (asin, acos, atan ), as well as the exponential function exp and the natural logarithm
log. The trigonometric functions work with radians rather than degrees. math also defines the
constants math.pi and math.e. For a full listing of the functions in math, do help(math) and then
do help on any function for which you require additional information, e.g. help(math.sinh).

The math functions in the math module are meant to work over the real numbers. They will
return an error message if given a complex argument, or if the result of the operation would be a
complex number. All of the common math functions can be extended to work over the complex
numbers, though. If you want to use the complex versions, you need to import the cmath module
instead of math. The following example illustrates Euler’s Identity, eiπ = −1 (within roundoff
error):

>>> cmath.exp(1j*math.pi)

(-1+1.2246467991473532e-16j)

>>> cmath.log(-1.)

3.141592653589793j

Or, to take an example using the inverse sine function, math.asin(2.) returns an error message
since | sin(x)| ≤ 1 for any real x. However, cmath.asin(2.) happily returns -1.3169578969248166j.

1.6 Lists and tuples

1.6.1 List Basics:Creation and indexing

Lists are among the most widely used and versatile data structures in Python. Lists contain any
kind of data at all, and the elements can be of different types (floats, int, strings, even other tuples
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or lists, indeed any kind of object at all).

Lists are defined by putting the items of the list between square brackets, separated by
commas. Here is an example showing how to define a list and get at an element:

>>> a = [1,’two’,3.0e4]

>>> a[0]

1

>>> a[1]

’two’

>>> a[2]

30000.0

>>> a[-1]

30000.0

>>> a[-2]

’two’

Note that the first item has index zero, and the indices of the other count from there. Negative
indices count backwards from the last item in the list, as illustrated in the final two index references
in the example.

Sublists can be made by specifying a cross section in place of an integer for an index. A
cross section has the general form i:j:k which specifies the collection of indices starting with i,
up through j-1, by increments of k. For example if a is [’first’,’second’,’third’,’fourth’]
then

>>> a[0:4:2]

[’first’, ’third’]

>>> a[1:3:1]

[’second’, ’third’]

>>> a[1:4:1]

[’second’, ’third’, ’fourth’]

>>> a[0:4:2]

[’first’, ’third’]

Cross sections of lists return a new list which copies the selected data from the original list. If you
modify an element of a list cross section, the original list is unaffected. Similarly, modifying an
element of the original list after a cross-section is created does not affect the cross-section. Thus,

>>> b = a[0:4:2]

>>> b[0] = ’Gotcha!’

>>> b

[’Gotcha!’, ’third’]

>>> a

[’first’, ’second’, ’third’, ’fourth’]

>>> a[0] = ’No you did not!’

>>> b

[’Gotcha!’, ’third’]

When using cross-sections it is important to keep the distinction between copy and reference in
mind. Lists are just one of many kinds of indexable objects in Python that can accept cross-
sections as indices, and some of these objects behave differently from lists with regard to the issue
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of whether the cross section is a new object or an alternate way to refer to the data in the original
object. The mathematical numpy arrays you will learn about in Section 1.8, treat cross sections as
references rather than copies.

The cross section notation allows for default values that allow you to save some typing in
common situations. In i:j:k the default for the increment k is 1, so that i:j:1, i:j: and i:j all
mean the same thing. The default for i is to start from the beginning of the list and the default
for j is to start from the end of the list, so that :3:2 is the same as 0:3:2. If the list has length
n, then 1:n+1 is the same as tt 1:; both represent the elements starting fron the second one in the
list and continuing through the end of the list. The cross section ::3 would represent every third
element of the list starting with the first and continuing through to the end.

A list is an example of an indexable object. Indexing provides a systematic way of retrieving
an item with some specified characteristics from a collection of items. In Python, indexing is a
general concept, and any object can be indexable if the designer of the object has provided a way
to associate an index with an item. The key used to index the collection is always enclosed in
square brackets after the name of the object. For lists, the index is an integer or collection of
integers, but Python has a very general notion of indexing, and it is common to find objects which
are indexed by names (given as strings), arrays of boolean values, or indeed any object that the
designer finds convenient.

1.6.2 List methods and functions that return lists

What if you want to append an item to the end of an existing list? Lists are objects, and have an
append method that does this. If a is the list [1,’two’] then the following shows how to append
the float 3.5 to the list:

>>> a.append(3.5)

>>> a

[1, ’two’, 3.5]

The extend method works just like append except that it takes a list as an argument and appends
all the elements, e.g. typing a.append([4,5]) after the above example turns a into [1, ’two’,

3.5, 4, 5]. What if we want to put a new item someplace other than at the end of the list?
The insert method does this for us. It takes two arguments. The first is an integer which gives
the position (counting from zero) before which the new item is to be inserted, and the second
argument is the item to be inserted. Thus, typing a.insert(1,’one’) turns a into [1, ’one’,

’two’, 3.5, 4, 5]. That takes care of the basic ways to add a new item to a list. How do you
remove an item? The pop method is the most generally useful way to do this. When invoked
without an argument, pop() removes an item from the end of the list, but also returns the item
in case you want to do something with it rather than just discarding it. It ”pops” and item off
the end of the list. Here’s an example illustrating the use of pop() with the list a we have been
working with:

>>> a.pop()

5

>>> a

[1, ’one’, ’two’, 3.5, 4]

>>> a.pop()

4
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>>> a

[1, ’one’, ’two’, 3.5]

When used with an integer argument, pop(i) pops off an item from position i in the list instead
of the last position. For example, a.pop(0 would pop off the first item of list a.

The pop method is useful when an item in a list can be discarded after it is processed; if
you wanted to keep the original data in the list, you would access the item using a[i] rather than
a.pop(i). Using pop saves you the trouble of keeping track of which items have already been
processed, and also automatically frees up storage by getting rid of raw data that is no longer
needed.

Python also provides the remove method for pruning an item from a list without returning
its value. It takes a mandatory argument, which is the item to be removed, and it removes the
first occurrence of this item in the list. Note that the argument of remove is the item itself, and
not the index of the item; the item passed to remove will only be removed if it is an exact match
to something in the list. The way this works is best explained by example. If Hobbits is the list
[’frodo’,’bilbo’,’gandalf’,’bilbo’] then Hobbits.remove(’bilbo’) is the list [’frodo’,

’gandalf’, ’bilbo’], but Hobbits.remove(’Bilbo’ would return an error message.

Lists have a number of other useful methods. Suppose L is the list [’a’,’b’,’c’,’a’,’a’].
The count method returns the number of times the argument appears in the list. For example
L.count(’a’) returns the value 3. The index method returns the index value of the first exact
occurence of the argument. For example L.index(’a’) returns0, and L.index(’c’) returns 2.
Other list methods transform a list in-place instead of returning a value. The sort method sorts
the list in ascending order, and the reverse method reverses the order in the list. The following
examples illustrate the use of these methods:

>>> L.sort()

>>> L

[’a’, ’a’, ’a’, ’b’, ’c’]

>>> L.reverse()

>>> L

[’c’, ’b’, ’a’, ’a’, ’a’]

Remember, just as for any other object, you can find out a list’s methods by calling dir(...)

with the list as it’s argument, and then find out what any of the methods does by calling help(...)

on the method. For example, if L is a list, then calling dir(L) will tell us (among other things)
that the list has a method called extend. Then, calling help(L.extend) will describe what that
method does. Note that the name of the method you are calling for help on always needs to
be attached to its object, since a method of the same name could well do something completely
different when used with a different kind of object.

Python’s handling of lists allows multiple assignments of values to variables with a single
statement. Specifically, if a list of variables appears on the left hand side of an assignment and a
list of values of equal length appears on the right hand side, then values are assigned in order to
the items on the left. In this construction, enclosing the items of a newly created list in brackets
is optional. Thus, if L is the list [1,2,3] the following statements all assign the value 1 to x, 2
to y, and 3 to z:

x,y,z = L

[x,y,z] = L
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x,y,z = 1,2,3

x,y,z = [1,2,3]

and so forth. In doing computations, it is often necessary to exchange the values of two variables,
for example in preparing for the next step of an iteration. Python’s multiple-assignment feature
provides a compact way of doing this, as illustrated in the following:

>>> next=1;previous=2

>>> next,previous = previous,next

>>> next

2

>>> previous

1

As always in Python, the values being put into the containers can be objects of any types, not just
numbers.

Many methods and functions return lists. For example, if S is the string ’First,Second,Third’
, then S.split(’,’) returns the list [’First’, ’Second’, ’Third’]. Indeed, returning a list is
one of the common ways for a function or method to return multiple results. This can be quite
handy when used together with Python’s multiple-assignment feature. For example, the statement
x,y,z = S.split(’,’) would set x to ’First’ and so forth.

Another useful built-in function which returns a list is range, which returns lists of integers.
range(n) returns a list of integers up to but not including n, starting with zero, e.g. range(3)

returns [0, 1, 2]. range(m,n) does the same, except it starts with m (which can be negative).
When used in the form range(m,n,inc) the integers in the list are incremented by inc (which
must be an integer), e.g. range(0,5,2) returns [0, 2, 4]. range(0,6,2) returns the very same
list, because the list returned always stops one short of the specified endpoint n. The increment can
be negative, in which case the list still stops one item short of the endpoint n, e.g. range(6,0,-2)
returns [6, 4, 2] . The way the endpoint is handled in range can be confusing, but if you keep
in mind that the specified endpoint n is always excluded from the list returned, you’ll rarely make
a mistake. Remember, too, that since Python is an interpreted language, if you ever get confused
about whether a call to range does what you want it to do, you only need to try out an example
in the interpreter. Note that range produces only lists of integers, and requires that its arguments
be integers. Later you will learn various ways to conveniently create lists of floats or other numeric
types.

1.6.3 Operators on lists

Arithmetic operators like + and * are called binary operators, not because they operate on binary
digits, but because they take two items as input and produce a third item. For example the
statement 1 + 2 implements a function that takes the arguments 1 and 2 and maps them to the
sum, i.e. 3. In object-oriented languages like Python, binary operations can be defined for any
object, and a number of binary operators are defined for lists. The same arithmetic operator
symbols are also used for other objects, but they can mean very different things, depending on
what the designer of the object had in mind. For lists, the most useful binary operator is +, which
is used to concatenate lists, as in:

>>> a = [1,2];b=[’one’,’two’]
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>>> a+b

[1, 2, ’one’, ’two’]

For lists, the * operator is defined only if the other item in the pair is an integer, and in that case
creates a list consisting of multiple repetitions of the contents of the original list, as in:

>>> 3*[1,2]

[1, 2, 1, 2, 1, 2]

The * operator is not by default defined for pairs of lists, and attempting to use it on a pair of
lists will raise an error message.

There are also a number of binary relational operators defined for lists, which take a list and
another object as inputs, and produce a Boolean truth value as output. Of these, the in operator
is one of the most useful. The in operator allows you to find out if a thing is in a list, It is used
as follows:

>>> town = [’frodo’,’bilbo’,’gandalf’]

>>> ’frodo’ in town

True

>>> ’samwise’ in town

False

>>> ’frod’ in town

False

The final example shows that the in operator requires exact equality of the item being matched.
The operator works with Python objects of any type, including integers and other arithmetic
data types, but because of round-off error its utility for floats and similar data types is somewhat
limited. The boolean values produced by in can be used in any boolean expression. For example,
(’frodo’ in town)or(’samwise’ in town) evaluates to True.

The equality relational operator == returns True if each item in the first list is identical to
the corresponding item in the second list. Here are some examples:

>>> [1,’frodo’] == [1,’frodo’]

True

>>> [0,’frodo’] == [1,’frodo’]

False

>>> [1] == [1,’frodo’]

False

>>> [1,’frodo’] == [’frodo’,1]

False

The other relational operators, e.g. < and > are also defined for lists, but their meanings are a bit
obscure and they are less commonly used.

1.6.4 List comprehension: Building new lists from other lists

List comprehension refers to the ability to create new lists by processing elements of old lists. The
operations on lists we have just seen are a simple form of list comprehension, but Python also
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supports a much more general form. Many programming tasks that would require multiline loops
and conditionals in other programming languages can be carried out compactly in Python using
list comprehension. Adept use of list comprehension can make a program easier to write, easier to
get working, and easier for others to understand.

The most basic form of a list comprehension is uses the expression

[ expression for variable in list [

to create a new list, where expression is any Python expression, generally dependent on the dummy
variable variable, and variable loops through all the elements of the list list . List comprehension
in Python is especially powerful because the processing can loop over the elements of any list or
list-like object. Here is an example computing the squares of a list of integers:

>>> X = [1,2,3]

>>> [val*val for val in X]

[1, 4, 9]

and here is an example converting a list of numbers in text form into floating point numbers and
squaring them:

>>> TextNums = [’1.5’,’2.5’,’3.5’]

>>> [float(s)**2 for s in TextNums]

[2.25, 6.25, 12.25]

You can even loop over lists of functions:

>>> [f(.5) for f in [math.sin,math.cos,math.tan] ]

[0.479425538604203, 0.8775825618903728, 0.5463024898437905]

Indeed you can loop over lists of any objects you like.

Actually, Python allows you to loop over a much broader class of objects than just lists.
Just as lists are an example of an indexable object, they are also an example of a much broader
class of objects called iterable objects. An iterable object is an object that can specify a start, a
procedure to get from the current item in a sequence to the next, and a procedure for determining
when to stop. Any indexable object is iterable, but an iterable need not be indexable. Iterable
objects can be more efficient than lists, because they can compute items in sequence without ever
storing all the items in the sequence.

The range(...) function is often used with list comprehension to create a regularly spaced
list of floating point numbers, which can then be processed further as in:

>>> xList = [2.*math.pi*i/5. for i in range(6)]

>>> xList

[0.0, 1.2566370614359172, 2.5132741228718345, 3.7699111843077517,

5.026548245743669, 6.283185307179586]

>>> [math.sin(x) for x in L]

[0.0, 0.9510565162951535, 0.5877852522924732, -0.587785252292473,

-0.9510565162951536, -2.4492935982947064e-16]
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The basic list comprehension construct can be qualified by appending a conditional if ...

clause after the for clause, as in:

>>> xList = [-2.,-1.,0.,1.,2.]

>>> [x**.5 for x in xList if x >= 0.]

[0.0, 1.0, 1.4142135623730951]

The phrase following the if keyword can be any boolean expression. One can also provide for an
alternative action when the conditional is not satisfied, by using a if ... else ... clause, but
in that case, the conditional clause must be placed before the for clause, as in:

[x**.5 if x>= 0. else ’Imaginary’ for x in xList]

[’Imaginary’, ’Imaginary’, 0.0, 1.0, 1.4142135623730951]

Python has a number of built-in functions that operate on lists. len(...) returns the length
of its argument, max(...) returns the maximum of the items in the list, min(...) returns the
minimum and sum(...) returns the sum. The latter three work only if all the items in the list are
object for which the respective operations (comparison or addition) are defined. Theses functions
make it easy to compactly compute statistics of lists using list comprehension. For example, the
following computes the average and variance of a list of numbers contained in L:

avg = sum(L)/float(len(L))

var = sum( [x*x for x in L])/float(len(L)) - avg*avg

Make up a list of numbers yourself and try this out.

Loops can be nested within list comprehensions, and nesting can also be used to create list
of lists. Try out the following for some short list of numbers xList to see if you can understand
what they do and why:

[x+y for x in xList for y in xList]

[ [i*x for x in xList] for i in range(3)]

Python provides the built-in functions reversed(...), enumerate(...) and zip(...)

to help make list comprehension more versatile. These functions work with any iterable object,
and produce iterators rather than lists, so they are efficient. The function reversed(...) loops
allows one to loop over a list or other iterable object in reverse order, from last element to first.
For example, in order to compute the reciprocals of an ascending list of numbers but have them
come out in ascending order, we could do

>>> data = [1.,5.,10.,100.]

>>> [1./x for x in reversed(data)]

[0.01, 0.1, 0.2, 1.0]

This could also be done by executing data.reverse() before the list comprehension to reverse
the list in-place, but aside from being less efficient and requiring an extra line of code, using the
data.reverse() method alters the list data, which you might want to use unreversed at some
later point. Alternately, one could give the list being created a name and then use the reverse()

method of this list afterwards to reverse it in place, but at the cost of using two statements instead
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of one. Further, you might not need to put the list into a container for future use (e.g. you might
want to pass the list directly as the argument of a function).

The function enumerate(...) is useful when one needs to do a calculation that depends
on the index of an element in the list (i.e. its position in the list). It does this by creating a
sequence of pairs in which the first element is the index (starting from zero) and the second is the
corresponding item in the list,e.g.

>>> L = [’a’,’b’,’c’]

>>> [pair for pair in enumerate(L)]

[(0, ’a’), (1, ’b’), (2, ’c’)]

enumerate(...) is typically used together with Pythons multiple assignment feature, as in the
following example which appends an index number to each name in the list

>>> [name+str(i) for i,name in enumerate(L)]

[’a0’, ’b1’, ’c2’]

Or, to give an arithmetic example, suppose xList is a list of floats and we want to create a list
containing each item raised to the power of its index. This can be done as follows:

>>> xList = [2.,5.,11.]

>>> [x**i for i,x in enumerate(xList)]

[1.0, 5.0, 121.0]

zip(...) is like enumerate, except that it can take an arbitrary number of iterables as
arguments and instead of creating index-item pairs creates tuples consisting of the corresponding
items of the inputs – it ”zips” together items from a collection of lists. To compute a list consisting
of the sums of the squares of corresponding elements of lists A, B and C, we could do

[a**2 +b**2 + c**2 for a,b,c in zip(A,B,C)]

Here is an example computing the covariance statistic of data contained in lists xList and yList:

covariance = sum([x*y for x,y in zip(xList,yList)])/float(len(xList))

and here is an example using zip and list cross sections to compute the correlation between
successive elements in a list of data dataList

sum( [val*nextval for val,nextval in zip(data[:-1],data[1:])] )/(len(data) - 1.)

If you are having trouble understanding how this example works, try making up a data array and
printing out the two cross sections and the output of zip(...) to the screen. Note that since the
output of zip(...) is an iterator and not a list, you need to use it in a simple list comprehension
to build a list in order to see what it puts out; simply typing the function into the interpreter
won’t give you the results you want. Alternately, you can use the print statement to print out
the results.

Almost anything you can do using enumerate and zip could also be done by looping over an
integer index and using the index directly. The main rationale for these functions is to eliminate
the introduction of unnecessary indices, which makes code less cluttered and easier to follow.
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1.6.5 References or Copy?

Lists illustrate a fundamental aspect of objects, common to all object-oriented languages. You
must always keep straight when you are making a fresh copy of an object, as opposed to just
creating an alternate name by which the same object may be referenced. Here is an example that
creates an alternate reference:

>>> A = [’one’,’two’,’three’]

>>> B=A

>>> B[0] = 1

>>> A

[1, ’two’, ’three’]

Changing an element of B changes the original list, because B is just another reference to the same
thing. The assignment operator in Python, when applied to an object name, always works this
way: it creates a reference rather than a copy (except when the object on the right hand side is a
basic data type such as a number – you cannot change the value of 2 ) If you really wanted B to be
a copy rather than a reference, you would need to deliberately create a fresh copy. This illustrates
one way of doing it, using a cross-section:

>>> A = [’one’,’two’,’three’]

>>> B = A[:]

>>> B[0] = 1

>>> A

[’one’, ’two’, ’three’]

>>> B

[1, ’two’, ’three’]

However, not all indexable objects in Python treat cross-sectons as fresh copies; that is something
that is left in the hands of the designer of the object. A copy of the list could also be created
using the statement B = list(A). There is also a module copy which handles various kinds of
copy operations for objects of arbitrary complexity, but for lists the cross-section method works
fine. Some objects also have their own built-in methods for providing copies.

1.6.6 Lists vs Tuples

Python distinguishes between lists and tuples. Tuples are a lot like lists, except that lists can be
modified but tuples cannot. Lists are denoted by square brackets, whereas tuples are denoted by
parentheses. You can define a tuple, but once defined you cannot modify it in any way, either
by appending to it or changing one of its elements – tuples are immutable objects. Certain kinds
of operations can be done much more efficiently if Python knows that the objects in use are
immutable, which is the main reason for introducing tuples. In cases where Python commands
specifically require a tuple rather than a list, in which case you can turn a list (say, mylist) to a
tuple by using the function tuple(mylist). Likewise you can turn mytuple into a list by using
list(mytuple); then you can change it, and turn it back to a tuple if you need to.

Note that a string is not a list, but a string is also an indexable object which behaves a lot
like a list. If s is the string d, and s[1:3] evaluates to ’abcde’ , then s[3] evaluates to the string
’d’ , and s[1:3] evaluates to ’bc’ . However, lists, like tuples are immutable, so an assignment
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like s[3] = ’X’ will return an error message. All the string methods, like replace that change
the string leave the original string intact but return a new string with the desired changes made.

1.7 Dictionaries

Dictionaries are another class of fundamental Python data structure. Dictionaries are a lot like
lists, and are indexable objects, but the index can be any immutable Python object, which is
referred to as a key. Python dictionaries are a generalization of the everyday use of the word, in
that they are used to look up the data corresponding to a key. For an everyday dictionary, the
key would be a word, and the data would be the word’s definition, and while this can be directly
implemented as a Python dictionary, and indeed often strings are used as keys. Compared to an
everyday dictionary, a Python dictionary can use a wider variety of objects as keys and can store
any kind of object as the corresponding data.

A dictionary consists of a sequence of items separated by commas, enclosed in curly brackets:
{ item1, item2,... } . Each item consists of a pair separated by a semicolon, in which the first
item is the key and the second is the value, i.e. key:value . The following dictionary would
associate molecular weights with some common compounds:

D = {’H2O’:18.,’CH4’:16.,’CO2’:44.,’H2’:2}

and then D[’CO2’] would return the value 44. and so forth. A more common way to create a
dictionary would be to first create an empty dictionary and then add items to it by setting the
values of keys.

D = {}

D[’H2O’] = 18.

D[’H2’] = 2.

...

and so forth. The keys need not first be created – they are automatically added to the dictionary
the first time they are used. Subsequent uses of a key reset the value associated with that key.
There is always just one value associated with a given key in a dictionary.

Part of the power of dictionaries is that dictionary lookups are extremely fast, even if the
dictionary is huge.

An attempt to look up a key whose value has not been set will raise an error message, so it
is frequently necessary to check if the key is present before looking it up. This can be done using
the in operator as in the following:

>>>’CO2’ in D

True

>>>’C2H6’ in D

False

Dictionaries, like lists, are iterable, which means you can loop over them in comprehensions
and other kinds of loops you will learn about in Section ??. Loops iterate over the keys, as in the
following example:
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>>>[’MolWt of ’ + key + ’ is ’+str(D[key]) for key in D]

[’MolWt of H2 is 2’,

’MolWt of H2O is 18.0’,

’MolWt of CO2 is 44’,

’MolWt of CH4 is 16.0’]

Note that the keys are not processed in the same order as they appear in the dictionary; this has
to do with the way dictionaries are organized so as to allow fast lookup.

Dictionaries provide a very powerful tool for organizing computations, but are relatively
underutilized in computational science. In subsequent chapters we will encounter many examples
of how dictionaries can be used to streamline the implementation of computations.

1.8 The numpy array module

1.8.1 numpy array basics

Python lists look a little bit like the objects known to mathematicians and physicists as vectors,
but in reality the only point of similarity is that both kinds of objects are indexable by integers.
Vectors are special, in that they have a fixed dimension and consist of objects of identical type
which permit arithmetic operations such as addition and multiplication (e.g. 3 real numbers in the
case of a vector describing a point in space). Two vectors can be added to yield a third vector of the
same dimension, and a vector can be multiplied by a scalar – a number of the same type that makes
up the contents of the vector. Vectors can be transformed linearly through multiplication by a
matrix of suitable dimensions. Vector spaces are so ubiquitous in mathematics and computational
science that one needs a class of Python objects that implement something much closer to vector
spaces.

This is where the real power of the extensibility feature of Python comes in. When the
language is missing some feature some community really needs, the community gets together and
writes a module which fills the bill. Sometimes this is a cooperative process. Sometimes it is an
evolutionary process, with many competing extensions co-existing until one comes to dominate.
For scientific arrays, the solution that has come to the fore is the numpy module, which provides
highly efficient array objects. The numpy module actually implements a class of objects somewhat
more general than a vector space as conventionally defined in mathematics, but it contains all the
usual vector and linear algebra concepts as a subset.

numpy is not written in Python. It is written in a very highly optimized compiled language,
which is why it is so efficient. The general strategy for high performance computation in Python
is to do as little as possible at the compiled level, building tools there that are very general and
of broad applicability. One seeks to isolate the computationally intensive work in a few compiled
toolkits, and build more complex models out of these building blocks at the Python level.

numpy provides one of the most fundamental building blocks for scientific programming in
Python, and most other Python modules doing numerical analysis or data analysis deal with numpy

arrays. numpy not part of the core Python language, but so universally useful that it is included
with most modern Python distributions. The numpy module is imported like any other module,
using import numpy.

A numpy array is characterized by three properties:
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• A data type, which is the type of data contained in each item of the array. All the items of
the array must be of the same type. Typical data types used for arrays are integer, float and
complex, but a number of other types are available. Note that the integers stored in numpy

arrays are fixed-length integers, not arbitrary length Python long integers.

• A rank, which is the number of indices used to index elements of the array. A rank zero array
is called a scalar, and is just a number referred to without any indices at all. A rank 1 array
is a vector, indexed by a single integer, e.g. a[i] where i is some integer. A rank 2 array
is a matrix, indexed by a pair of integers within brackets, e.g. a[i,j]. Arrays can have as
high a rank as the application demands. In this book, we will generally refer to each index
as belonging to an axis of the array. For example a rank 2 array has two axes, the first of
which is axis 0 and the second of which is axis 1. As for lists, the indices of numpy arrays
start at zero.

• A shape, which specifies the length of the array along each axis. For example, for a rank 2
array a having shape (5,3) the index i in a reference like a[i,j] ranges over the integers 0,
1,2,3,4 and the index j ranges over 0,1,2. Negative indices are interpreted the same way
as they are for lists. For example, if a is a rank 2 array with shape (n,m), then a[-1,-2]

would be shorthand for a[n-1,m-2] .

Arrays of rank 1 are often called ”one-dimensional arrays” and arrays of higher rank are often
called ”multidimensional arrays” (e.g. a matrix being a ”two-dimensional array”) but this common
terminology risks confusion with other uses of the term ”dimension” in mathematics.

All the examples in this section presume you have first imported numpy in your current
interpreter session, before entering any other commands.

1.8.2 Creating and initializing a numpy array

Before you can use a numpy array, you first need to create it. There are many ways to create an
array. One common way is to create an array filled with zeros and then fill in the data you want.
For example to create a rank 1 array called a, having length 3 and containing floats, and then set
the values to what you want, you would do

>>> a = numpy.zeros(3,’float’)

>>> a

array([ 0., 0., 0.])

>>> a[0] = -1. ; a[2] = 1.

>>> a

array([-1., 0., 1.])

The first argument of numpy.zeros is the shape of the array, and the second is the data type.
Actually, ’float’ is the default data type for numpy.zeros, so the second argument is optional.
The shape would ordinarily be specified as a tuple of integers giving the length of each axis, i.e.
(3) for the example above, but for rank zero arrays the parentheses can be left out. To create a
2x2 matrix (rank 2 array) of float zeros, we would instead do

>>> M = numpy.zeros((2,2),’float’)

>>> M

array([[ 0., 0.],

[ 0., 0.]])
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numpy.ones(...) works just like numpy.zeros(...) except that it fills the array with ones
instead of zeros.

You can determine the shape and data type of an array from the shape and dtype attributes.
e.g for the array defined above,

>>> M.shape

(2, 2)

>>> M.dtype

dtype(’float64’)

The latter tells us that the specific kind of float this kind of array contains is a 64-bit float. Unless
you have a rather poor memory, it wouldn’t be necessary to recover the information about the array
from these attributes if you have created the array yourself, but the attributes are very useful when
writing functions that process arrays, since the necessary information can be recovered from the
attributes. If we want to create an array with the same shape and data type as M, but containing
all ones, we could just use the statement numpy.ones(M.shape,M.dtype) .

Unless the array is very small, it is cumbersome to set the elements individually. numpy.array(...),
which converts lists to arrays, can be used with list comprehension to conveniently set the values
of arrays of arbitrary shape. To create a rank 1 array with evenly spaced values, we could use

>>> a = numpy.array([.1*i for i in range(5)])

>>> a

array([ 0. , 0.1, 0.2, 0.3, 0.4])

Higher rank arrays are defined by using lists of lists, as in

>>> numpy.array([ [1.,2.] , [3.,4.] ] )

array([[ 1., 2.],

[ 3., 4.]])

This, too, can be used with list comprehension to create higher rank arrays. The following line
creates a 5x10 integer rank 2 array (a matrix) whose rows contain powers of a list of numbers:

numpy.array( [ [ i**j for i in range(5)] for j in range(10)] )

Try it out and see how it works. Note that numpy.array(...) by default chooses the data type
from the data type of the the input lists. If you want to force a conversion to a specific data type
you can use the optional dtype keyword argument. If you wanted the previous example to create
an array of 128 bit floats, you would use

numpy.array( [ [ i**j for i in range(5)] for j in range(10)] ,dtype = ’float128’)

Another useful way to create an array is the function numpy.arange(...), which works
just like the Python built-in function range(...) except that it creates a rank 1 numpy array
instead of a list. By default, it creates an array of integers, and while it can also accept float
arguments and create arrays with non-integer increments, the typical use of arange is to create
numpy integer arrays, which are subsequently processed by various other operations into float
arrays. numpy.linspace(...) is useful for creating a float array of equally spaced values with
specified starting point (the first argument) ending point (the second argument) and number of
points. The statement
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x = numpy.linspace(0.,2.,n)

produces the same array as the statement

numpy.arange(5)*(2./(n-1))

Try this out and verify that it works. Remember that you will need to set n to some integer value
before executing either one of these statements.

1.8.3 numpy self-documentation features

numpy is a very large and versatile module, and the results of the standard Python help(...)

function are not always very illuminating. numpy provides a special documentation function,
numpy.info(...), which provides more detailed and user-friendly information on any numpy rou-
tine or object passed to it as an argument, generally providing some examples of usage. Try
numpy.info(numpy.linspace) and a few other queries to get a feel for the kind of information
that is available.

1.8.4 Operations on numpy arrays

Once an array is created, various operations performed with existing arrays automatically create
new arrays to store the results. This is the real power of numpy arrays, since the array operations
are extremely fast, even for large arrays. numpy arrays support all the operations that will be
familiar to those who have dealt with linear algebra or vector Two arrays of the same shape can
be added to yield a new array of the same shape, whose elements are the sum of the corresponding
elements of the arrays added. Also, a numpy array can be multiplied by a scalar, which yields a
new array of the same shape, each of whose elements are multiplied by that scalar. You needn’t
create a special numpy scalar for operations of this sort, though that is possible.

Adding a scalar to an array is not a standard vector space operation, but this kind of
operation is so common in other uses of arrays in computational science that it is implemented
for numpy arrays, in the following way. If you add a scalar to an array, it will be ”broadcast” to
an array of identical values of the same type, with the same shape as the array to which you are
adding the scalar. Thus, if A is some numpy array the statement

A1 = A + .5

is essentially shorthand for the statement

A1 = A + .5*numpy.ones(A.shape,A.dtype)

Make up an array A and try this out yourself to see how it works.

The modulo operation % also works pointwise between pairs of arrays of the same shape,
and either array can be replaced by a scalar.

Multiplication of arrays, indicated by the usual * operator, is not defined as matrix mul-
tiplication. Instead, it acts much like array addition. Two arrays can be multiplied if they have
identical shapes, and results in an array of the same shape whose elements are the products of the
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corresponding elements of the input arrays. Similarly, array division, indicated by /, is carried out
pointwise for the elements of the arrays. There are ways of carrying out the standard linear algebra
operations on arrays, such as dot product, matrix multiplication and matrix inversion. These are
introduced in Section 1.8.10, and developed further in Chapters ?? and ??.

In summary, the array arithmetic operators work just like scalar operators, except the
operations are performed ”pointwise” for each pair of corresponding elements from the input arrays,
with the result put in the corresponding place in the output array. Array arithmetic provides a
compact and very fast way to perform the same operation on many different numbers.

Array arithmetic can be done between arrays of different types, if the operation makes
sense. The result is promoted to the higher of the two operands. For example, adding an integer
and a complex results in a complex, or adding a 64 bit float to a 128 bit float yields a 128 bit
float. You can determint the default float type on your system by just creating an array using
numpy.zeros(10,’float’) and looking at the resulting dtype attribute. Operations between float
arrays and Python scalars do not change the type of the resulting array, though operations between
an integer array and a Python float will promote the resulting array to a default float type.

numpy provides a number of math functions which are similar to those in the math module,
but operate on arrays and return an array of the same shape resulting from applying the the
appropriate math function to each element of the input array. The following example shows how
this works.

>>> a = numpy.array([-1.,0.,1.])

>>> b = numpy.exp(a)

>>> b

array([ 0.36787944, 1. , 2.71828183])

>>> numpy.log(b)

array([-1., 0., 1.])

>>> numpy.sin(a)

array([-0.84147098, 0. , 0.84147098])

>>> numpy.arcsin(a)

array([-1.57079633, 0. , 1.57079633])

Note that, as in the math module, log(...) computes the natural logarithm. Although math.log(...)

takes an optional second argument that gives the base to which the logarithm is to be computed,
numpy.log(...) does not provide for computation of logarithms to an arbitrary base in this way.
However, one can do the computation using the usual simple mathematical formula for conversion
between bases. For example, to compute the log of an array b to the base 3, one would sim-
ply do numpy.log(b)/numpy.log(3.). numpy does, however, provide functions numpy.log2(...)
and numpy.log10(...) for the most commonly used bases. numpy provides array versions of all
the usual elementary functions, trigonometric functions and hyperbolic functions under the usual
mathematical names. The inverse trigonometric and hyperbolic functions use the prefix arc as in
the example above. numpy.info(...) will provide detailed definitions and usage examples for
any of the math functions.

When applied to a higher rank array, the array math functions work similarly to the rank
1 example, returning an array of the same rank and shape as the input array. Try this with some
rank 2 arrays to see how it works.

All the numpy math functions can operate on complex as well as float arguments, and unlike
the functions in math will detect the type of the argument and act accordingly. Consider, however,
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the function log(x) , which is defined even for negative x if one allows the result to be complex
(e.g. log(−1) = π), but which is undefined for negative x if one insists that the result be a real
number. If a negative real is handed to numpy.log(...), how should the function behave? The
way numpy deals with this situation is to interpret the function as a function that is intended to
be real-valued if the input is real (i.e. float) but to interpret it as a complex-valued function if
the input has a complex data type – even if the imaginary part happens to be zero. Here is an
illustration of this behavior in action:

>>> a =numpy.array([-1.,1.])

>>> b = numpy.array([-1.+0j,1.+0j])

>>> numpy.log(a)

array([ nan, 0.])

>>> numpy.log(b)

array([ 0.+3.14159265j, 0.+0.j])

nan is a special Python constant that means ”not a number.” Make up some similar examples
using numpy.arcsin(...) and try them out.

Besides the pointwise array math functions like numpy.sin(...), the numpy module provides
a number of other pointwise functions that operate on one or more arrays having a common
shape and produce an array of the same shape. For example, the function numpy.maximum(...)

takes any number of arrays as arguments, and produces an array consisting of the maxima of the
corresponding elements of the input arrays, as in:

>>> a,b

(array([ 3., 2., 1.]), array([ 1., 2., 3.]))

>>> numpy.maximum(a,b)

array([ 3., 2., 3.])

>>> numpy.maximum(a,2.)

array([ 3., 2., 2.])

Scalars are broadcast to an array, as usual. numpy.minimum(...) does the same for minima.
There are many more of these, which you can explore by using the numpy help functions. A
selection of them will be introduced in later chapters as needed

1.8.5 Computing arrays on a grid

numpy arrays of rank 2 or higher are often used in scientific computation to represent fields of
values, e.g. temperature on a grid of latitude-longitude points. Array operations together with
the function numpy.meshgrid(...) provide a versatile way to create and initialize such fields.
Suppose we want to set up a rank 2 array to represent the value of a function on a patch of the
plane with horizontal coordinate x running from -1 to 1 and vertical coordinate y also running
from -1 to 1. Suppose further we wish to represent the function on a grid of values, with 5 equally
spaced x values in the horizontal and 3 equally spaced y values in the vertical, making up 15 pairs of
points. We can set up arrays for x and y using numpy.linspace(...), but these are rank 1 arrays,
so one cannot directly use them to create the required rank-2 array representing the function on
the grid. This problem is neatly solved by the function numpy.meshgrid(...) which takes any
number of rank 1 arrays and returns a set of arrays with rank equal to the number of input arrays.
The number of arrays returned is equal to the number of axes passed to meshgrid(...), and
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each array represents the corresponding axis broadcast (i.e. duplicated) to the grid. This is best
explained by example. If two axis arrays, say x and y are input as arguments to meshgrid, it will
return a pair of arrays, the first of which contains the array x duplicated to all rows of a rank
2 array, and the second of which contains the array y duplicated to all columns. If x has length
n and y has length m, the resulting arrays will have shape (m,n). The shape is defined this way
because the convention for numpy arrays is that the second index ranges over all items in a row and
the first ranges over all items in a column, and the x axis is taken to correspond to the horizontal
(row) dimension. Here is an example of how this works for our grid with 5 points in x and 3 points
in y (a 3x5 grid, using the numpy indexing convention).

>>> x = numpy.linspace(-1.,1.,5)

>>> y = numpy.linspace(-1.,1.,3)

>>> xg,yg = numpy.meshgrid(x,y)

>>> xg

array([[-1. , -0.5, 0. , 0.5, 1. ],

[-1. , -0.5, 0. , 0.5, 1. ],

[-1. , -0.5, 0. , 0.5, 1. ]])

>>> yg

array([[-1., -1., -1., -1., -1.],

[ 0., 0., 0., 0., 0.],

[ 1., 1., 1., 1., 1.]])

>>> xg.shape ; yg.shape

(3, 5)

(3, 5)

Then, if we want to represent the function f(x, y) = x2 + y2 on the grid, we can simply write

>>> f = xg**2 + yg**2

>>> f

array([[ 2. , 1.25, 1. , 1.25, 2. ],

[ 1. , 0.25, 0. , 0.25, 1. ],

[ 2. , 1.25, 1. , 1.25, 2. ]])

The same can be done for any expression built up of numpy array operations and array functions.
meshgrid can also be used with more arguments to create meshes of higher rank, for representing
fields defined on a three dimensional, four dimensional or even higher dimensional space.

Array operations are extremely fast. To get an appreciation of just how fast they are,
compute the function f(x, y) = sin(x) cos(y) on a 1000x1000 grid with each of x and y ranging
from 0 to π.

1.8.6 numpy array reduction functions

numpy provides several array reduction functions which operate on numpy arrays and produce lower-
rank arrays (or scalars, which are rank zero). The function numpy.sum(...) is typical of the array
reduction functions. It is like the built-in Python sum function, but works much faster when
used with numpy arrays, and also can work with arrays of arbitrary shape. For a rank 1 array,
numpy.sum(...) works just like the built-in sum(...) does for any list or other iterable. For
higher rank arrays, numpy.sum(...) by default sums all the elements to produce a single value.
Here is an example for a rank-2 array:
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>>> A

array([[1, 2, 3, 4],

[5, 6, 7, 8]])

>>> numpy.sum(A)

36

For arrays of higher than rank 1, numpy.sum(...) and other array reduction functions
can take an optional axis keyword argument, which specifies which axis (index) of the array the
reduction operation is to be performed over. If this argument is specified, the operation produces
a rank n− array from a rank n array. For example, this is how we can add up the columns of the
array A of the previous example:

>>> numpy.sum(A,axis=0)

array([ 6, 8, 10, 12])

To add up the rows, we would use axis = 1 instead. the axis keyword argument can also be a
tuple of integers, in which case the reduction is carried out over all the corresponding axes.

There are a variety of other array reduction functions that work similarly to numpy.sum(...).
For example numpy.average(...) works basically the same way, but computes an average instead
of a sum; it can also take an optional keyword argument weights that allows for non-uniform
weighting of the data going into the average. Other reduction functions in numpy include cumsum,

prod,amax, amin and argmax. These will be introduced in future chapters as needed, but if you
are curious about them right now, you can use the numpy.info(...) function to get descriptions
and examples of usage.

1.8.7 numpy array methods

1.8.8 numpy array cross-sections

numpy array cross sections work much the same way as the cross-sections already describe for list
indices. The syntax for describing the cross section desired is identical to that used for lists, but
a cross section can be used in place of an index in any axis of a higher rank array. Cross sections
allow you to easily manipulate subarrays. Whereas the use of an unadorned semicolon as an array
cross-section has limited utility for a list or rank 1 array, for higher rank arrays it can be very
valuable for extracting slices (e.g. rows or columns) of an array. The following example shows
how cross-sections can be used to refer to the first row or column of a 3x3 array that has been
previously defined:

>>> M

array([[0, 1, 2],

[3, 4, 5],

[6, 7, 8]])

>>> M[0,:]

array([0, 1, 2])

>>> M[:,0]

array([0, 3, 6])

To pick out a 2x2 subarray in the upper left corner of M we could do
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>>> M[0:-1,0:-1]

array([[0, 1],

[3, 4]])

In one important regard, cross sections for numpy arrays are different from cross sections for
lists. numpy cross-sections create views (or references) rather than new copies. This is a deliberate
design feature, since in many mathematical operations it is convenient to use array cross-sections
to manipulate some portion of a larger array. The following example illustrates that numpy array
cross sections just create an alternate way to refer to the original data:

>>> a = numpy.zeros((2,2))

>>> a

array([[ 0., 0.],

[ 0., 0.]])

>>> b = a[0,:]

>>> b[0] = 1.

>>> a

array([[ 1., 0.],

[ 0., 0.]])

However, for cases in which one really wants a cross section to be a new copy which will not affect
the original data, numpy provides an array method .copy(), which creates a copy of the array for
which the method is invoked. If, in the above example, the array cross-section were created using
the line b = a[0,:].copy(), then setting b[0] would not affect a. Try this out and see. The
.copy() method can be used on any numpy array, cross-section or not, whenever a copy is needed
so that operations can be performed without affecting the original array.

Cross sections can be used with array arithmetic and array functions to compute many
useful derived quantities without the need for writing loops. For example, suppose the array T is
a rank-3 array representing a ten year time series of monthly mean surface temperature fields on
a latitude-longitude grid, extending over many years, with the first index representing the month
number (ranging from 0 to 119) and the next two indices representing the positions in the latitude-
longitude grid. Thus, T[0,:,:] would be a rank-2 array yielding a temperature map for the
first January, T[1,:,:] would be the first February, T[12,:,:] would be the second January,
and so forth. We could then compute the mean temperature map for all the March months in the
data set with the single line

MarchMeanT = numpy.average(T[2::12,:,:], axis = 0)

As another example, suppose we are given a function f(...) which (like numpy.exp(...))
operates element-wise on numpy arrays, and we wish to tabulate it on a grid of unevenly spaced
points from x = 0 to x = 1 and estimate the derivative on that grid. This could be done as follows

n=10

x = (numpy.linspace(0.,1.,n))**2 #Yields an unevenly spaced grid from 0 to 1

F = f(x)

dx = x[1:n]-x[0:(n-1)]

dF = F[1:n]-F[0:(n-1)]

dFdx = dF/dx

xmid = (x[1:n]+x[0:(n-1)])/2.
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The final line defines the array of midpoints, where the derivative has been estimated. Try this
out for some function whose derivative you know, and see how well the computation converges to
the right answer as n is increased.

Array cross sections can also be used to do matrix row and column operations efficiently.
For example, suppose A is a matrix. Then a row reduction and column reduction for row i and
column reduction for column j can be done using the statement

A[i,:] = A[i,:] - 2.*A[0,:]

A[:,j] = A[:,j] - 3.*A[:,0]

1.8.9 Boolean and conditional operations with numpy arrays

All the usual Boolean operations can be carried out on one or more numpy arrays having identical
shape and produce numpy Boolean arrays of the same shape corresponding to the Boolean operation
being carried out for corresponding elements of the input arrays. The usual comparison operators
< ,>,== and so forth can be used with arrays, but for Boolean conjunctions on arrays one must
use & instead of the keyword and, | instead of the keyword or, and instead of the keyword not.

The following provides an example of a Boolean array operation, carried out with a 3x3 float
array A:

>A

array([[ -4. , -8. , -12. ],

[ 0.5, 1. , 1.5],

[ 5. , 10. , 15. ]])

>mask = (A>0.)&(A<7.)

>mask

array([[False, False, False],

[ True, True, True],

[ True, False, False]], dtype=bool)

The Boolean operation has created a boolean array of the same shape as the original array A.

Boolean array operations provide a powerful means of carrying out various conditional op-
erations involving arrays. A boolean array can be used as the index of a numpy array (i.e. the
thing put inside the square brackets), and if so used creates an array cross-section consisting of all
the elements of the indexed array for which the corresponding element of the boolean array are
True. The boolean array used as the index must have the same shape as the array being indexed.
The ability to use a boolean array as the index of a numpy array is a good example of the general
philosophy of object-oriented programming that is at the heart and soul of Python. An index is
not regarded as a static inflexible sort of thing that must be done using sequences of integers.
Rather, ”indexing” is an abstract action that any object can potentially perform, and apart from
the specification that indexing is represented by something inside square brackets following the
name of an object, it is up to the object’s designer to determine how the indexing is done, and if
indeed the object is to be indexable at all.

Building on our previous example, if we wanted to reset all of the elements of A satisfying
the conditional to the value 1e5, we could do

>A[mask] = 1.e5
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>print A

[[ -4.00000000e+00 -8.00000000e+00 -1.20000000e+01]

[ 1.00000000e+05 1.00000000e+05 1.00000000e+05]

[ 1.00000000e+05 1.00000000e+01 1.50000000e+01]]

It is not necessary to first create a mask array before carrying out an operation of this sort.
Expressions like A[A<0.] = 0., in which the boolean array is created in-place, also work. The
boolean expression used for the index can involve arrays other than the one being indexed, so long
as they all have the correct shape.

The use of boolean cross-sections to modify selected elements of an array works in a fairly
intuitive way, but it takes a bit of thinking to understand what is actually going on. If mask is a
boolean array, then the array cross-section A[mask] created by the indexing operation is actually
a rank-1 array consisting of the selected elements of A, regardless of the rank of A. (Try printing
out A[mask] in the preceding example to verify this.) The reason an expression like A[mask] =

0. or A[mask] = B[mask] works the way we want it to is that the array cross-section created is a
reference (also called a view ) into the original data in its place in the array A, rather than a copy.
Because it is a reference, not a copy, when we modify the cross-section, we modify the original
data as well. The ability to do operations like this is one of the rationales for the default behavior
of numpy cross-sections being references rather than copies.

Boolean cross-sections can be used together with numpy array reduction functions to perform
complex computations in a single step. For example the sum of all integers n < 1000 such that
n2 + 1 is divisible by 5 can be computed by the statements

Ns = numpy.arange(1000,dtype=’int’)

numpy.sum( Ns[(Ns*Ns+1)%5 == 0] )

As another example, let’s suppose we have a rank-2 array T giving the global surface tem-
perature on a latitude-longitude grid, and that the boolean array LandSea contains the value True

for points that are on land and False points that are on the ocean. This is typical of a class of
computations that often arises in data analysis. Then, the mean temperature of all ocean points
is just

numpy.average(T[~LandSea])

This average is not actually the most physically relevant one, since it does not take into account
the fact that a latitude-longitude cell has less area near the poles than near the equator, but that
could easily be fixed by specifying the appropriate area-dependent weighting using the optional
weights keyword argument of numpy.average(...).

You can also do a broad class of conditional operations on arrays using the function:

numpy.where(BoolArray,Array1,Array2).

This function takes three arguments all having the same shape, and returns an array of the same
shape as the arguments. The first argument, BoolArray is a Boolean array. For each element of
this array, numpy.where(...) returns the corresponding element of Array1 if the Boolean value
is True, or the corresponding element of Array2 if the Boolean value is False. Either Array1 or
Array2 can be replaced by a scalar value, which will be broadcast to the correct shape of array.
Here is a simple example that zeroes out the value of a function being tabulated when one gets
too close to a singularity
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>>> x = numpy.linspace(-1.,1.,11)

>>> x

array([-1. , -0.8, -0.6, -0.4, -0.2, 0. , 0.2, 0.4, 0.6, 0.8, 1. ])

>>> f = numpy.where(numpy.abs(x)<.3, 0. , 1./x )

__main__:1: RuntimeWarning: divide by zero encountered in divide

>>> f

array([-1. , -1.25 , -1.66666667, -2.5 , 0. ,

0. , 0. , 2.5 , 1.66666667, 1.25 , 1.])

Note that a warning error is generated, because the entire array 1/x is computed before it is
decided which elements are actually used to make the output array f. The operation nonetheless
completes successfully with the desired output, since the error message is only a warning, and the
computation of 1/x just generates a nan (”not a number”) value when the argument is zero, and
that value is discarded by where(...).

The features of numpy.where(...) that distinguish it from the use of boolean cross-sections
are that it creates a new array and fills in each and every element with one of two alternatives,
based on the mask value. If neither of these features is needed in a conditional operation, it is
usually better to use a boolean cross-section instead.

1.8.10 Linear algebra with numpy arrays

1.9 Conditional Blocks

We have already seen some examples of conditionals in the context of list comprehension and array
processing. It is very common that programs need to do different things when various different
conditions are encountered – a process known as branching. Many of these circumstances require
a more general form of branching than we have encountered so far. This is handled by Python’s
conditional block construction. The general structure of a conditional block is illustrated in Fig.
1.1. In it’s simplest form, the conditional block consists of an if statement which includes a Boolean
expression (i.e. one that evaluates to True or False) after the if keyword, followed by a block
of code to be executed if the conditional is True. If the conditional is False, the block of code is
ignored, and program execution proceeds to the next executable statement following the skipped
block.

How does Python know what lines are to be associated with the if block ? Here we see an
important general feature of Python for the first time: Indentation is not just an optional feature
you use to make your code look pretty. Rather, it is an essential part of the syntax, and is used by
Python to group together statements that belong to a given program unit. Either tabs or spaces
can be used for indentation, but it is better not to mix the two and in either case all the statements
in a given program block must line up at the same indentation. Program blocks may, however,
contain subunits demarcated by further indentations, and levels of indentation can be nested to
any depth required.

Conditional blocks are of most use within loops or functions, so most of our examples will
be deferred to the next two sections, but still you can get a feel for how conditional blocks work by
typing the following examples into a file and executing them for various values of x. The following
is an example of a conditional block in its simplest form:

import math
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if Boolean Expression :

 

elif Boolean Expression :

else :  
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}
}

Figure 1.1: General structure of a conditional block

x = 2.

answer = ’Not Computed’

if x >= 0. :

answer = math.sqrt(x)

print answer

If you execute this file with the value of x as written, it will output 1.4142..., but if you change
the value of x to a negative number, it will instead output the phrase Not Computed.

An arbitrary number of elif (short for ”else if”) clauses can optionally be added after the
if clause, and these conditionals will be queried in sequence if the first conditional fails, and the
first elif block for which the conditional is True will be executed, after which control will pass
to the next Python statement following the entire conditional block. If no conditional is True in
any block, control passes to the subsequent Python statement without any conditional block being
executed. Type the following into a file and execute it with various values of x:

x = 1.5

if x < 0.:

print "It’s negative"

elif (x>0.) & (x <= 1.):

print "It’s positive but less than unity"

elif x > 1.:

print "x is greater than unity"

print "Done"

What value of x do you have to put in to get the Done statement alone?

With or without intervening elif clauses, a conditional block can optionally be terminated
by an else clause, which is executed if the if and all elif clauses evaluate to False, but is skipped
if any of them evaluate to True. Try executing the following for various different values of x:

x = 1.5

if (x>=0.) & (x<=1.):

ResultString = "In Unit Interval"
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def Function Name ( Arguments ) :

 return  Object to Return  Optional Statement

In
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nt
at
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n
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Code Block

Figure 1.2: General structure of a function definition

else:

ResultString = "Not in Unit Interval"

print ResultString

None of these examples do anything particularly useful, but they serve to illustrate the basic
operation of conditional blocks. We will see more useful applications of conditional blocks in the
context of functions and loops.

1.10 Defining Functions

1.10.1 Basic structure of a function definition

You have already learned how to call a function that somebody else has provided. In this section,
you will learn how to define your own functions. This is done using the def statement. The general
structure of a function definition is given in Fig. 1.2. The function name is the name you choose
for the function, and will be the name used to call it. The argument specification shown within
parentheses is optional, since there are many cases in which a function might not need arguments;
we have seen some of examples of this already, in connection with string and list methods. When
the argument specification is included, it consists of a sequence of Python object names separated
by commas. There are ways to specify default values for arguments, and more general ways to
specify argument names, but we’ll get to that later. The return statement is optional. If it is
present, the expression following the return keyword defines the object to be returned as the value
of the function when it is called; a Python function can return any Python object. If the return

statement is absent, the function returns the default value None. Just as with conditional blocks,
Python uses indentation to group together lines of code that belong to the function definition.

Here is a simple example of a function definition. To define a function called square, which
returns the square of its argument, you would write

def square(x):

return x*x

Here is how the example above would look when defined and then used in the plain Python
command line:
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>>> def square(x):

... return x*x

...

>>> square(2.)

4.0

When typing the function definition into the command line interpreter, the function body is termi-
nated by entering a blank line, with no spaces or tabs. The blank line is not needed if the function
definition is stored in a file which you execute later. In the plain Python command interpreter you
must remember to put in the required indentations yourself, but the ipython command interpreter
auto-indents for you, and knows when indentation is needed. Note that executing the function
definition only defines the function; it does not cause any of the functions operations to be carried
out.

Functions can return multiple results, as in:

def powers(x):

return x,x*x,x*x*x

This returns a tuple containing the three values. It can be very nicely used with Python’s ability
to set multiple items to corresponding items of a tuple or list, using constructions of the form:

x1,x2,x3 = powers(2)

If instead, you wanted the function to return a list that could be modified, the return statement
would have to be written as

return [x,x*x,x*x*x]

Functions can have as many arguments as you like, the arguments can be any Python objects
that the function is set up to handle, and the body of the function can contain multiple lines, which
can be any valid Python statements. The following function creates an x-axis ranging from xmin

to xmax sampled with npts equally spaced points, and returns both the axis and the values of a
function with name MyFun evaluated on the axis. A function like this would be useful for making
a graph of the input function MyFun

def FunctionTable(xmin,xmax,npts,MyFun):

x = numpy.linspace(xmin, xmax,npts)

return x,MyFun(x)

Try it out with the function square defined earlier, and also with some numpy array functions like
numpy.sin(...).

1.10.2 Functions have a private namespace

Functions have their own private namespace, and variables defined within a function, and which
do not appear in the argument list, do not affect the values of similarly named variables outside
the function. Consider the following function, which uses temporary variables, A and B within the
body of the function.
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def f(x,y):

A = 1. + 1./x

B = 1. + 1./y

return A/B

The following illustrates how the private namespace works for the function f.

>>> A = ’A string’

>>> B = ’Another string’

>>> f(1.,2.)

1.3333333333333333

>>> A

’A string’

>>> B

’Another string’

Setting the values of A and B within the function has no effect on the values of objects of the same
name outside the function.

1.10.3 Use of conditionals in functions

Conditionals have many uses within functions. The following example shows how conditionals can
be used to make a continuous piecewise linear function f(x) with f(x) = 0 if x < 0, with f(x) = 1
if x > 1, and with linearly interpreted values in between:

def f(x):

if x<0.:

return 0.

elif x>1.:

return 1.

else:

return x

This also illustrates the use of multiple returns within a function.

Since Python functions do not themselves impose any constraints on the types of the argu-
ments that are passed to the function, another common use of conditionals is to check for the types
of the arguments and act accordingly. This allows functions to be very versatile, since it avoids
the need to keep track of a different function for each type of argument that one might want to
operate on. Let’s suppose, for example, that we want a function to return a numpy array that is
the sin of the input array, but that we want to allow the input to be either a list of floats, or a
numpy array of real numbers. The function needs to not only check if the input is a list, but also
needs to check the contents of the list to see if they are of the right type. The following function
definition does the trick.

def f(X):

#Check to see if X is a list

if type(X) == list:

#Check to see if all elements are floats
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if not (False in [type(x)==float for x in X]):

return numpy.sin(numpy.array(X))

else:

return ’Error: Wrong type’

#Check to see if input is a numpy array

elif type(X) == numpy.ndarray:

#Check to see if it is float

if (X.dtype == ’float64’)|(X.dtype == ’float128’):

return numpy.sin(X)

else:

return ’Error: Wrong type’

else:

return ’Error: Wrong type’

If the arguments are of the wrong type, the function returns the string ’Error: Wrong type’.
Note the use of list comprehension with Boolean expressions, to do the check to see if all the
elements of the list are of the right type. This example also illustrates that conditionals can be
nested.

There are many other was to use conditionals in functions, which will be developed in
subsequent chapters.

1.10.4 More about arguments

In a function definition, a default value can be given for some arguments, in which case the
corresponding argument is optional when the function is called, and the default value will be used
if the argument is omitted. For example, given the following function definition

def f(x,coeff = 1., power = 2.):

return coeff*(x**power)

calling the function as f(2.) will return 2**2, calling it as f(2.,5.) will return 5.* 2.**2 and
calling it as f(2.,5.,3.) will return 5.*2.**3. The only way a function knows which optional
argument you have included is by its position in the argument list, so optional arguments must
come at the end of the argument list. Similarly, if one wants to specify a non-default value for
some optional argument towards the end of the list, all the intervening values must be specified
whether or not one wanted the default value. For example, to compute 2**3 one would need to
call the function as f(2,1,3) even though the default value for coeff was wanted.

Sometimes one wants a function to be able to handle an arbitrary number of arguments, as
in the built-in function max(...) . This is handled by using the token *ArgList in the argument
list, where ArgList can be any name you want. The sequence of arguments will then be accessible
within the function as a list with that name. For example, the function

def f(x,*powers):

return [x**n for n in powers]

will return a list of however many powers of x are specified. The function could be called as
f(2.,1.), f(2.,1.,1.5,2.,2.5) and so forth. Try out this function, and make up a one of your
own.
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A more flexible way to handle optional arguments is to use keyword arguments. These are
specified by name when the function is called, as described in Section 1.4. To allow a function
to handle keyword arguments, you use the token **kwargs in the argument list of the function
definition, where kwargs can be any name you want. In this case, the object referred to by kwargs
will be a dictionary rather than a list, and the dictionary keys are the names of the arguments
passed as keyword arguments and the corresponding entries are the values specified. The function
in our example of positional optional arguments could be handled using keyword arguments as
follows:

def f(x,**OptArgs):

a,n = 1., 2. #Set default coefficient and power

if ’power’ in OptArgs:

n = OptArgs[’power’]

if ’coeff’ in OptArgs:

a = OptArgs[’coeff’]

return a*(x**n)

Note that in order to make the keyword arguments optional, we have used a conditional to check
if the keyword is in the set of dictionary keys before looking up the corresponding value, since a
dictionary lookup with a nonexistent key raises an error message. With the function set up this
way, it could be called in any of the following ways.

f(2.)

f(2.,power=5) ,f(2.,coeff = -1.)

f(2.,coeff=-1.,power=5),f(2.,power = 5, coeff = -1.)

Note that although the keyword names given in the argument list are turned into strings to be
used as keys in the dictionary the function gets, the keyword names given in the argument list are
not themselves enclosed in quotes. Define the function and try these calls out, and make sure you
understand the results returned by the function.

1.10.5 Side-effecting arguments (Proceed with caution)

Functions can return an output in exchange for an input (the arguments), but they can also
process or change things in the argument list, a process known as ”side-effecting” the arguments.
Generally speaking, it is good programming style to avoid side effecting arguments, in favor of
returning results, because promiscuous use of side-effecting makes it harder to keep track of what
is an input and what is an output. However, there are times when side-effecting is more convenient
than returning multiple results, which must be then put into the right places. If you do write a
function that is intended to side-effect its arguments, it is important to keep in mind that Python
functions work only on a copy of the arguments. In consequence, any changes made to these
arguments (”side-effects”) do not affect the variable’s value in the calling program. Consider the
two function defined as follows:

def f(myValue):

myValue = 0

def g(myList):

myList[0] = ’Changed!’
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The first function does not actually change the value of the argument called in the main program,
because it is only a copy of the argument which is set to zero; the copy is then discarded when the
function exits, for example,

>>> A = 1.

>>> f(A)

>>> A

1.0

Such a function is useless, and does not achieve the desired side-effect in Python (there are other
computer languages for which such a function would work). But consider the following example of
the use of the function g to side-effect a list passed as an argument:

>>> L = [0,1,2]

>>> g(L)

>>> L

[’Changed!’, 1, 2]

In this case the argument is a name which points to the location of some data. The data pointed to
can be modified in the function, even though the name is only a copy of the original name passed
as an argument, it still points to the same data. The general lesson here is that if you want a
function to side-effect an argument, the argument must be the name of a mutable Python object,
and the function must modify the data contained in (i.e. pointed to by) the object, rather than
modifying the name of the object itself.

Here’s a somewhat more useful example, which illustrates the way side-effecting can be used,
but which also illustrates some of the pitfalls. Let’s suppose we are implementing an algorithm
which frequently requires that all the counts in a list of integers be incremented. To do this, it is
handy to write a function that does the increment. If we tried to write the function this way:

def bump(L):

L = [n+1 for n in L]

it would fail to work, since the body of the function attempts to replace the argument by a new
list,but in fact only succeeds in replacing a copy of the argument, which is then discarded when
the function exits. (Try defining this function in the interpreter, the execute it on a list of integers
to convince yourself that it really fails to change the input list). To do the side-effecting properly,
we would need to modify the contents of the input list instead, as in:

def bump(L):

L[:] = [n+1 for n in L]

which would be equivalent to writing L[0] = L[0] + 1, and so forth. The reader would be quite
right in concluding that it would be better to just avoid the confusion altogether by using a return

rather than a side-effect, as in:

def bump(L):

return [n+1 for n in L]

which could then be used to replace the original list through an assignment statement L = bump(L).
It is generally good programming practice to avoid side-effecting when a return would do as well,
but there are cases when side-effects can be more convenient, and sometimes even more efficient
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1.10.6 Lambda functions

1.10.7 Oh,the things you can do with functions!

Being able to define your own functions greatly increases the versatility of list processing using
Python’s built-in functions filter, reduce, and map which operate on lists.

To be continued ...

The organization of almost any program can benefit from the subdivision of the labor of the
program into a number of functions. This makes the program easier to debug, since functions can
be tested individually. It also allows the re-use of code that is needed in many different places in the
program. Because each function has its own private namespace, functions allow you to introduce
variables needed for a calculation without accidentally altering the value of those variables used
elsewhere. Finally, since an objects methods are essentially functions, writing functions is one of
the critical tasks carried out when designing an object.

1.11 Loops

A loop is a programming construction that tells the computer to do something over and over again
until some condition is met and it’s time to stop. Most scientific simulations – indeed most software
of any type – are built around loops. List comprehension involves a form of loop, and while many
programming tasks can be performed with list comprehension or array arithmetic, sometimes you
need something more versatile and general. Python provides two kinds of loops that serve this
purpose: the for loop and the while loop. Their general structure is given in Fig. 1.3.

1.11.1 for loops

Like a list comprehension, a for loop loops over elements drawn in sequence from a list or
any other iterable object (such as a dictionary, string, or numpy array). In many programming
languages, typical practice is to loop over a range of integer values, and this can be done in Python
by looping over range(...) , but it is seldom necessary to do this in Python. Usually, it’s better
to just loop directly over the elements you want to deal with. Suppose we want to evaluate the
polynomial

p(x) = a0 + a1x+ a2x
2 + ...+ anx

n (1.1)

This can be efficiently done using the iteration

p0 = an, pj+1 = x · pj + an−j−1 (1.2)

run until pn has been computed, which is the value of the polynomial. [a0,a1,...,an] then the
iterative evaluation can be performed using the loop

p = A[-1]

for a in reversed(A[:-1]):

p = x*p + a

When this loop completes, p contains the value of the polynomial. Note the use of the built-in
function reversed(...) to make the loop run through the items in the list in reverse order. This
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Figure 1.3: Structure of a for loop (top) and a while loop (bottom).
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is better than using the list method A.reverse() which would reverse the list A in place, so that
we would need to make a copy of A first so as not to affect the original list; moreover the array
would have to be reversed before using it in the loop, since the .reverse() method reverses the
array in place rather than returning a reversed array. This example also illustrates the use of a
list cross-section to drop out the last coefficient, which need not be processed, since it has already
been used to set the inital value of p.

When a mathematical expression explicitly involves an integer index, it makes sense to loop
over the index. Suppose we want to compute the following n-term Taylor series approximation to
ex

fn(x) =
n−1∑
i=0

xi

i!
(1.3)

where i! is the factorial of i, i.e. the product of the integers up to and including i. This can be
computed very compactly using a list comprehension using the statement

fn = sum( [x**i/math.factorial(i) for i in range(n)] )

which is nice because it corresponds very closely to the mathematical definition of the expression.
If efficiency is not an issue, this is a reasonable solution since it produces easily understandable
code. However a lot of objections can be raised to this way of doing the computation, on efficiency
grounds. It requires all the terms to be stored before the summation is done, and also requires
i multiplications of x and i multiplications for the factorial to compute each term, whereas each
term can be computed from the previous using just a single multiplication. There are actually ways
to make the list comprehension more efficient using the general iterator construction described in
Chapter ??, but let’s look at a way to do an efficient computation using a for loop. The following
for loop makes use of a recursion inside the loop to eliminate the storage overhead and reduce the
amount of computation needed:

fn = 0.

term = 1.

for i in range(n):

fn += term

term *= (x/(i+1))

This assumes x and n have been previously defined somewhere. Recall that an expression like term
*= a is shorthand for term = term*a. You should avoid the temptation to use the name sum for
the container used to accumulate the result (fn in the example) since that will redefine the Python
built-in function sum, preventing you from using it later. Python will not prevent you from doing
that.

It is generally not good Python practice to introduce an integer index if it is not really
needed. As with list comprehensions, the built-in functions enumerate(...) and zip(...) can
often be used to avoid the introduction of an index in circumstances when an index would make
the code more cluttered and harder to follow. However there are times when you basically just
want to tell Python to ”do it n times”, and the cleanest way to do this is to simply use a loop of
the form for i in range(n): even if the thing being done in the body of the loop does not need
to refer to the index i.

for loops can also be useful for processing lists of non-numeric data. For example, suppose
L is a list of strings, each of which contains a molecule name followed by its molecular weight
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separated from the name by a space, e.g. ’H2O 18’. A list of this sort might be the result of
reading in information from a text file, as described in Section 1.14. Then the following loop would
set up a dictionary mapping molecule names to the corresponding molecular weight

MolDict = {} #Create an empty dictionary

for data in L:

MolName,MolWt = data.split() #Split the string at the space

MolDict[MolName] = float(MolWt) #Convert to float and put in dict

After running this loop MolDict[’H2O’] would return 18.0 and so forth. Strings are fairly simple
objects, but the ability of Python to loop over lists of arbitrary objects is very powerful, since
objects can have many attributes performing complex calculations, which can be invoked within
the loop. Recall also that loops are not restricted to lists. You can loop over anything that’s
iterable, and that includes numpy arrays, dictionaries, strings and a variety of other objects.

1.11.2 while loops

A while loop is used to carry out an operation as long as specified following the while keyword is
satisfied (i.e. evaluates to True). As an example, let’s write a loop to compute a list of Fibonacci
numbers the first two Fibonacci numbers are defined to be 0 and 1,and each subsequent Fibonacci
number is obtained by adding the previous two. The following loop does the trick:

FibNums = [0,1] #Initialize the list with the first two

while FibNums[-1] < 1000:

FibNums.append(FibNums[-1]+FibNums[-2]) #Add the last two to get the next one

If you run this code fragment, the last element of the list of numbers computed, FibNums[-1]

will be 1597, because the loop terminates the first time that the Fibonacci number exceeds 1000.
If you wanted the list to only contain values less than 1000, the easiest thing to do would be to
discard the final value using FibNums.pop() after the loop

while loops are very commonly used in scientific simulations of the way a system evolves in
time. The general scheme is to set some initial values, repeatedly carry out a procedure specifying
how to change the state of the system from one time to the next, and then stop when some
condition is met. Sometimes one only is interested in the final state of the system, but more often,
it is desirable to save the full time series of results along the way. The following example uses a
loop to approximately compute the altitude of an object thrown upward with a specified initial
velocity, subject to a constant (negative) acceleration a due to gravity. It saves the results in lists
for further use (e.g. plotting). The computation stops when the object reaches the ground.

#Initializations

a = -10. #Value of acceleration (constant)

v = 100. #Initial velocity

y = 0. #Initial altitude

t = 0. #Initial time

dt = .01 #Time step (constant)

tList = [ ] #List to save time values

vList = [ ] #List to save velocity values

yList = [] #List to save altitude values
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#Initializations done. Now do the computation

while y>=0.:

vList.append(v) #Save velocity

yList.append(y) #Save altitude

tList.append(t) #Save time

v += a*dt #Update velocity

y += v*dt #Update altitude

t += dt #Update time

As is typical for while loops, the loop computes one more value than you really want, since it
stops the first time y goes negative. Without use of additional conditionals, this is unavoidable,
since a while loop cannot test the condition for terminating until the calculation needed to carry
out the test has been completed. Most of the time this is harmless, since one can just discard the
final value. In this example, the final value is automatically discarded, since the data is saved to
the output lists before the values are updated

1.11.3 Uses of conditionals within loops

Conditionals are often needed within loops to perform some operations only if the right conditions
are met, or to branch to different versions of a calculation depending on the values of some of the
quantities used in the calculation. In our simple simulation of the trajectory of an object thrown
upward, we might for example, only want to save every hundredth result. This could be done by
introducing a counter and conditional as follows

#Initializations

...

count = 0 #Initialize a counter

while y>=0.:

if count%100 == 0:

vList.append(v) #Save velocity

yList.append(y) #Save altitude

tList.append(t) #Save time

count += 1

... #Do the calculation

As another variant of this simulation, we might suppose that the object was thrown upward over
water, that the object is positively buoyant when under water (yielding positive acceleration when
y < 0) and that we want to track the object’s position while underwater as well as above water.
In this case, we not only need a conditional in the loop, we also need to set a different condition
for terminating. Let’s say we want to track the object until it crosses the surface 5 times. This
can be done by modifying the loop as follows:

#Initializations

aAir = -10.

aWater = 1.

...

count = 0 #Initialize a counter

SurfaceCrossCount = 0 #Count surface crossings
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while SurfaceCrossCount <= 5:

if count%100 == 0:

... #Save results

count += 1

if y >= 0:

a = aAir

else:

a = aWater

yLast = y #Save the previous value of y before calculating the new one

... #Do the calculation

# Determine if we have crossed the surface

if ((yLast >= 0.) and (y < = 0.) ) or ( (yLast <=0.) and (y>0.)):

SurfaceCrossCount += 1

Try out this loop and have a look at the list of results.

The above examples use while loops, but conditionals can be used to good advantage in for

loops as well. The following example sorts a list of complex numbers into separate lists containing
those in the upper half plane, those in the lower half plane, and those on the real axis:

zList = [(1+1j)**m for m in range(20)]

Upper= []

Lower = []

RealLine = []

for z in zList:

if z.imag >0.:

Upper.append(z)

elif z.imag <0.:

Lower.append(z)

else:

RealLine.append(z)

Try this out and look at which values appear on the real line. Can you come up with a conjecture
about which values appear on the real line? Can you prove the conjecture?

Conditionals can be used with the break statement to provide multiple pathways for termi-
nating a for or while loop. When a break statement is encountered, control immediately passes
to the next statement following the body of the loop, without any further statements in the loop or
any further iterations of the loop being executed. The following while loop carries out an iteration
and stops either when 100 iterations have been done, or when the differences between subsequent
iterates are less than 10−6 in magnitude, whichever comes first. In either case, it puts a message
as to what has happened into the string message. In an iteration of this sort, it is necessary to put
in a guaranteed exit by capping the number of iterations, otherwise the loop would run forever if
the iteration fails to converge.

a = 2.

x = 2. #Initial guess

count = 0 #Initialize the counter

while True:

if count > 100:

message = ’Max iterations exceeded’
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break

if count > 0:

xlast = x #Save previous value

x -= (x*x -a)/(2.*x) #Update x

if abs(x-xlast) < 1.e-6:

message = ’Converged’

break

count += 1 #Update count

#Control passes to the following statement after a break

print x,abs(x-xlast),message

This example also illustrates how to use a while loop to make, in effect, a ”do until ... ” con-
struction. By using true in the while clause, the loop would run however long it took until one
of the break conditions were triggered. The loop implements the Newton’s method iteration to
solve x2−a = 0 given an initial guess. Try out the loop as written, then try it with a = −2.. Why
don’t you get convergence in the latter case? Then, with the same value a = −2., try using the
initial guess 2. + .1j for x. Why does the iteration converge in this case?

1.12 When bad things happen to good programs:
raise, try and except

Stuff happens, and a well written program should be prepared to handle errors gracefully when
they occur, and give the user some informative feedback as to what has happened.

1.13 Classes: Defining your own objects

You have already learned how to use objects that others have defined for you. In this section you
will learn some of the basics of how to define and create your own objects.

A new kind of object is defined by the class statement. Here is an example of a class

statement that defines a trivial-looking class of objects with no data or methods:

class Dummy:

pass

The pass statement is a statement that tells Python to ”do nothing.” It is used in cases like this
where the syntax requires that a statement be present, but we don’t actually need the statement to
do anything. Every object is an instance of a class. To create two objects with the characteristics
of the class Dummy we would do

Instance1 = Dummy()

Instance2 = Dummy()

Note that an object is created by ”calling” the class as if it were a function. In this case, the
creator does not require any arguments, but in other cases the creator is called with arguments.
The function numpy.array(...) is actually a form of creator for numpy array objects.
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These objects may look pretty useless, but in fact even a bare object like this is very useful
in Python, since Python objects can be modified dynamically. That means that new attributes can
be defined on the fly, unless the designer of the object has expressly forbidden that. For instance,
we can store the radius of a circle and the units in which it is measured in Instance1 as follows:

Instance1.radius = 5.

Instance1.units = ’meters’

whereafter the values can be retrieved by name as in the following example:

>>>r, units = Instance1.radius,Instance1.units

>>>print ’The area is’,3.14159*r**2 ,units

The area is 78.53975 meters

This technique is very handy for bundling together data into a single object, to be passed to
a function for processing. It is especially powerful since the attributes can contain any Python
objects whatever (e.g. numpy arrays or functions). Bundling together data into objects helps avoid
long, incomprehensible argument lists for your functions.

That’s already pretty useful, but objects can do much more than act as bundles.

To be continued ...

1.14 Input and Output

1.14.1 String operations useful for I/O

Text files are read in or written out as sequences of strings, so I/O of text very commonly involves
manipulating strings. Even if you are just putting some results out to the screen using the print

statement, it is often useful to display a string that you have built from the results, since this gives
you more control over how the results are presented.

It is very often useful to be able to build strings from numerical values in your script. This
need often arises in formatting printout of results to look nice, and also sometimes arises when
building the names of files you wish to open. Suppose a = 2 and b = 3. Then, the following
example show how you can insert the values into a string:

>>> s = ’%d + %d = %d’%(a,b,a+b)

>>> s

’2 + 3 = 5’

The string contains a number of format codes consisting of a letter (d in this case) following a %

sign, which convert the numbers ’input’ to the string to text according to the format specification
(decimal integer in this case). The ’input’ to the string is a tuple following the string, separated
from the string by a % sign. The first item in the tuple is given to the first format code in the string,
the second is given to the second format code, and so forth. Note that the ”input” to the format
string must be a tuple, not a list; recall, however, that if L is a list, the function call tuple(L) will
return a tuple whose elements are those of the list input as the argument. If the tuple has only one
element, you can leave off the parentheses. The format code %d (or equivalently %i) converts an
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integer into a string. You use %f for floating point numbers, and %e for floats in scientific notation.
There are other options to these format codes which give you more control over the appearance of
the output, and also several additional format codes. For example the code %10.2f would desplay
the float input with two figures to the right of the decimal point, and would take up a total of 10
characters for the display of the number, padding the result with blanks on the left if necessary.
(Try out a few conversions like this with f and e format codes). Format strings of this type are
typically used to build lines which would later be written out to a text file.

When text is read in from a file, each line of the file is converted to a string. If the string
contains numeric data to be processed, then the items need to be converted to Python numbers
in order to do computations with them. The string method split(...) is handy for this, and
can be used with list comprehension to do the needed conversion very simply. Suppose that the
string Line has been read in from a file and consists of the characters ’1.0 1.2 -1.5 3.25’, i.e.
several floating point numbers separated by spaces. Then the following code fragment shows how
the values can be extracted and used in subsequent computations

Values = [float(xChar) for xChar in Line.split()]

mean = sum(Values)/float(len(Values)) #Compute average

x,y,z,w = Values

print ’Average of %f %f %f %f is %f’%(x,y,z,w,mean)

Generally speaking, you need to know how the contents of the file are arranged in order to extract
the data you want, but it is possible to put in conditionals and try ... except ... blocks to
allow for some flexibiity in the form of the file.

1.14.2 Writing text data to a file

First you need to open the file. To do this, you use the open(...) statement as in the following:

MyFile = open(’test.out’,’w’)

where MyFile is the object by which you will refer to the file in your Python program and test.out

is the name you want the file to have your computer. You can use any variable name you want
for this. Similarly, you can replace test.out with whatever you want the file to be called. The
second argument of open(...) says that we want to create a new file, if necessary, and allow the
program to write to it.

You can only write a string to a file, so first you have to convert your data to a string, as
illustrated in the preceding section. Let’s suppose you want to write two numbers a and b to a line
of the file you have opened. You first build the string, and then write it out using the file method
.write(...), which is a method of the MyFile object you created when you opened the file:

outstring = ’%f %f\n’%(a,b)

MyFile.write(outstring)

The
n character put in at the end of the string has the effect of skipping to a new line before any
subsquent writes are done to the file. Without that end-line character, subsequent writes to the
file would instead go onto the same line. This can be a useful feature if you wanted to build each
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line of the file with several different MyFile.write(...) statements, since you could then just
write out the parts of the line one at a time and finish by writing out the string ’

n’

Now you have everything you need to write space-delimited data to a file. You simply repeat
lines like the preceding in a loop until you are done writing out the data you want. When you are
done, you need to close the file by executing myfile.close(). If you wanted the numbers in each
line of the file to be separated by some character other than a space, you would simply change
the format string used to build outstring. To do tab-delimited data, you would use the special
character
t instead of a space, between the format codes.

Using what you have learned write a table of the functions x/(1 + x) and x2/(1 + x2) vs.
x to a file. You can take a look at the resulting file in any text editor, or load the file into the
program of your choice for plotting.

If you need to open several different files for writing, you can do this very compactly using
list comprehension and Python’s multiple assignment feature. Suppose we want to open three files,
with names data0, data1, and data2. This can be done on a single line using

file0,file1,file2 = [open(name) for name in [’data%d’%i for i in range(3)] ]

1.14.3 Reading text data from a file

To read data from a text file, you open the file as before (but without the ’w’ argument), and
then read in the lines of the file as strings, processing each one according to the kind of data it
contains. To read a file, the file must, of course, already exist on your computer. The directory in
which the file resides is defined as part of the file name you use to open the file, according to the
directory naming conventions on the computer you are using. If no directory specifies are given,
the file will be looked for in the current working directory.

A single line can be read from a file with identifier MyFile using the .readline() method,
which is called without arguments. The following reads in one line of a file contining space-
separated floats, and converts them to a list of floats. It will return an error if the line contains
anything that cannot be converted to a float.

MyFile = open("test.txt")

buff = MyFile.readline()

items = buff.split()

values = [float(item) for item in items]

To read all the lines of a file, you could put the last three lines of the example into a while loop
which terminates when the string returned by .readline() is empty (has length zero). Alterna-
tively, you could read all the lines of the file at once into a list, using .readlines(), and then
process the resulting list in a for loop:

NumbersList = [ ]

for line in MyFile.readlines():

values = [float(item) for item in line.split()]

NumbersList.append(values)
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If you went to the trouble of reading in data, you probably want to save it in a form convenient
for further computations. The above example stores the converted data in a list NumbersList,
each item of which consists of a list of the values converted from the corresponding line of the file.
When reading in data from a file, it is convenient to accumulate results using lists in this way,
since you needn’t know in advance how many lines are in the file, or how many items in each line.
Once the data is read in, it can be converted to numpy arrays for further processing if necessary.

1.14.4 Interactive input

1.14.5 Reading and writing binary data

1.15 Graphics in Python

1.16 Organizing your Python projects
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