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Decay of passive scalars under the action of single scale smooth velocity fields
in bounded two-dimensional domains: From non-self-similar probability distribution

functions to self-similar eigenmodes

Jai Sukhatme and Raymond T. Pierrehumbert
Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637

~Received 20 June 2002; published 6 November 2002!

We examine the decay of passive scalars with small, but nonzero, diffusivity in bounded two-dimensional
~2D! domains. The velocity fields responsible for advection are smooth~i.e., they have bounded gradients! and
of a single large scale. Moreover, the scale of the velocity field is taken to be similar to the size of the entire
domain. The importance of the initial scale of variation of the scalar field with respect to that of the velocity
field is strongly emphasized. If these scales are comparable and the velocity field is time periodic, we see the
formation of a periodic scalar eigenmode. The eigenmode is numerically realized by means of a deterministic
2D map on a lattice. Analytical justification for the eigenmode is available from theorems in the dynamo
literature. Weakening the notion of an eigenmode to mean statistical stationarity, we provide numerical evi-
dence that the eigenmode solution also holds for aperiodic flows~represented by random maps!. Turning to the
evolution of an initially small scale scalar field, we demonstrate the transition from an evolving~i.e., non-self-
similar! probability distribution function~pdf! to a stationary~self-similar! pdf as the scale of variation of the
scalar field progresses from being small to being comparable to that of the velocity field~and of the domain!.
Furthermore, the non-self-similar regime itself consists of two stages. Both stages are examined and the
coupling between diffusion and the distribution of the finite time Lyapunov exponents is shown to be respon-
sible for the pdf evolution.

DOI: 10.1103/PhysRevE.66.056302 PACS number~s!: 47.52.1j
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I. INTRODUCTION

Starting with the work of Batchelor@1#, the study of pas-
sive scalars in smooth velocity fields has been the subjec
numerous investigations. Originally posed in three dim
sions~3D! @1#, the problem considered a situation where t
viscosity (n) of the flow is much greater than the diffusivit
(k) of the scalar. Therefore, even at large Reynolds numb
for length scales below the viscous cutoff (l n) and above the
diffusive cutoff (l k), the so-called Batchelor regime, one h
a smooth velocity advecting a diffusive tracer. Since then
problem has grown to encompass a variety of phenom
such as chaotic advection~see, for example, Ottino@2#! and
scalars in inverse cascading 2D turbulent flows~see Sec. III
in Falkovich et al. @3# for a recent review!. Of particular
interest to us are applications in the realm of geophys
fluid dynamics, specifically, the mixing of scalars along ise
tropic surfaces via large scale atmospheric flows@4,5#.

The equation governing the passive scalar (f) is,

]f

]t
1~uW •¹W !f5k¹2f. ~1!

Let us denote the size of the domain byL. This is a linear
equation forf, the velocity field is part of the prescribe
data. The usual conditions imposed on the velocity field
that it be divergence-free and smooth, i.e.,¹W •uW 50W and
u¹W uW u,` everywhere in the domain. The questions asked
usually of the form: given an initial scalar field is it possib
to determine the long time behavior of the solution? Do
one see the emergence of an eigenmode with a well-defi
decay rate, in other words what is the nature of the spect
1063-651X/2002/66~5!/056302~11!/$20.00 66 0563
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of the advection diffusion operator in a suitably defined fun
tion space? Usually, given the aperiodic nature of the adv
ing velocity fields the question is better posed in a statist
sense, i.e., is the asymptotic probability distribution functi
~pdf! of the scalar field self-similar or is it an ever evolvin
~non-self-similar! entity? As things stand, the results found
the literature are fairly divided. One of the aims of this pap
is to unify these results by bringing out certain salient fe
tures ~such as scale separation! that have not been empha
sized previously.

Most theoretical studies have focused on the case w
the initial scale of variation of the scalar field~say l s , l s
@ l k) is much smaller than that of the velocity field~say l v ,
we takel v;L). The problem then is to determine the stat
tical properties of the scalar field at scales betweenl v andl k .
A successful approach in this direction has been to shift t
comoving reference frame, use the decompositionua
5(]aub)(t) r b5sab(t) r b , and deal with the the effective
equation that results from a substitution in Eq.~1! ~see, for
example, Refs.@6,7# and the references therein!. The expec-
tation @7# is that the scalar field will have non-self-simila
pdf’s. Or, defining the moments of the scalar field
^uf(x,y,t)un&, Balkovsky and Fouxon@7# explicitly show
that

^uf~x,y,t !un&;e2ant; t.T ~2!

and thatan is a nonlinear function ofn (T is a diffusive time
scale which will be clarified later!, implying the non-self-
similarity of the pdf’s. Recent experiments@8# with passive
scalars injected at point sources in inverse cascading 2D
bulent flows seem to validate some of these predictio
Concrete evidence is available from numerical work dem
©2002 The American Physical Society02-1
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strating the nonlinearity ofan for scalars advected by realis
tic atmospheric winds@5#. It should be noted that these sim
lations are over a time scale which represent the trans
scalar behavior rather than the asymptotic large time s
tion.

On the other hand, there is a small body of work th
deals with the case whenl k! l s; l v;L, i.e., the initial scale
of variation of the scalar field is comparable to that of t
velocity field, both of which are in turn comparable to th
scale of the domain.1 The observation, based on numeric
work @10,11#, is that the scalar field enters an eigenmo
~termed a ‘‘strange eigenmode’’ by Pierrehumbert@10# due to
its spatial complexity!. The pdf of the scalar becomes se
similar ~after a suitable normalization by the variance! or in
terms of the moments,an;n. Recently, experimental evi
dence for the emergence of such an eigenmode has
provided in the case of time periodic velocity fields@13#. A
line of attack on this problem has been to try and relate
finite time Lyapunov exponents~FTLE’s! of the advecting
flow to the statistical properties of the scalar field~see Ref.
@12# and the references therein!. Even though this work@12#
is successful in describing the initial stages of the proble
the FTLE’s are by definition local entities and appear to
unsuitable precisely whenl s; l v .2

In this study we work with simple prescribed veloci
fields in 2D that have a single large scale~of the kind en-
countered in studies of chaotic advection!. It is worth empha-
sizing that the power spectrum of such velocity fields is d
crete. This is in contrast to technically smooth velocity fie
that possess a heirarchy of scales. In other words the velo
fields considered are Lipschitz continuous over all scale
interest~i.e., betweenl k and l v;L). The large single scale
divergence-free and smooth nature of the velocity field
plies that the trajectory equations do not show explosive~im-
plosive! separation~collapse! as is generally expected in tu
bulent ~or multiple scale! incompressible~compressible!
velocity fields~see e.g., Gawedzki and Vergassola@15#!.

Our first aim is to give further justification for the eigen
mode in periodic and aperiodic velocity fields. We explicit
construct an area preserving deterministic 2D map which
spite of having weak barriers, demonstrates the emergen
a periodic eigenmode. Moreover, we point out theorems
the dynamo literature, which are applicable to the pass
scalar problem, thereby providing analytical justification~in
terms of the purely discrete spectrum of the advection di
sion operator! for the eigenmodes. The aperiodic case is f
of barriers due to the random nature of the maps emplo
but is slightly novel in the sense that the notion of an eig

1We always takel v;L. There are other problems of intere
wherel v!L, which are studied in the context of turbulent diffusio
~see e.g., the comprehensive review by Majda and Kramer@9#!.

2A recent paper@14# analyzes the work of Antonsenet al. @12#
with an aim to understand the exponential decay of scalar mome
This paper, Wonhas and Vassilicos@14#, identifies a ‘‘global’’
mechanism responsible for the exponential decay and also hin
the importance of the scale separation we have emphasized in
paper.
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mode has to be weakened by invoking statistical stationa
~i.e., self-similarity of the pdf!. Second, we present a unifie
picture of the two seemingly disparate cases mentio
above. Starting with a scalar field that satisfiesl s! l v;L, we
observe an evolution in the shape of the pdf~i.e., the pdf is
non-self-similar!. This evolution ceases when the scales
the velocity and scalar fields become comparable~i.e., the
field enters an eigenmode with a self-similar pdf!. The vari-
ous regimes that the scalar field encounters are analyzed
a simple example, motivated by the work of Balkovsky a
Fouxon@7#, is used to elucidate the coupling between diff
sion and the distribution of FTLE’s and its role in determi
ing the pdf evolution. A discussion of the regimes, their u
versality, and the issue of scale separation conclude
paper.

II. THE EIGENMODE

A. The eigenvalue problem

Physically whenl s; l v;L the scalar field feels the effec
of the finite size of the domain, moreover, asl s; l v it is
difficult to justify any linearization of the underlying nonlin
ear trajectory equations. Fortunately, the linear nature of
~1! lends itself to an eigenvalue analysis. Recently Fere
et al. @16# have looked at the eigenvalue problem for a sp
cific velocity field ~represented by the Bakers map!. We con-
sider the eigenvalue problem in its full generality as has b
done for the magnetic field in the kinematic dynamo lite
ture @17–19#. Most of the material in this section is we
known in the dynamo literature, we present it here merely
put things in a well-defined framework. Let us recast Eq.~1!
as

]f

]t
5Lkf, Lkf5k¹2f2~uW •¹W !f. ~3!

For a steady velocity field one can separate time by assum
a solution of the formf(x,y,t)5f̄(x,y)est. Hence the ei-
genvalue problem is

Lkf̄5sf̄. ~4!

Here f̄PB(D), whereB(D) is a Banach space of squa
integrable functions3 defined on the domainD. We takeD to
be @0,2p#3@0,2p# with opposite sides identified~i.e., a
torus!. The object of interest is the spectrum of the opera
Lk acting inB(D). As we are working in a Banach space
infinite dimensions the spectrum depends strongly on the
ture of the operator@20#.ts.

at
his3For finite times, given thatu¹W uW u,`, we are guaranteed that th
scalar field will remain square integrable.
2-2
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DECAY OF PASSIVE SCALARS UNDER THE ACTION . . . PHYSICAL REVIEW E66, 056302 ~2002!
If the operator in question were compact,4 then the spec-
tral theory of finite dimensional operators would carry ov
to our infinite-dimensional problem@20#. Unfortunately dif-
ferential operators are usually not compact, moreover t
are unbounded. One of the techniques used to handle
operators is to gain control over their resolvents~see Kato
@20#, Chap. 3!, the case when the operator is closed and
resolvent is compact is particularly clear-cut@20#. As it turns
out, this is precisely what happens toLk for steady velocity
fields and nonzerok, i.e., it is ~weakly! closed onB(D) and
has a compact resolvent@21#.5 Hence its spectrum consists o
a discrete set of eigenvalues of finite multiplicity~Kato @20#,
p. 187!, in fact it has a complete set of eigenfunctions@21#.
Physically the implication of a purely discrete spectrum
that the eigenvalues are well separated, as time goe
f̄(x,y) will assume the form of the eigenfunction corr
sponding to the largest eigenvalue. In the more general
of a periodic velocity field we have to consider the Floqu
problem involving the propagation off(x,y,t) to f(x,y,t
1T) whereT is the periodicity of the underlying flow. De
noting the propagator byTk(T), the eigenvalue problem is o
the form

Tk~T!f̄5epT f̄. ~5!

The discreteness of the spectrum ofTk persists but the exis
tence of a complete set of eigenfunctions is not gauran
@21#. Essentially when the flow is smooth andk.0, we are
assuming that the spectral properties ofLk follow those of
Mk @Eq. ~6!# for which there exist rigorous results in th
cited dynamo literature. So, from a mathematical point
view, the problem has a purely discrete set of eigenval
and a ~possibly incomplete! set of eigenfunctions for both
steady and time periodic velocity fields. In passing, we m
tion that thek→0 limit is expected to be quite delicate
interesting aspects not encountered in thekÞ0 problem are
likely to appear in this limiting process~see Bayly@18# for
some illuminating examples in regard to the analogous sc
dynamo problem!.

4Consider an infinite sequence of functionsc1 ,c2 , . . . in a com-
plete function space. Let us denote the action of an operatorA on
these functions by the sequenceAc1 ,Ac2 , . . . . If A is closed with
respect to this space and further if one can extract a conver
subsequence fromAc1 ,Ac2 , . . . thenA is called a compact op
erator.

5The cited Ref.@21# deals with a similar operator that appears
the magnetic dynamo theory, specifically the operator they w
with is

MkBW 5k¹2BW 2~uW •¹W !BW 1BW •¹uW , ~6!

whereBW is the magnetic field. The difference inLk andMk is the
additional ‘‘stretching’’ term inMk . As this term does not contain

derivatives ofBW , it is quite intuitive that the spectral properties
Mk should carry over toLk . In fact, it is quite reasonable that a
long as the gradients of the velocity field are bounded, the spe
properties of bothLk andMk follow those of the Laplacian as th
highest-order derivatives are contained in the Laplacian term.
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B. Deterministic maps „periodic velocity fields…

We proceed to see if we can numerically realize the eig
functions corresponding to the above-mentioned eigen
ues. Chaotic maps on a lattice are utilized to represent
advection process~see Pierrehumbert@11# for a succinct
overview of lattice maps in advection!. The advantage of the
lattice maps is the exact preservation of scalar moments
their numerical efficiency. This ‘‘pulsed’’ advection is fol
lowed by a diffusive step~e.g., see Ref.@11# or @10#!. Usually
maps with random phase shifts at each iteration are
ployed so as to break the Kolmogorov-Arnold-Moser~KAM !
tori that are generically present in deterministic area pres
ing maps. As this procedure gives an aperiodic time dep
dence to the flow, it is unacceptable in the eigenvalue form
lation outlined in the preceding section. Unfortunately, w
are unaware of any area preserving, nonlinear, and cont
ous map that has been proven to be mixing6 over the whole
domainD. The only way we have of seeing that there are
regions where the scalar field remains trapped is to do
numerically, i.e., to examine the variance as a function
time. The particular map we use mimics an alternating n
linear shear flow,

xn115xn1A1 sin~B1yn1s1!1A2 sin~B2yn1s1!

yn115yn1C1 sin~D1xn111s2!1C2 sin~D2xn111s2!.
~7!

Heres1 ,s2 are constant random numbers used to get the
functions out of phase andxn ,yn are mod(0,2p). The con-
stants are A154,B151,A251,B25p,C151,D151,C2
5 1

4 ,D25p/2 and the initial condition of the scalar field i
f(x,y)5cos(x)cos(y) ~note that the scale of the scalar fie
is comparable to the scale of the flow!. The diffusive step is
implemented as

f i , j5~12D !f i , j1Df i , j , ~8!

whereDf i , j is

Df i , j5
1
4 D~f i 11,j1f i 21,j1f i , j 111f i , j 21!. ~9!

Here 0,D,1 is the diffusion coeffecient andi , j are the
indices of the lattice. As is expected, for certain combin
tions of s1 ,s2 there are persistent KAM barriers and we d
not observe a decay of the scalar variance as would be
pected from a globally mixing system. In fact, after a sh
time the diffusive exchange across the barriers controls
variance.s150,s250 provides an example of this phenom
enon, Fig. 1 shows the variance as a function of time forD
50.5, 0.4, 0.3, andD50.2, the control of the variance b
the diffusion coefficient is evident, moreover, a certa
amount of scalar is trapped within the barriers~the trapping
would be permanent ask→0, though the scaling of the
amount that diffuses as a function ofk is expected to be
nontrivial @23#!.

nt

k

al

6Mixing in the sense of dynamical systems~see e.g., Ref.@22#!.
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On the other hand, we get the desired global decay~down
to machine precision! accompanied by the emergence of
periodic eigenmode for other pairs ofs1 ,s2, ~namely, s1
55.9698,s251.4523, and D50.5). Apart from using
f(x,y)5cos(x)cos(y) as an initial condition, we also carrie
out the simulation using a checkerboard-type initial con
tion where the field is discontinous but square integrable~the
initial conditions can be seen in the upper panel of Fig.!.
The spatial structure of the eigenmode at iteration 250
650 for the first initial condition can be seen in the fir
column of Fig. 2. The second column of Fig. 2 shows t
evolution of the scalar field for the second initial conditio
~the eigenmode is shown at iteration 250 and iteration 65!.
The upper panel of Fig. 3 shows a log plot of the moments
a function of iteration.7 The perfectly normal scaling, i.e
an;n, @refer Eq.~2!# is shown in the middle panel of Fig. 3
Finally the self-similar pdf’s in steps of 25 iterations fro
iteration 250 to 650 can be seen in the lowermost pane
Fig. 3. Figure 4 shows the same entities for the second in
condition~see figure caption for details!. The bimodal nature
of the pdf indicates that there still exist regions that rem
relatively isolated from each other. In a sense these reg
are ‘‘large enough’’ to permit chaotic advection of the sca
within themselves and the barriers are ‘‘leaky enough’’ so
exchange of the scalar across them is strong enough so anot
to be a controlling factor. Note that due to the existence
these barriers, the value ofD has to be reasonably large~in
our experiments the results foran were identical forD
.0.2), if the system was mixing without any barriers th
the results would be valid for infinitesimally small diffusiv
ity.

Though the emphasis in the dynamo literature has bee
the infinite magnetic Reynolds number limit, there have be
a few studies on the form of the eigenfunctions at finite m

7The higher moments involve a fair degree of numerical unc
tainly, even though they do appear to behave as expected, we f
is better to rely on the pdf’s themselves.

FIG. 1. The strong barrier case: The decay of the natural lo
rithm of the variance for different diffusivities.
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netic Reynolds numbers. The maps used in these studie
chosen for their mathematical properties~such as the Bakers
map in Ref.@24# or the Cat map on an unusual Reimanni
manifold in Ref.@25#!, i.e., one has good mixing propertie
over the whole domain. Also, these maps allow analyti
estimates of the form of the eigenfunctions, hence prov
some insight into the generically singular infinite magne
Reynolds number limit~in terms of convergence to som
eigendistribution@19#!. Unfortunately such maps are slightl
unphysical, their chaotic properties are due to boundary c
ditions or due to the curvature of the underlying manifo

r-
l it

FIG. 2. The weak barrier case. Upper panels: The two ini
conditions. Middle panels: The eigenmodes after 250 iteratio
Lower panels: The eigenmode after 650 iterations.

a-

FIG. 3. The weak barrier case. Upper panel: The decay of
various moments (n52, 3, 4, and 5 with the higher moments a
pearing lower on the figure! for the first initial condition. Middle
panel: The extracted values ofan vs n ~the dash-dot line marked
with circles!, ‘‘ 1’’ is a plot of na1. Lower panel: The pdf’s in steps
of 25 iterations from iteration 250 to 650 for the first initial cond
tion. The pdf’s lie on top of each other due to their self-simil
nature.
2-4
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DECAY OF PASSIVE SCALARS UNDER THE ACTION . . . PHYSICAL REVIEW E66, 056302 ~2002!
rather than any inherent nonlinearity in the maps themsel
Even though we choose not to use such maps for advec
purposes, we would like to mention that their results~espe-
cially Ref. @24#! are consistent with our work.

C. Random maps„aperiodic velocity fields…

In the aperiodic case there is no clean way to sepa
time from space as was done in the earlier situations. Du
this we weaken the notion of an eigenfunction by invoki
statistical stationarity, i.e., the scalar field is said to enter
eigenmode when the shape of its pdf remains invariant w
time ~upon renormalization by its variance as the over
field strength is decaying!. Note that the earlier classica
eigenmode also has self-similar pdf’s. Of course, it ha
stronger form of convergence where the scalar field its
approaches a stationary~or periodic! spatial structure. The
random map used to represent the aperiodic flow is aga
nonlinear shear flow,

xn115xn14 sin~yn1pn!,

yn115yn1sin~xn111qn!. ~10!

Now pn ,qn (P@0,2p#) are random numbers selected at t
beginning of each iteration.xn ,yn are mod(0,2p), D50.25
and the initial scalar field isf(x,y)5cos(0.5x)cos(0.5y).
The map is iterated till the variance goes down to mach
precision. The variance as a function of time can be see
the upper panel of Fig. 5. After an initial transient~which
lasts for about 10 iterations, see Ref.@12#! the variance de-
cays exponentially. The higher moments can be seen in
lower panel of Fig. 5. The nonanomalous nature of the
ponents can be seen in the upper panel of Fig. 6, the imp

FIG. 4. The weak barrier case. Upper panel: The decay of
various moments (n52, 3, 4, and 5 with the higher moments a
pearing lower on the figure! for the second initial condition. Middle
panel: The extracted values ofan vs n ~the dash-dot line marked
with circles!, ‘‘ 1’’ is a plot of na1. Lower panel: The pdf’s in steps
of 25 iterations from iteration 250 to 650 for the second init
condition. Once again, the pdf’s lie on top of each other due to t
self-similarity.
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self-similar behavior of the pdf of the scalar field is demo
strated in the lower panel of Fig. 6. The pdf is unimodal
there are no isolated regions in the domain~the randomness
at each iteration is responsible for the destruction of a
barriers that might exist in the steady map!. Moreover, the
shape of the pdf is characterized by a Gaussian core
stretched exponential tails, as per the higher resolution s
ies by Pierrehumbert@11#.

D. Physical interpretation

The physical picture that goes along with the eigenmo
is as follows: Consider a filament of scalar whose length
comparable to the scale of variation of the velocity field~or
the typical size of an eddy in the velocity field!. Due to the
assumed chaotic properties of a generic time dependen
flow, the filament will tend to be stretched out. The point
that, as the scale of the filament is already the same as th
the flow, instead of being merely stretched the filament w

e

l
ir

FIG. 5. The aperiodic~no barrier! case. Upper panel: The deca
of the variance. Lower panel: The higher-order moments~progres-
sively higher moments appear lower on the figure!.

FIG. 6. The aperiodic~i.e., no barrier! case. Upper panel:an vs
n~o!, the dash-dot line isna1. Lower panel: The self-similar pdf’s
2-5
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J. SUKHATME AND R. T. PIERREHUMBERT PHYSICAL REVIEW E66, 056302 ~2002!
fold and start to fill the eddy. This process continues till t
filament has been ‘‘packed’’ as tightly possible. Note that i
the diffusion that is responsible for the ‘‘packing,’’ i.e., fo
k.0 there is a limit on how thin a filament can get. On
this situation is reached, as the problem is unforced,
whole structure remains stationary~or periodic or statisti-
cally stationary depending on the flow! till the diffusion de-
stroys all the variance in the scalar field. We argue that
eigenmode is a representation of this ‘‘packed’’ structure

III. THE DIFFERENT REGIMES

Having got a feel of the situation when the initial scale
variation of the scalar field and that of the velocity field a
comparable, we proceed to look into the evolution of
initially small scale scalar field, i.e.,l k! l s! l v;L.

As fPB(D), via Fourier’s theorem, we can representf
as

f~rW,t !5E
kW0

f̂~kW0 ,t !eikW (t)•rWdkW0 . ~11!

Substituting a plane wave solution in Eq.~1! and equating
the real and imaginary parts, we get,

]f̂~kW0 ,t !

]t
52kukW~ t !u2f̂~kW0 ,t !, ~12!

wherekW (t) is given by

rW•
]kW~ t !

]t
52uW •kW~ t !; kW~0!5kW0 . ~13!

A. Small time scales

In the eigenvalue formulation, whenl s!L; l v the scalar
field is essentially in an infinite domain, the implication
that the spectrum ofLk now typically consists of a continu
ous part and hence possesses eigenvalues that lie arbit
close to each other. As there is no dominant eigenvalue
will not see the emergence~at short times! of the correspond-
ing eigenmode.

Taking advantage ofl s! l v , we linearize Eq.~13! to ob-
tain

]kW~ t !

]t
52¹W uW ~kW0 ,t !kW~ t !. ~14!

From Eq.~12! we have

f̂~kW0 ,t !5f̂~kW0,0!e2k*0
tukW (s)u2ds. ~15!

Therefore, in order to see how the moments behave at s
times we need an estimate of howukW (t)u evolves. Generally
this is a fairly intricate question as the solution to Eq.~14!
involves a time ordered exponentiation that reduces t
product of matrices@26#.
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1. Useful properties of the FTLE’s

We mention some of the properties of the FTLE’s th
will be needed for calculations in the forthcoming section
In 2D we have the possibility of 2~asymptotic! Lyapunov
exponents. Let us denote the larger of these byL0. Further-
more let us denote the FTLE along a particular trajecto
after n iterations, byL(n). Note that physically the FTLE’s
are defined with respect to the change in volume of a gi
set of initial conditions. In 2D incompressible systems, t
only depends on the larger eigenvalue in the abo
mentioned matrix product. In higher dimensions the situat
is more complicated as the FTLE depends on the sum of
positive eigenvalues~for continuous flows! of the matrix
product, i.e., it is closely related to the topological entropy
the dynamical system.

In D dimensions one has the possibility ofD ~asymptotic!
Lyapunov exponents. Let us denote them byL i( i 51: D). It
is generally assumed that, along a particular trajectory,
probability of L i(n) ~i.e., the spectrum of Lyapunov expo
nents calculated aftern iterations! deviating fromL i decays
exponentially withn @27#. In fact it is generally taken for
granted that eachL i(n) is governed by the central limit theo
rem ~CLT! and is distributed aroundL i @28# ~see also the
discussion in Sec. 9.4 of Ref.@29#!. We would like to men-
tion that we are not aware of a general proof of this sta
ment. Having said this, we mention that the results of Ba
ovsky and Fouxon@7# appear to lead in this direction thoug
the status of the proof of the general statement is not v
clear. The specific results we are aware of start with the w
of Furstenberg~see Ref.@26#!, who showed that if the matri-
ces are i.i.d~i.e., d-function correlated in time! random ma-
trices and if the system is incompressible, thenL0

@5max(Li)#.0. A stronger result, which is valid only in 2D
has recently been shown by Chertkovet al. @6#. It states that
if the tangent maps are random matrices with arbitrary~but
finite! correlation time thenL0.0, moreoverL(n) obeys
the CLT and is distributed aroundL0.

Therefore, using the CLT forL(n) in 2D, the distribution
of the FTLE’s can be expressed as~see Sec. 8.6.4 of Ref
@30# for the large deviation result!

Q~L,n!;e2nG(L2L0), ~16!

where G(L2L0) is the Cramer function andL0 is the
asymptotic Lyapunov exponent. Due to the mixing nature
the system, asn→` the FTLE’s along~almost! every trajec-
tory will tend toL0, moreover, the average of many realiz
tions along a particular trajectory can be interpreted a
spatial average@22#.

2. The scalar pdf

At this initial stage the problem is completely reversib
in the sense that the area of a given blob of scalar is inv
ant. Physically when we release a small blob of scalar i
chaotic flow, the tendency is for the blob to form a filame
while respecting the conservation of area. Mathematica
this implies that on averagekW (t) grows with time, i.e., one of
the components ofkW (t) increases while the other one d
2-6
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DECAY OF PASSIVE SCALARS UNDER THE ACTION . . . PHYSICAL REVIEW E66, 056302 ~2002!
creases. The inference from Eq.~15! is that the moments o
the scalar field decay in faster than exponential fashion~see
e.g., Refs.@31,32#!.

Keeping in mind that the backwards in time problem h
the same FTLE’s as the forward problem, we can envisio
blob of scalar at a timet to have resulted from the diffusiv
homogenization of a filament~at t50) that has undergon
advective collapse@11#. As the initial scale of variation of the
scalar field is very small, in effect the blob is a result of t
diffusive homogenization of a large number of independ
random concentrations. Denoting the scale of the blob bl,
for one realization, the probability of the blob’s concentr
tion beingf5f1 at time t is @11#

P~f1! t;e2@ leLt/ l s#S(f1), ~17!

whereS(f) is the Cramer function. For notational simplic
ity, we have taken the mean of the random concentrati
making up the blob to be zero. Note that the chaotic natur
the flow is embedded in the exponential prefactor toS(f).
For many realizations the average probability of the ab
event is

^P~f1! t&;E e2@ leLt/ l s#S(f1)2tG(L2L0)dL. ~18!

Here^•& represents an average of many realizations alon
particular trajectory. As mentioned, this can be interpreted
a spatial average. By a steepest descent argument the
of L that dominates the above integral satisfies~denoting it
by L1)

2
l

l s
S~f1!eL1t5G8~L12L0!. ~19!

As S(f)>0, Eq. ~19! implies L1<L0. Substituting in Eq.
~18!, we have

^P~f1! t&;eG8(L12L0)e2bt; b5G~L12L0!. ~20!

Therefore the probability of a particular deviation decays
ponentially with a rateb. The important point is thatb is a
function of the deviation throughL1. As S(f) is convex
@30#, for f5f2 ~where uf2u.uf1u), S(f2).S(f1). From
Eq. ~19! the dominant FTLE forf2 ~denoting it by L2)
satisfiesL2,L1. Therefore the probability of a large devia
tion is governed by the smaller FTLE’s, i.e., the tails of t
pdf of f are sensitive to the tails of the FTLE distribution. A
the other extreme, asf→0 we haveL1→L0 @because
S(f)→0 asf→0 andG8(L2L0)→0 asL→L0]. Also,
S(f);f2 for small deviations. From Eq.~17! the implica-
tion is that, in this regime, the scalar pdf has a Gaussian
with a width that decreases in time.

3. Numerical results

To numerically verify these predictions we use the ma

xn115xn1A sin~Byn1cn! mod~0,12p!,

yn115yn1C sin~D1xn111sn! mod~0,12p!, ~21!
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wherecn ,sn (P@0,2p#) are random numbers chosen at t
beginning of each iteration,B5D15 1

6 so as to make the
scale of the flow comparable to the scale of the domain
A51,C51. Diffusion is represented as in Eq.~8! with D
50.25. To satisfyl s! l v , we take the initial scalar field to be
f(x,y)5cos(4x)cos(4y). Figure 7 shows the evolution of th
moments for an ensemble average over 25 realizations o
map. The faster than exponential decay of the moment
visible for the first 90–100 iterations. Moreover, the pdf ev
lution ~in steps of 10 iterations! seen in Fig. 8 goes along
theoretical expectations.

B. Intermediate time scales

In Fig. 7 there is a transition from faster than exponen
to purely exponential decay of the moments at around ite
tion 100. This transition is a diffusive effect~the diffusive
time T in the Introduction refers to the time at which th

FIG. 7. The decay of the moments for a scalar field whose ini
scale of variation is small as compared to that of the advecting fl
~the higher moments are lower on the figure!.

FIG. 8. The pdf’s from iteration 40 to 100~thick line at iteration
100) for the initially small scale scalar field.
2-7
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J. SUKHATME AND R. T. PIERREHUMBERT PHYSICAL REVIEW E66, 056302 ~2002!
transition occurs!. As mentioned, from Eq.~15! it is evident
that the growing component ofkW (t) controls the decay o
f(kW0 ,t). In physical space the growing component ofkW (t)
represents a shrinking physical scale. As there is a lo
limit to this shrinking scale~i.e., l k), the magnitude ofkW (t)
saturates when its growing component becomes compar
to l k

21 . From this time onwardsukW (t)u2 fluctuates aroundl k
22

and hencef(kW0 ,t) decays in a purely exponential fashio
Physically, even though the flow is incompressible, due
the nonzero diffusivity, the area of a blob of scalar is
longer invariant. In fact, the area increases exponentia
implying an exponential decay of the scalar concentrat
within the blob itself.

1. Existing results onan

In this regime, where bothl s!L; l v and the area of a
given blob of scalar evolve, the moments of the scalar fi
have been dealt with in detail by Balkovsky and Fouxon@7#.
Their approach involves shifting to a comoving referen
frame and using the effective equation@7,6#,

]f

]t
1sabr b¹af5k¹2f. ~22!

The essential point is that now the trajectory equation ta
the form

]r b

]t
5sab~ t !r b . ~23!

For this problem the Lyapunov exponents are defined as~see
e.g., Ref.@6#!,

l~ t !5
1

t
ln

urW~ t !u

urW~0!u
. ~24!

Due to the effective space-time separation of the velo
field in the comoving reference frame,l(t) is only a func-
tion of time. In effect the behavior ofL(n) for a given tra-
jectory in the FTLE formalism is now valid for the entir
domain. In fact, the aforementioned results of Chertkovet al.
@6# are actually shown in the comoving framework forl(t).
Building on this framework, Balkovsky and Fouxon@7# de-
rive expressions for the moments of the scalar field by c
sidering the evolution of an inertia tensorlike quantity for
blob of scalar. The advantage of the inertia tensorlike qu
tity is that its evolution explicitly captures the exponent
growth of a blob’s area that characterizes this regime. T
chief assumption is that the eigenvalues of the inertia ten
at any finite timet, are governed by the CLT and are distri
uted about the asymptotic Lyapunov exponentsl i( i 51,2 in
2D!. With this they are able to show that^uf(t)un&;e2ant

and thatan is a nonlinear function ofn, implying a non-self-
similar pdf for the scalar field.
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2. A simple example of a single non-self-overlapping blob

We present a simple example to put some of the noti
regarding the behavior ofan in perspective. The objective i
to analyze the evolution in concentration of a sing
non-self-overlapping8 blob. Let the blob’s concentration b
CT ~at time t5T). Now, the increase in the area of the blo
is controlled by the FTLE at the position of the blob. Ther
fore we have

Ct5CT e2L(t2T); t>T. ~25!

Hence,

^uCtun&5uCTun E e2nL(t2T)Q~L,t !dL, ~26!

where^•&, as before, indicates an average of many reali
tions over one trajectory. Therefore we have

^uCtun&5uCTun E e2nL(t2T)2tG(L2L0) dL. ~27!

By a steepest descent argument, fort@T, the above integral
is dominated forL5L* ~implicitly ! given by

dG

dL U
L5L*

52n. ~28!

This impliesL* ,L0, moreover, for smalln Eq. ~28! im-
plies L* →L0. In this region the Cramer function is para
bolic, i.e., takingG(L2L0)5a(L2L0)2 we have

L* 5L02
n

2a
. ~29!

Substituting back, we obtain~for small n)

^uCtun&;e2ant; an5nS L02
n

4aD . ~30!

Immediately it is clear that the pdf of the scalar field will b
non-self-similar asan is a nonlinear function ofn. Further-
more, the nonlinearity is due to the fact that there is a dis
bution of FTLE’s. If we had a single FTLE or if the FTLE
distribution collapsed to ad function in a short time, then the
scaling would be nonanomalous withan5nL0. Note that
the explicit expression foran given in Eq.~30! is only valid
for small n. From Eq.~28! the higher moments~as in the
previous regime! are sensitive to the smaller FTLE’s. As ou
simple example follows Balkovsky and Fouxon’s work, the
form for an ~through more detailed considerations that ta
into account the diffusive overlap of many blobs! is similar
to Eq. ~30! ~see Eq.~3.9! in Ref. @7#!. We reiterate that even
though the FTLE distribution is responsible for the pdf ev

8What we mean by ‘‘non-self-overlapping’’ is a single blob th
stretches and folds in this large scale velocity field but the filame
of the blob do not overlap with each other in these intermed
time scales.
2-8
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DECAY OF PASSIVE SCALARS UNDER THE ACTION . . . PHYSICAL REVIEW E66, 056302 ~2002!
lution in this regime, fundamentally this is still a diffusiv
effect ~in the sense that it is the nonzero diffusivity that lea
to the area evolution that characterizes this regime!.

3. Numerical results

The upshot of these considerations is that at these in
mediate time scales we should observe an evolution in
pdf of the scalar field. To verify this, we plot the pdf’s~in
steps of 10 iterations from iteration 90 to iteration 490) in t
upper panel of Fig. 9. The non-self-similarity is clearly ev
dent. The anomalous nature ofan can be seen in Fig. 10. W
observe that the pdf’s are characterized by a~progressively
smaller! Gaussian core and~progressively fatter! stretched
exponential tails. Interestingly after about iteration 400
tails of the pdf tend to relax back to a purely exponen
form ~which is the theoretically expected shape, see S
III B in Falkovich et al. @3#!. The only discrepancy with the

FIG. 9. Initailly small scale scalar field. Upper panel: pdf’s fro
90–490~non-self-similar!. Lower panel: pdf’s from 600–800~self-
similar!.

FIG. 10. Initially small scale scalar field:an vs n ~nonlinear—
iteration 90–490, linear—iteration 600–800!.
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oretical predictions@7# is thatan does not saturate at highn,
this might be due to the fact that we are unable to get to h
enoughn numerically to actually observe the saturation~see
the example in the Discussion!.

C. Large time scales

From the preceding arguments it would appear that
scalar pdf is an ever-evolving entity~as is implied in@7#!, but
once again from Fig. 7 we see that the behavior of the m
ments undergoes another change between iterations 5
600. We claim that it is at this stage that the scalar fi
actually enters the eigenmode, i.e., beyond iteration 600
pdf should become self-similar. The lower panel of Fig.
shows the pdf’s~again in steps of 10 iterations from iteratio
600 to iteration 800). The self-similar nature of the pdf’s
clearly evident, alsoan ~shown in Fig. 10 along with thean
from the previous regime! follows an;n. Physically the
scale of variation of the scalar field is now comparable
that of the velocity field, hence the velocity field separati
used to derive Eq.~22! is invalidated. Correspondingly, in
the FTLE formulation, the linearization breaks down. In fa
the problem is now in a situation where the mathemati
considerations leading to the eigenmode~Sec. II! become
applicable.

IV. DISCUSSION

In the first part of the paper we described the behavior
a scalar field whose initial scale of variation was compara
to that of the advecting flow~both of which were similar to
the size of the domain!. In both periodic and aperiodic situ
ations we demonstrated the emergence of scalar eigenmo
In spite of the weak barriers that exist in the determinis
map used for periodic flows, the emergence of a scalar eig
mode is robust~as is seen from the two different initial con
ditions!. In the case of random maps, representing aperio
flows, the mixing is global~as the barriers are destroyed! and
the eigenmode is statistical in nature. Along with the rec
work of Feredayet al. @16#, this indicates that passive scal
advection diffusion in chaotic flows can be insightful
treated as an eigenvalue problem as is commonly done
steady flows~see e.g., Younget al. Ref. @33#!.

We then looked at the evolution of a passive scalar wh
initial scale of variation was small as compared to that of
advecting flow~again, the scale of the flow was comparab
to the size of the domain!. Initially, as has been noted in
previous studies@31,32#, the moments of the scalar field de
cay in a faster than exponential fashion. The pdf of the sc
field in this initial regime is an evolving entity, it is shown t
be characterized by a Gaussian core that shrinks with ti
When the scalar filaments reach the diffusive scale the
havior of the moments experiences a transition to a pu
exponential decay. We emphasize that this transition is a
fusive effect. In this intermediate regime the pdf of the sca
field is still an evolving entity~as is shown by Balkovsky and
Fouxon@7#, via the nonlinear dependence ofan on n). By
means of a simple example, the nonlinear nature ofan is
shown to be dependent on the distribution of FTLE’s, mo
2-9
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J. SUKHATME AND R. T. PIERREHUMBERT PHYSICAL REVIEW E66, 056302 ~2002!
over, the higher moments are seen to be sensitive to the
of the FTLE distribution. Finally, when the scalar filaman
have stretched and folded to fill the domain~or have been
‘‘packed’’ as per our previous nomenclature! the field enters
an eigenmode. The eigenmode, as before, is characterize
self-similar pdf’s. Numerical results of advection on a latti
followed by diffusion appear to confirm these stages of e
lution.

The above-mentioned stages, which an initially sm
scale scalar field encounters, are robust, i.e., once one e
a particular stage, the statistical properties of the scalar fi
are fixed. A caveat is that the duration of the stages stron
depends on the strength of the advecting flow. As an illus
tion, consider the same scalar field and map as in Eq.~21!,
but setA5C55 ~i.e., a flow with stronger stretching prop
erties!. The behavior of the moments andan is shown in Fig.
11 ~note that in this case, for the intermediate regime,an
does appear to saturate for largen). The stronger nature o
the flow causes the first stage to be very short, the inter
diate stage is also relatively shorter as the filaments fill
domain quickly. Finally, the eigenmode is realized and p
sists till all the variance is destroyed.

In essence the picture that emerges is fairly straight
ward, as long as there is a valid scale separation~i.e., till l s
! l v;L), the pdf’s of the scalar field are evolving entitie
albeit involving stages characterized by a distinct decay
moments. Whereas, as soon asl s; l v;L, the scalar field
enters an eigenmode with stationary or self-similar pd
Interestingly, some of our preliminary numerical work ind
cates that when we considerl v! l s;L, the self-similarity is
maintained whereas the shape of the pdf is altered. In f
smaller the scale of the velocity field the more Gaussian
the self-similar scalar pdf. As future work we plan to loo
deeper into these cases, especially in light of the recen
sults on nondiffusive asymptotic self-similarity of turbule
d
n

d

t.

ys
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decay~i.e., where the advecting flows themselves are s
similar and nonsmooth!, as put forth by Chaveset al. @34#.
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FIG. 11. Case withA5C55 in Eq. ~21!. Upper two panels
show the moments (n52, 4, 6, 8, and 10 with higher moments a
pearing lower on the figure! and the lower panel showsan vs n
extracted from iterations 20–70~dashed line! and iterations 150–
300 ~solid line!, respectively. Note the saturation ofan in the inter-
mediate regime. Log refers to the natural logarithm.
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