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Decay of passive scalars under the action of single scale smooth velocity fields
in bounded two-dimensional domains: From non-self-similar probability distribution
functions to self-similar eigenmodes
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We examine the decay of passive scalars with small, but nonzero, diffusivity in bounded two-dimensional
(2D) domains. The velocity fields responsible for advection are sm@eththey have bounded gradienand
of a single large scale. Moreover, the scale of the velocity field is taken to be similar to the size of the entire
domain. The importance of the initial scale of variation of the scalar field with respect to that of the velocity
field is strongly emphasized. If these scales are comparable and the velocity field is time periodic, we see the
formation of a periodic scalar eigenmode. The eigenmode is numerically realized by means of a deterministic
2D map on a lattice. Analytical justification for the eigenmode is available from theorems in the dynamo
literature. Weakening the notion of an eigenmode to mean statistical stationarity, we provide numerical evi-
dence that the eigenmode solution also holds for aperiodic flepsesented by random map$urning to the
evolution of an initially small scale scalar field, we demonstrate the transition from an ev@héngon-self-
similar) probability distribution functior(pdf) to a stationaryself-similap pdf as the scale of variation of the
scalar field progresses from being small to being comparable to that of the velocitiafieldf the domain
Furthermore, the non-self-similar regime itself consists of two stages. Both stages are examined and the
coupling between diffusion and the distribution of the finite time Lyapunov exponents is shown to be respon-
sible for the pdf evolution.

DOI: 10.1103/PhysReVvE.66.056302 PACS nunerd7.52+j

[. INTRODUCTION of the advection diffusion operator in a suitably defined func-
tion space? Usually, given the aperiodic nature of the advect-
Starting with the work of Batcheldr], the study of pas- ing velocity fields the question is better posed in a statistical
sive scalars in smooth velocity fields has been the subject afense, i.e., is the asymptotic probability distribution function
numerous investigations. Originally posed in three dimen<{pdf) of the scalar field self-similar or is it an ever evolving
sions(3D) [1], the problem considered a situation where the(non-self-similay entity? As things stand, the results found in
viscosity (v) of the flow is much greater than the diffusivity the literature are fairly divided. One of the aims of this paper
(x) of the scalar. Therefore, even at large Reynolds numberss to unify these results by bringing out certain salient fea-
for length scales below the viscous cutdff) and above the tures(such as scale separatjothat have not been empha-
diffusive cutoff (), the so-called Batchelor regime, one hassized previously.
a smooth velocity advecting a diffusive tracer. Since then the Most theoretical studies have focused on the case when
problem has grown to encompass a variety of phenomente initial scale of variation of the scalar fielday |5, |4
such as chaotic advectigsee, for example, Ottini2]) and  >1,) is much smaller than that of the velocity fielshyl, ,
scalars in inverse cascading 2D turbulent flqase Sec. Il we takel,~L). The problem then is to determine the statis-
in Falkovich et al. [3] for a recent review Of particular tical properties of the scalar field at scales betwligeand| . .
interest to us are applications in the realm of geophysicaf successful approach in this direction has been to shift to a
fluid dynamics, specifically, the mixing of scalars along isen-comoving reference frame, use the decomposition
tropic surfaces via large scale atmospheric flo#$). =(0,Up) (1) rg=0,4(t) rg, and deal with the the effective
The equation governing the passive scalgj (s, equation that results from a substitution in Kty (see, for
example, Refg[6,7] and the references thergiThe expec-
ip . - 5 tation [7] is that the scalar field will have non-self-similar
EJ“(U'VW’: KV ) pdf’'s. Or, defining the moments of the scalar field as
(J(x,y,t)|"), Balkovsky and Fouxori7] explicitly show

Let us denote the size of the domain by This is a linear that
equation for¢, the velocity field is part of the prescribed N et
data. The usual conditions imposed on the velocity field are (lp(xy,n)~e 't >T 2

that it be divergence-free and smooth, i.8;u=0 and  and thata, is a nonlinear function of (T is a diffusive time
|ﬁu|<oc everywhere in the domain. The questions asked arscale which will be clarified latg¢r implying the non-self-
usually of the form: given an initial scalar field is it possible similarity of the pdf’s. Recent experimeni8] with passive
to determine the long time behavior of the solution? Doesscalars injected at point sources in inverse cascading 2D tur-
one see the emergence of an eigenmode with a well-defindalilent flows seem to validate some of these predictions.
decay rate, in other words what is the nature of the spectrur@oncrete evidence is available from numerical work demon-
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strating the nonlinearity od, for scalars advected by realis- mode has to be weakened by invoking statistical stationarity
tic atmospheric windg5]. It should be noted that these simu- (i.e., self-similarity of the pdf Second, we present a unified
lations are over a time scale which represent the transiericture of the two seemingly disparate cases mentioned
scalar behavior rather than the asymptotic large time soluabove. Starting with a scalar field that satisfigs|,~L, we
tion. observe an evolution in the shape of the fid#., the pdf is

On the other hand, there is a small body of work thatnon-self-similay. This evolution ceases when the scales of
deals with the case whdn<l,~I,~L, i.e., the initial scale the velocity and scalar fields become compardbke, the
of variation of the scalar field is comparable to that of thefield enters an eigenmode with a self-similar pdthe vari-
velocity field, both of which are in turn comparable to the ous regimes that the scalar field encounters are analyzed and
scale of the domaih.The observation, based on numerical a simple example, motivated by the work of Balkovsky and
work [10,11], is that the scalar field enters an eigenmodeFouxon[7], is used to elucidate the coupling between diffu-
(termed a “strange eigenmode” by Pierrehumhiéf] due to  sion and the distribution of FTLE’s and its role in determin-
its spatial complexity. The pdf of the scalar becomes self- ing the pdf evolution. A discussion of the regimes, their uni-
similar (after a suitable normalization by the varianee in  versality, and the issue of scale separation conclude the
terms of the momentsy,~n. Recently, experimental evi- paper.
dence for the emergence of such an eigenmode has been
provided in the case of time periodic velocity fieldk3]. A
line of attack on this problem has been to try and relate the
finite time Lyapunov exponentd~TLE's) of the advecting
flow to the statistical properties of the scalar fiédte Ref. A. The eigenvalue problem

[12] and the references thergieven though this work12] Physically wherl ~1,~L the scalar field feels the effect

is successful in describing the initial stages of the problemo]c the finite size of the domain, moreover, hs-1, it is

the F.TLES are _by definition Iogal entities and appear to bedifficult to justify any linearization of the underlying nonlin-
unsuitable precisely whei~1, .

In this study we work with simple prescribed velocity ear traject.ory equation_s. Fortunately, thg linear nature of Eq.
fields in 2D that have a single large scétd the kind en- (1) lends itself to an elgenvalu.e analysis. Recently Fereday
countered in studies of chaotic advecioiis worth empha- €t @l- [16] have looked at the eigenvalue problem for a spe-
sizing that the power spectrum of such velocity fields is dis-Cific velocity field (represented by the Bakers maj/e con-
crete. This is in contrast to technically smooth velocity fieldsSider the eigenvalue problem in its full generality as has been
that possess a heirarchy of scales. In other words the velocilone for the magnetic field in the kinematic dynamo litera-
fields considered are Lipschitz continuous over all scales ofure [17—19. Most of the material in this section is well
interest(i.e., betweerl, andl,~L). The large single scale, known in the dynamo literature, we present it here merely to
divergence-free and smooth nature of the velocity field im-ut things in a well-defined framework. Let us recast &9.
plies that the trajectory equations do not show explo§ive  as
plosive separatior{collapse as is generally expected in tur-
bulen.t (o.r multiple scalg incompressible(compressibl}e %Zﬁxdh L= KV2¢—(J'€)¢- 3)
velocity fields(see e.g., Gawedzki and Vergassfla)). at

Our first aim is to give further justification for the eigen-
mode in periodic and aperiodic velocity fields. We explicitly
construct an area preserving deterministic 2D map which, ifror a steady velocity field one can separate time by assuming
spite of having weak barriers, demonstrates the emergence afsolution of the form(x,y,t)zg(x,y)evt_ Hence the ei-

a periodic eigenmode. Moreover, we point out theorems igenvalue problem is

the dynamo literature, which are applicable to the passive

scalar problem, thereby providing analytical justificatiam

terms of the purely discrete spectrum of the advection diffu- r E: Ug 4)
sion operatorfor the eigenmodes. The aperiodic case is free “ '

of barriers due to the random nature of the maps employed

but is slightly novel in the sense that the notion of an eigen- — i
Here ¢ € B(D), whereB(D) is a Banach space of square

integrable functiorsdefined on the domaib. We takeD to

We always takel ,~L. There are other problems of interest be [0,27]X[0,2] With opppsite sides identifiedi.e., a
wherel <L, which are studied in the context of turbulent diffusion {©O"US- The object of interest is the spectrum of the operator
(see e.g., the comprehensive review by Majda and Krd@ier L, acting inB(D). As we are working in a Banach space of

2A recent papef14] analyzes the work of Antonseet al. [12] infinite dimensions the spectrum depends strongly on the na-

with an aim to understand the exponential decay of scalar moment£Ure of the operatof20].

This paper, Wonhas and Vassilicg44], identifies a “global”

mechanism responsible for the exponential decay and also hints at

the importance of the scale separation we have emphasized in thisFor finite times, given thatﬁﬁ|<oo, we are guaranteed that the
paper. scalar field will remain square integrable.

Il. THE EIGENMODE
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If the operator in question were comp&dhen the spec- B. Deterministic maps (periodic velocity fields)

tral theory of finite dimensional operators would carry over —y proceed to see if we can numerically realize the eigen-
to our infinite-dimensional problerf20]. Unfortunately dif- ¢, ctions corresponding to the above-mentioned eigenval-
ferential operators are usually not compact, moreover theyas Chaotic maps on a lattice are utilized to represent the
are unbounded. One of the techniques used to handle suglyection procesgsee Pierrehumberfill] for a succinct
operators is to gain control over their resolvef#ge Kato ,erview of lattice maps in advectinrThe advantage of the
[20], Chap. 3, the case when the operator is closed and it§atice maps is the exact preservation of scalar moments and
resolvent is compact is particularly clear-¢80]. As it turns  pair numerical efficiency. This “pulsed” advection is fol-
out, this is precisely what happens £q for steady velocity  |gyed by a diffusive stefe.g., see Ref11] or [10]). Usually
fields and nonzera, i.e., it LS(Weakl}b closed orB(D) and  maps with random phase shifts at each iteration are em-
hag a compact resplve[rﬁl]. Henc.:e' its spef:tr'um consists of ployed so as to break the Kolmogorov-Arnold-MogéAM )

a d|screFe set o_f eigenvalues of finite muI_Uphc(fS(at(_) [20],  tori that are generically present in deterministic area preserv-
p. 187, in fact it has a complete set of eigenfunctid@d].  jq maps. As this procedure gives an aperiodic time depen-
Physically the implication of a purely discrete spectrum iSgence to the flow, it is unacceptable in the eigenvalue formu-
that the eigenvalues are well separated, as time goes Qfion outlined in the preceding section. Unfortunately, we
#(x,y) will assume the form of the eigenfunction corre- are unaware of any area preserving, nonlinear, and continu-
sponding to the largest eigenvalue. In the more general cassis map that has been proven to be miioger the whole

of a periodic velocity field we have to consider the FloquetdomainD. The only way we have of seeing that there are no
problem involving the propagation ab(x,y,t) to ¢(x,y,t  regions where the scalar field remains trapped is to do so
+T) whereT is the periodicity of the underlying flow. De- numerically, i.e., to examine the variance as a function of
noting the propagator by,(T), the eigenvalue problem is of time. The particular map we use mimics an alternating non-
the form linear shear flow,

T.(Td=eT &, () Xn+1=XntAg SINB1yn+51) + A, sin(Boy,+s1)

The discreteness of the spectrumZfpersists but the exis- Yea=Yn+ C1 SIND o1 5+ C2 Sm(DZXnHJFSZ)'g)
tence of a complete set of eigenfunctions is not gauranteed

[21]. Essentially when the flow is smooth ard-0, we are  Heres,,s, are constant random numbers used to get the sine
assuming that the spectral properties(gf follow those of  functions out of phase anx},,y, are mod(0,2). The con-
M, [Eq. (6)] for which there exist rigorous results in the stants are A;=4B;=1,A,=1B,=m,C;=1D;=1C,
cited dynamo literature. So, from a mathematical point of=% D,==/2 and the initial condition of the scalar field is
view, the problem has a purely discrete set of eigenvalueg(x,y)=cos)cosf) (note that the scale of the scalar field

and a(possibly incompleteset of eigenfunctions for both s comparable to the scale of the flowhe diffusive step is
steady and time periodic velocity fields. In passing, we menimplemented as

tion that thexk—0 limit is expected to be quite delicate;

interesting aspects not encountered in &0 problem are ¢ j=(1-D)¢; j+Ad;, (8)
likely to appear in this limiting processee Bayly[18] for

some illuminating examples in regard to the analogous scalaghere A biis

dynamo problem

Adi =iD(pir1jtdi_rjtdijaatdij-). 9

“Consider an infinite sequence of functiafs, ¢, ... inacom- Here 0<D<1 is the diffusion coeffecient andj are the
plete function space. Let us denote the action of an opefatmr  indices of the lattice. As is expected, for certain combina-
these functions by the sequenke,; ,Ay,, ... . If Ais closed with  tions of s;,S, there are persistent KAM barriers and we do
respect to this space and further if one can extract a convergemot observe a decay of the scalar variance as would be ex-
subsequence froMy, Ay, ... thenAis called a compact op- pected from a globally mixing system. In fact, after a short
erator. time the diffusive exchange across the barriers controls the

5The cited Ref[21] deals with a similar operator that appears in variance.s;=0,s,=0 provides an example of this phenom-
the magnetic dynamo theory, specifically the operator they workenon, Fig. 1 shows the variance as a function of timeCfor
with is =0.5,0.4,0.3, and=0.2, the control of the variance by

M, B=«kV2B—(u-V)B+B-Vu, (6)  the diffusion coefficient is evident, moreover, a certain

whereB is the magnetic field. The difference ity andM, is the ~ amount of scalar is trapped within the barriétise trapping
additional “stretching” term inM, . As this term does not contain Would be permanent ags—0, though the scaling of the
derivatives ofB, it is quite intuitive that the spectral properties of amount that diffuses as a function afis expected to be
M, should carry over tc, . In fact, it is quite reasonable that as Nontrivial [23]).
long as the gradients of the velocity field are bounded, the spectral
properties of bothC, and M, follow those of the Laplacian as the
highest-order derivatives are contained in the Laplacian term. 5Mixing in the sense of dynamical systersee e.g., Ref.22]).

056302-3



J. SUKHATME AND R. T. PIERREHUMBERT PHYSICAL REVIEW B56, 056302 (2002

12 T T T T T T T 1
T
1]
4
10 - o
H _as E
Uppermost curve : D=0.2, Lowermost curve : D=0.5 - -
-] -]
-} z a4 B

4]

Iteration

_ FIG. 1. The strong barrier case: The decay of the natural 109a- £ 5 The weak barrier case. Upper panels: The two initial
rithm of the variance for different diffusivities. conditions. Middle panels: The eigenmodes after 250 iterations.

. Lower panels: The eigenmode after 650 iterations.
On the other hand, we get the desired global dédayn P g

to machine precisionaccompanied by the emergence of a ) )
periodic eigenmode for other pairs sf,s,, (namely,s, netic Reynolds numbers. The maps used in these studies are

—5.9698,5,=1.4523, and D=0.5). Apart from using chosen for their mathematical propertigsich as the Bakers

H(x,y) = cos§)cosf) as an initial condition, we also carried Map in Ref.[24] or the Cat map on an unusual Reimannian
out the simulation using a checkerboard-type initial condi-manifold in Ref.[25]), i.e., one has good mixing properties

tion where the field is discontinous but square integrégble ~ ©ver the whole domain. Also, these maps allow analytical
initial conditions can be seen in the upper panel of Fig. 2 estimates of the form of the eigenfunctions, hence provide

The spatial structure of the eigenmode at iteration 250 an§®me insight into the generically singular infinite magnetic
650 for the first initial condition can be seen in the first R€ynolds number limitin terms of convergence to some
column of Fig. 2. The second column of Fig. 2 shows theelgendl_strlbutlo_r[19]). L_Jnfortunat_ely such maps are slightly
evolution of the scalar field for the second initial condition UnPhysical, their chaotic properties are due to boundary con-
(the eigenmode is shown at iteration 250 and iteration) 650 ditions or due to the curvature of the underlying manifold
The upper panel of Fig. 3 shows a log plot of the moments as

a function of iteratiorl. The perfectly normal scaling, i.e., 2
an~n, [refer Eq.(2)] is shown in the middle panel of Fig.3. . W+inoo-—— === 1

Finally the self-similar pdf's in steps of 25 iterations from Faf —————————
iteration 250 to 650 can be seen in the lowermost panel of” -t

Fig. 3. Figure 4 shows the same entities for the second initial -sp———t—pb— 00— ————
condition(see figure caption for detajlsThe bimodal nature o e

of the pdf indicates that there still exist regions that remain | Ib;

relatively isolated from each other. In a sense these region: . | T
are “large enough” to permit chaotic advection of the scalar | B =

05 e -

within themselves and the barriers are “leaky enough” so the i
exchange of the scalar across them is strong enoughrsat as 1 n
to be a controlling factor. Note that due to the existence of  °f

Fa
i
.
-
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these barriers, the value &f has to be reasonably largie o A A

our experiments the results far,, were identical forD Ber ; ”‘\

>0.2), if the system was mixing without any barriers then 2| i N — 3 I".

the results would be valid for infinitesimally small diffusiv- o ST L 3
ity. concaniralien

Though the emphasis in the dynamo literature has been on g 3. The weak barrier case. Upper panel: The decay of the
the infinite magnetic Reynolds number limit, there have beeRiqus momentsr(=2, 3, 4, and 5 with the higher moments ap-
a few studies on the form of the eigenfunctions at finite magpearing lower on the figuyefor the first initial condition. Middle

panel: The extracted values af, vs n (the dash-dot line marked
with circles, “ +"is a plot of na;. Lower panel: The pdf's in steps
"The higher moments involve a fair degree of numerical uncer-of 25 iterations from iteration 250 to 650 for the first initial condi-
tainly, even though they do appear to behave as expected, we feeltion. The pdf’s lie on top of each other due to their self-similar
is better to rely on the pdf's themselves. nature.
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FIG. 4. The weak barrier case. Upper panel: The decay of the |G, 5. The aperiodi¢no barrief case. Upper panel: The decay

various momentsr(=2, 3, 4, and 5 with the higher moments ap- of the variance. Lower panel: The higher-order moméptsgres-
pearing lower on the figurdor the second initial condition. Middle  gjyely higher moments appear lower on the figure

panel: The extracted values af, vs n (the dash-dot line marked

with circles, “ +”is a plot of ne;. Lower panel: The pdf's in steps self-similar behavior of the pdf of the scalar field is demon-

of 25 iterations from iteration 250 to 650 for the second initial strated in the lower panel of Fig. 6. The pdf is unimodal as

condition. Once again, the pdf’s lie on top of each other due to theithere are no isolated regions in the doméire randomness

self-similarity. at each iteration is responsible for the destruction of any
barriers that might exist in the steady maploreover, the

rather than any inherent nonlinearity in the maps themselveghape of the pdf is characterized by a Gaussian core and

Even though we choose not to use such maps for advectivgretched exponential tails, as per the higher resolution stud-
purposes, we would like to mention that their res@éispe- jes by PierrehumbeftL1].

cially Ref.[24]) are consistent with our work.

D. Physical interpretation

C. Random maps(aperiodic velocity fields The physical picture that goes along with the eigenmode

In the aperiodic case there is no clean way to separatis as follows: Consider a filament of scalar whose length is
time from space as was done in the earlier situations. Due toomparable to the scale of variation of the velocity fiéd
this we weaken the notion of an eigenfunction by invokingthe typical size of an eddy in the velocity figldDue to the
statistical stationarity, i.e., the scalar field is said to enter amssumed chaotic properties of a generic time dependent 2D
eigenmode when the shape of its pdf remains invariant wittilow, the filament will tend to be stretched out. The point is
time (upon renormalization by its variance as the overallthat, as the scale of the filament is already the same as that of
field strength is decaying Note that the earlier classical the flow, instead of being merely stretched the filament will
eigenmode also has self-similar pdf's. Of course, it has a
stronger form of convergence where the scalar field itself
approaches a stationafgr periodig spatial structure. The 150
random map used to represent the aperiodic flow is again a . el
nonlinear shear flow, = e

Xnt1=Xp T4 siN(yn+pp), Lo -

| ——
Yn+1=YnTSIN(Xq41+0y). (10 O

Now p,,,d, (€[0,27]) are random numbers selected at the
beginning of each iteratiorx, ,y,, are mod(0,2z), D=0.25

and the initial scalar field isp(x,y)=co0s(0.%)cos(0.¥). g
The map is iterated till the variance goes down to machine £
precision. The variance as a function of time can be seen in A
the upper panel of Fig. 5. After an initial transiefwhich i . . ‘ . ‘ ‘
lasts for about 10 iterations, see REE2]) the variance de- - -2 - 0 1 2 3

concentration

cays exponentially. The higher moments can be seen in the
lower panel of Fig. 5. The nonanomalous nature of the ex- FIG. 6. The aperiodi¢i.e., no barrier case. Upper panet, vs
ponents can be seen in the upper panel of Fig. 6, the implien(o), the dash-dot line isa;. Lower panel: The self-similar pdf’s.
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fold and start to fill the eddy. This process continues till the 1. Useful properties of the FTLE's

fiIamgnt h_as been.“packed" as tightly possible..Note_that itiS  \We mention some of the properties of the FTLE's that
the dlffu3|on that_ IS respon5|ble_ for t_he “packing,” i.e., for il he needed for calculations in the forthcoming sections.
k>0 _therg is a limit on how thin a fllament_ can get. Once |, 2p we have the possibility of Zasymptoti¢ Lyapunov
this situation is reached, as the problem is unforced, th%xponents. Let us denote the larger of these\y Further-
whole StF“Ct“re remains stationa(gr periodic_ or .statisti- more let us denote the FTLE along a particular trajectory,
cally stationary depending on the flowil the diffusion de- agerp jterations, byA (n). Note that physically the FTLE’s

stroys all the variance in the scalar field. We argue that the, e qefined with respect to the change in volume of a given
eigenmode is a representation of this “packed” structure. oo of initial conditions. In 2D incompressible systems, this

only depends on the larger eigenvalue in the above-
lll. THE DIFFERENT REGIMES mentioned matrix product. In higher dimensions the situation
Having got a feel of the situation when the initial scale of 'S More complicated as the FTLE depends on the sum of the

variation of the scalar field and that of the velocity field arePOSitive eigenvaluesfor continuous flows of the matrix
comparable, we proceed to look into the evolution of anProduct, i.e., itis closely related to the topological entropy of

initially small scale scalar field, i.el, <l <I,~L. the dyng_mical system. has th ibility Df .
As ¢ e B(D), via Fourier's theorem, we can represent In D dimensions one has the possibilityDf(asymptoti¢

as Lyapunov exponents. Let us denote themMAyyi=1: D). It
is generally assumed that, along a particular trajectory, the
o probability of A;(n) (i.e., the spectrum of Lyapunov expo-
B(r,t)= f d(ko,t) e Tdk,. (1)  nents calculated aftar iterations deviating fromA; decays
ko exponentially withn [27]. In fact it is generally taken for
o o . granted that each;(n) is governed by the central limit theo-
Substituting a plane wave solution in EG) and equating yem (CLT) and is distributed around; [28] (see also the
the real and imaginary parts, we get, discussion in Sec. 9.4 of RdR29]). We would like to men-
tion that we are not aware of a general proof of this state-

Ip(Ko,t) B N ment. Having said this, we mention that the results of Balk-
a w[k(®)]*¢(ko, 1), (12 ovsky and Fouxof7] appear to lead in this direction though
the status of the proof of the general statement is not very
Dl e clear. The specific results we are aware of start with the work
wherek(t) is given by of Furstenbergsee Ref[26]), who showed that if the matri-
K ces are i.i.di.e., 5-function correlated in timerandom ma-
r O _ —0-K(t);  K(0)=K,. (13 trices and if the system is incompressible, then
at [ =max(A;)]>0. A stronger result, which is valid only in 2D,

has recently been shown by Chertkatval. [6]. It states that

if the tangent maps are random matrices with arbiti@yt

finite) correlation time them\ >0, moreoverA(n) obeys
In the eigenvalue formulation, wheg<L~1, the scalar  he CLT and is distributed arounti,.

field is essentially in an infinite domain, the implication is  Therefore, using the CLT fak (n) in 2D, the distribution

that the spectrum of . now typically consists of a continu- f the FTLE’s can be expressed e Sec. 8.6.4 of Ref.
ous part and hence possesses eigenvalues that lie arbitrar[tyo] for the large deviation resyit

close to each other. As there is no dominant eigenvalue, we
will not see the emergendat short timesof the correspond- Q(A,n)~e "G(A-Ag), (16)
ing eigenmode.

‘Taking advantage df;<<I,, we linearize Eq(13) to ob-  where G(A—A,) is the Cramer function and\, is the
tain asymptotic Lyapunov exponent. Due to the mixing nature of
the system, as— = the FTLE’s alongalmos} every trajec-

A. Small time scales

w _ —ﬁﬁ(l% HK(t) (14) tory will tend to Ay, moreover, the average of many realiza-
ot ' ' tions along a particular trajectory can be interpreted as a
spatial averagg22].
From Eq.(12) we have
2. The scalar pdf
ff)(lzo,t)= &(IZO,O)G_ K[ olk(s)|?ds (15) At this initial stage the problem is completely reversible

in the sense that the area of a given blob of scalar is invari-

Therefore, in order to see how the moments behave at smat. Physically when we release a small blob of scalar in a
times we need an estimate of h¢ﬁ(t)| evolves. Generally chaotic flow, the tendency is for the blob to form a filament

this is a fairly intricate question as the solution to Etd) while respecting the conservation of area. Mathematically,

involves a time ordered exponentiation that reduces to &1is implies that on averadgt) grows with time, i.e., one of
product of matrice$26]. the components ok(t) increases while the other one de-
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creases. The inference from E4b5) is that the moments of

the scalar field decay in faster than exponential faslsee "
e.g., Refs[31,32). }\\\

Keeping in mind that the backwards in time problem has N~ T ]
the same FTLE's as the forward problem, we can envision a of \\\\\\~\

blob of scalar at a timéto have resulted from the diffusive \

\\ e
. . st \\ \ I—
homogenization of a filamer{at t=0) that has undergone e \ ~
advective collapsEL1]. As the initial scale of variation of the 1o} \\\\

scalar field is very small, in effect the blob is a result of the ol . \
diffusive homogenization of a large number of independent " ~ ]
random concentrations. Denoting the scale of the blotb, by -t

for one realization, the probability of the blob’s concentra-
tion being¢= ¢, at timet is [11] ~
0L e24BRI0120 N

P(py)~e e IsISe), (17)

"50 100 200 300 400 500 6(;0 760 8(‘)0 %00
whereS(¢) is the Cramer function. For notational simplic- ierstion
ity, we have taken the mean of the random concentrations ) -
making up the blob to be zero. Note that the chaotic nature of F'G- 7- The decay of the moments for a scalar field whose initial
the flow is embedded in the exponential prefactoSta). scale _of variation is small as compared t_o that of the advecting flow
For many realizations the average probability of the abovéthe higher moments are lower on the figure

event is whereys, o, (€[0,27]) are random numbers chosen at the
At beginning of each iteratiorB=D;=3% so as to make the
<P(¢l)t>~f e LIe7/IIS(@) G~ Aodg A, (18)  scale of the flow comparable to the scale of the domain and
A=1,C=1. Diffusion is represented as in E) with D

Here(-) represents an average of many realizations along & 0.25. To satisfyts<I, , we take the initial scalar field to be
particular trajectory. As mentioned, this can be interpreted ag(x,y) = cos(4)cos(4). Figure 7 shows the evolution of the
a spatial average. By a steepest descent argument the vali@ments for an ensemble average over 25 realizations of the

of A that dominates the above integral satisfigsnoting it ~map. The faster than exponential decay of the moments is
by A;) visible for the first 90—100 iterations. Moreover, the pdf evo-

lution (in steps of 10 iterationsseen in Fig. 8 goes along
theoretical expectations.

|
_|_5(¢1)9A1t:G’(A1_A0)- (19

. . o B. Intermediate time scales
As S(¢)=0, Eq.(19 implies A;<A,. Substituting in Eq.

(18), we have In Fig. 7 there is a transition from faster than exponential

to purely exponential decay of the moments at around itera-

<P(¢l)t>~eG’(Alon)efﬁt; B=G(A;—Ay). (20 tion 100. This transition is a diffusive effe¢the diffusive
time T in the Introduction refers to the time at which this

Therefore the probability of a particular deviation decays ex-

ponentially with a ratg3. The important point is thg8 is a

function of the deviation throughh ;. As S(¢) is convex

[30], for p= b, (Where|p,|>[p1), S(p2)>S(1). From

Eqg. (19 the dominant FTLE for¢, (denoting it by A»)

satisfiesA ,<<A ;. Therefore the probability of a large devia-

tion is governed by the smaller FTLE's, i.e., the tails of the

pdf of ¢ are sensitive to the tails of the FTLE distribution. At

the other extreme, agp—0 we haveA;— A, [because )

S(¢)—0 as¢p—0 andG'(A—Ay)—0 asA—Ay]. Also,

S(p)~ ¢? for small deviations. From Eq17) the implica-

tion is that, in this regime, the scalar pdf has a Gaussian core

with a width that decreases in time.

105 T

951

3. Numerical results

To numerically verify these predictions we use the map . . . . . . .
-2 -15 -1 05 [ 05 t 15

concentration

Xp+1=Xp+ASINBy,+ ¢, modO0,12m),
FIG. 8. The pdf’s from iteration 40 to 10@hick line at iteration
VYnr1=YntCsin(D1X: 1+ o, mod0,127), (21)  100) for the initially small scale scalar field.
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transition occurs As mentioned, from Eq15) it is evident 2. A simple example of a single non-self-overlapping blob

that the growing component d&(t) controls the decay of e present a simple example to put some of the notions
#(Ko.1). In physical space the growing componentkgf) regarding the behavior af, in perspective. The objective is
represents a shrinking physical scale. As there is a loweto analyze the evolution in concentration of a single
limit to this shrinking scaldi.e.,|,), the magnitude ok(t) non-self-overlappingblob. Let the blob’s concentration be

saturates when its growing component becomes comparabfer (@t timet=T). Now, the increase in the area of the blob
tol-L. Erom this time onwardH?(t)|2 fluctuates arounti2 is controlled by the FTLE at the position of the blob. There-

- ] ) ~ fore we have
and hencep(ky,t) decays in a purely exponential fashion.
Physically, even though the flow is incompressible, due to Ci=Cre AM=D: t=T, (25)
the nonzero diffusivity, the area of a blob of scalar is no
longer invariant. In fact, the area increases exponentialljience,
implying an exponential decay of the scalar concentration

within the blob itself. (Cd™=|cq|" j e MEDQA DA, (26)

1. Existing results one,, o )
where(-), as before, indicates an average of many realiza-

_ In this regime, where boths<L~I, and the area of a tions over one trajectory. Therefore we have
given blob of scalar evolve, the moments of the scalar field

have been dealt with in detail by Balkovsky and Fouxdh

Their approach involves shifting to a comoving reference (I =ICq" f e MITDTEAA) gA L (27)
frame and using the effective equatiph6],

By a steepest descent argument, t®orT, the above integral
is dominated forA = A* (implicitly) given by

%—i—a r gV, 0=«kV2¢ (22
ot TR B ' dG
m =—nN. (28)

A=A%*

The essential point is that now the trajectory equation takes

the form This implies A* <A, moreover, for smalh Eq. (28) im-
plies A* — Ag. In this region the Cramer function is para-
bolic, i.e., takingG(A — Ay) =a(A — Ag)? we have

AT 23
t ~Cap(UT g (23 .
* = —_— —
A*=A, >a (29
For this problem the Lyapunov exponents are defineGes - )
e.g., Ref[6]), Substituting back, we obtaiffor small n)
-> n —apt n
1 |r( (ICM~e 5 ap=n| Ag— ;| (30)
ANt)=—In——. (24
tro)]

Immediately it is clear that the pdf of the scalar field will be
non-self-similar asy,, is a nonlinear function oh. Further-
Due to the effective space-time separation of the velocitymore, the nonlinearity is due to the fact that there is a distri-
field in the comoving reference frame(t) is only a func-  bution of FTLE’s. If we had a single FTLE or if the FTLE
tion of time. In effect the behavior ok (n) for a given tra-  distribution collapsed to & function in a short time, then the
jectory in the FTLE formalism is now valid for the entire scaling would be nonanomalous with,=nA,. Note that
domain. In fact, the aforementioned results of Chertébal.  the explicit expression fot, given in Eq.(30) is only valid

[6] are actually shown in the comoving framework fdft).  for small n. From Eq.(28) the higher moment$as in the
Building on this framework, Balkovsky and Foux¢r] de-  previous regimpare sensitive to the smaller FTLE’s. As our
rive expressions for the moments of the scalar field by consimple example follows Balkovsky and Fouxon’s work, their
sidering the evolution of an inertia tensorlike quantity for aform for a,, (through more detailed considerations that take
blob of scalar. The advantage of the inertia tensorlike quaninto account the diffusive overlap of many blghs similar

tity is that its evolution explicitly captures the exponential to Eq.(30) (see Eq(3.9) in Ref.[7]). We reiterate that even

growth of a blob’s area that characterizes this regime. Thenhough the FTLE distribution is responsible for the pdf evo-
chief assumption is that the eigenvalues of the inertia tensor,

at any finite timet, are governed by the CLT and are distrib-

uted about the asymptotic Lyapunov exponenig =1,2 irt‘ 8What we mean by “non-self-overlapping” is a single blob that
2D). With this they are able to show thQIt¢(t)|”>~e “n stretches and folds in this large scale velocity field but the filaments
and thata, is a nonlinear function ofi, implying a non-self-  of the blob do not overlap with each other in these intermediate
similar pdf for the scalar field. time scales.
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oretical prediction$7] is thata, does not saturate at high

this might be due to the fact that we are unable to get to high
enoughn numerically to actually observe the saturatisee

the example in the Discussipn

In(pd)

C. Large time scales

From the preceding arguments it would appear that the
" scalar pdf is an ever-evolving entifgs is implied il 7]), but

once again from Fig. 7 we see that the behavior of the mo-
ments undergoes another change between iterations 500—

g 600. We claim that it is at this stage that the scalar field
* actually enters the eigenmode, i.e., beyond iteration 600 the
& pdf should become self-similar. The lower panel of Fig. 9

R S shows the pdf'fagain in steps of 10 iterations from iteration
A N 600 to iteration 800). The self-similar nature of the pdf’s is
clearly evident, alsa@,, (shown in Fig. 10 along with the,
FIG. 9. Initailly small scale scalar field. Upper panel: pdf's from from the previous regimefollows a,~n. Physically the
90-490(non-self-similay. Lower panel: pdf's from 600-80&elf-  scale of variation of the scalar field is now comparable to
similar). that of the velocity field, hence the velocity field separation
used to derive Eq(22) is invalidated. Correspondingly, in
lution in this regime, fundamentally this is still a diffusive the FTLE formulation, the linearization breaks down. In fact,
effect(in the sense that it is the nonzero diffusivity that leadsthe problem is now in a situation where the mathematical
to the area evolution that characterizes this regime considerations leading to the eigenmo(®ec. 1) become
applicable.

3. Numerical results
The upshot of these considerations is that at these inter- IV. DISCUSSION

mediate time scalc_as we shou_ld opserve an evolution_ in the |n the first part of the paper we described the behavior of
pdf of the scalar field. To verify this, we plot the pdi® 4 scalar field whose initial scale of variation was comparable
steps of 10 iterations from iteration 90 to iteration 490) in theyy that of the advecting floboth of which were similar to
upper panel of Fig. 9. The non-self-similarity is clearly evi- the sjze of the domajnin both periodic and aperiodic situ-
dent. The anomalous nature @f can be seen in Fig. 10. We  ations we demonstrated the emergence of scalar eigenmodes.
observe that the pdf's are characterized biprogressively | spite of the weak barriers that exist in the deterministic
smalle) Gaussian core antprogressively fattgrstretched  map ysed for periodic flows, the emergence of a scalar eigen-
exponential tails. Interestingly after about iteration 400 themoge s robustas is seen from the two different initial con-
tails of the pdf tend to relax back to a purely exponentialgitiong). In the case of random maps, representing aperiodic
form (which is the theoretically expected shape, see SeGjows, the mixing is globalas the barriers are destroyeahd

Il B in Falkovich et al.[3]). The only discrepancy with the- {he eigenmode s statistical in nature. Along with the recent

work of Feredayet al.[16], this indicates that passive scalar
o

advection diffusion in chaotic flows can be insightfully
o | treated as an eigenvalue problem as is commonly done for
steady flowdqsee e.g., Youngt al. Ref.[33]).
i We then looked at the evolution of a passive scalar whose
: initial scale of variation was small as compared to that of the
e : e advecting flow(again, the scale of the flow was comparable
F o to the size of the domajn Initially, as has been noted in
o anel et ] previous studie§31,32, the moments of the scalar field de-
T cay in a faster than exponential fashion. The pdf of the scalar
ool S ] field in this initial regime is an evolving entity, it is shown to
A be characterized by a Gaussian core that shrinks with time.
oot " o 1 When the scalar filaments reach the diffusive scale the be-
Ll havior of the moments experiences a transition to a purely
e (N T exponential decay. We emphasize that this transition is a dif-
fusive effect. In this intermediate regime the pdf of the scalar
% ¥ 1':. w field is still an evolving entityas is shown by Balkovsky and
" Fouxon[7], via the nonlinear dependence @f on n). By
FIG. 10. Initially small scale scalar fieldz, vs n (nonlinear— means of a simple example, the nonlinear naturexgfis
iteration 90—490, linear—iteration 600—800 shown to be dependent on the distribution of FTLE’s, more-
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over, the higher moments are seen to be sensitive to the tail
of the FTLE distribution. Finally, when the scalar filamants
have stretched and folded to fill the domdor have been
“packed” as per our previous nomenclaturtie field enters

fogl o1

an eigenmode. The eigenmode, as before, is characterized t -
self-similar pdf’'s. Numerical results of advection on a lattice .,

an

m

followed by diffusion appear to confirm these stages of evo- _

lution. % .
The above-mentioned stages, which an initially small &

scale scalar field encounters, are robust, i.e., once one ente

T

-BOL
a particular stage, the statistical properties of the scalar fielc ™

=0
e

0Ar

are fixed. A caveat is that the duration of the stages strongly
depends on the strength of the advecting flow. As an illustra- “*f
tion, consider the same scalar field and map as in(&t, et
but setA=C=5 (i.e., a flow with stronger stretching prop-

LAE S

R

ertieg. The behavior of the moments ang is shown in Fig. o
11 (note that in this case, for the intermediate regimg,
does appear to saturate for lange The stronger nature of

2

Oy

FIG. 11. Case withA=C=5 in Eq. (21). Upper two panels

the flow causes the first stage to be very short, the intermeshow the momentsn=2, 4, 6, 8, and 10 with higher moments ap-
diate Stage iS aISO I’elatively Shorter as the ﬁlaments f|” th%earing lower on the f|gu)'eand the lower pane| ShOV\Bn Vs N
domain quickly. Finally, the eigenmode is realized and perextracted from iterations 20—7@ashed ling and iterations 150—
sists till all the variance is destroyed. 300 (solid line), respectively. Note the saturation @f, in the inter-

In essence the picture that emerges is fairly straightformediate regime. Log refers to the natural logarithm.
ward, as long as there is a valid scale separaien, till |
<l,~L), the pdf’s of the scalar field are evolving entities, decay(i.e., where the advecting flows themselves are self-
albeit involving stages characterized by a distinct decay o&imilar and nonsmoojhas put forth by Chavest al.[34].
moments. Whereas, as soon lgs-|,~L, the scalar field
enters an eigenmode with stationary or self-similar pdf’s.
Interestingly, some of our preliminary numerical work indi-
cates that when we consider<ls~L, the self-similarity is We are indebted to Professor Peter Haynes for many valu-
maintained whereas the shape of the pdf is altered. In facgble discussions and for providing access to an early version
smaller the scale of the velocity field the more Gaussian i®f the work by Feredegt al. [16], which led us to think of
the self-similar scalar pdf. As future work we plan to look the line of research reported above. This work was supported
deeper into these cases, especially in light of the recent rddy the National Science Foundation, under Grant Nos. ATM-
sults on nondiffusive asymptotic self-similarity of turbulent 9505190 and ATM-0123999.
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