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Abstract--We have re-examined the inertial range behavior of a passive scalar which is advected by 
a large-scale velocity field causing a cascade of tracer variance to small scales, where it is dissipated 
by diffusion. This has been done within the context of an idealized model based on mixing by a 2D 
area-preserving map alternating with a weak diffusion step; the model is a special case of the general 
advection-diffusion problem. Both freely decaying and forced equilibrium systems were considered. 
Our main interest in this concerns the validity of Batchelor's theory predicting a k -I tracer variance 
spectrum, but the tracer microstructure has been diagnosed in terms of concentration probability 
distribution functions, generalized dimensions of the dissipation field, structure functions, and 
cancellation exponents. 2D simulations carried out at 10242 resolution show that i;, the decaying case 
the evolution settles into a 'fractal eigenmode' in which the variance decays exponentially with time 
at a rate dependent on the Lyapunov exponent but independent of the diffusion coefficient. 
Although the concentration pattern is self-similar with time, the power spectrum is not algebraic. 
Concentration PDFs have exponential tails. The dissipation field is not multifractal, and formally has 
Dq = 2 for all q. The convergence of the squared-gradient PDFs under coarse-graining indicates 
some underlying fractal behavior, however, and we have introduced the notion of 'fractal degree of 
freedom' systems to describe such entities. Cancellation exponents and structure functions were also 
considered, and have a self-similarity which is compatible with a non-intermittent behavior of the 
dissipation field. These matters have also been addressed for the equilibrium case. The main 
difference is that the power spectrum of concentration variance in equilibrium exhibits a power-law 
inertial range, though it is steeper than k -1, but not as steep as k -2. Other features are similar to 
the decaying case. Very high resolution simulations of the undiffused problem indicate that a k -1 
spectrum is approached asymptotically, but only at resolutions corresponding to 106 x 106. The 
passive scalar behavior is compared and contrasted with the behavior of scalar pseudo-vorticity (an 
'active scalar') in the family of generalized 2D turbulence models introduced elsewhere in this issue. 

1. INTRODUCTION 

There  are two great  spectra  be l ieved to prevai l  for passive scalars u n d e r  the act ion of 
t u rbu l en t  or r a n d o m  velocity fields. The  first is the k -5/30bukhov-Corrsin spec t rum 
prevai l ing in iner t ia l - range  h o m o g e n e o u s  isotropic t u rbu lence  when  the viscous cutoff  of 
the velocity field is comparab le  to or smal ler  than  the diffusive cutoff  of the tracer  field. In  
this case, the t racer  micros t ruc ture  is created by advect ion  by the k -5/3 velocity field, which 
has inf ini te  shears and  can be expected to lead to cr inkl ing of t racer  isosurfaces even  at 
short  t imes.  This spec t rum appears  to be  uncon t rovers ia l  and robus t ,  and  is readi ly 
observable  in na tu ra l  and  l abora to ry  exper iments .  

The  o ther  spec t rum is the Batche lor  k -1 spec t rum [1], which is expected  to prevai l  when  
the t racer  diffusivity is so small  tha t  the smallest  scales in  the t racer  field are smal ler  than  
the viscous cutoff  of the velocity field. In  this case, the t racer  micros t ruc ture  is c rea ted  by  
long- te rm r e a r r a n g e m e n t  by a smooth  velocity field which,  in Ba tche lor ' s  theory  is 
character ized by a single d o m i n a n t  t imescale.  To  the best  of our  knowledge ,  this spec t rum 
has neve r  b e e n  u n a m b i g u o u s l y  obse rved  in l abora to ry  exper iments .  The  same p r o b l e m  has 
bedev i led  the re la ted  k -1 ens t rophy  spec t rum of 2D tu rbu lence .  O n e  begins  to suspect  that  
there  may be someth ing  f u n d a m e n t a l l y  wrong  with Ba tche lor ' s  a rgumen t .  
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The essence here is the nature of mixing by an organized velocity field, and as such 
comes under  the general heading of 'chaotic advection. '  If Batchelor 's argument is to work 
at all, it should work for chaotic mixing by simple flow fields. At the same time, the nature 
of microstructure created by chaotic mixing and small-scale diffusion is of considerable 
interest in its own right, and has many applications to naturally occurring flows [2-5]. 
There is also a great deal of current interest in more sophisticated measures of tracer 
variability than the spectrum: fractals, multifractals, probability distribution functions 
(PDFs) and cancellation exponents,  e.g. refs [6, 7]. 

The general problem of mixing by an organized, smooth velocity field can be qualita- 
tively captured by the action of area-preserving maps in two dimensions. Our overriding 
theme is to show how such maps with an interposed dissipative step can be used to probe 
the critical questions in a computationally tractable way. The model problem is described in 
Section 2. Freely decaying behavior is explored in Section 3, which includes a lengthy 
digression on the general subject of structure functions, cancellation exponents and 
generalized dimensions. Statistical equilibrium solutions are described in Section 4. Some 
extremely high resolution spectra for the undiffused case are given in Section 5. Our 
principal conclusions are discussed in Section 6. 

2. DESCRIPTION OF THE MAP 

In this paper  we explore mixing induced by the map 

xn+i =xn + a sin (Yn + ~Pn) (rood 2~-) ( la)  

Yn+l =Y,  + cos (x~+l + ~bn) (mod 2~) ( lb)  

where q~n is a random variable uniformly distributed over [0, 2~r]. The randomization of the 
phase is introduced so as to break up invariant tori. Such tori are known to provoke very 
complicated scaling behavior in the stretching statistics, via the tendency of orbits to stick 
near tori or to become trapped behind cantori, e.g. ref. [8]. Conventional wisdom has it 
that such tori are uncharacteristic of real fluid turbulence, where the aperiodic flows make 
it more difficult for invariant structures to exist. In light of the prevalence of coherent  
structures in turbulence, we are not convinced of the validity of this assumption, but we 
adopt the randomized map (1) anyway, because its statistics are easier to study. 

Because of the complete scrambling of the phase, each individual orbit undergoes an 
uncorrelated random walk on the toms. However ,  because the same q~, is used at each 
iteration throughout  the phase space, interesting spatial correlations nevertheless arise from 
(1). The most important characterization of the map is through its stretching statistics. The 
Jacobian of the map is 

J = - s i n ( x ~ <  + ~0) [1 - acos(y~ + qOsin(xn+l + q~)] (2) 

which has eigenvalues 
~ 1 e a 7 .4- ~ / ( ] , 2  - -  1 ) ,  where y = 1 - ~acos(y~ + q~)sin(x,+l + q~) (3) 

where )~ is the exponential stretching rate over one iteration. Note y e [1 ~ - ~a, 1 + ~a]. For  
any phase and any value of a, there is always a part of the domain near which the 
trajectories separate exponentially. Because of averaging over the spectrum of strains, the 
long-time Lyapunov exponent is considerably lower than the maximum given by (3). For  
maps without invariant tori it is known that the finite-time (n-iteration) Lyapunov 
exponents have a Gaussian PDF, with width decreasing like n -*/2 [9]. We have verified this 
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Table 1. Finite time Lyapunov exponents 

Iterations Mean (4) Std. Dev (X) 

10 0.57 0.20 
20 0.53 0.14 
40 0.50 0.10 
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property directly for the map (1), by accumulating multiplications of J over ensembles 
of orbits. For  a = 4, which is the parameter  used throughout  the rest of this paper, the 
mean and standard deviation of the exponential stretching rates for various n are given in 
Table 1. 

There have been innumerable studies of mixing and tracer microstructure due to maps 
such as (1). The chief novel interest in the present work comes from incorporating the 
effects of weak diffusion, which removes tracer variance as it cascades to small scales. 
Within the context of discrete-time maps on the plane, this is accomplished in the following 
manner.  We define a continuous concentration field c(x, y) on the plane, and spatially 
discretize it to a regular grid so cij = c(xi, yj). The map (1) is first used to rearrange 
c(x, y) ,  through mapping (x, y) and re-interpolating to the grid. This iteration, which 
yields a new c(x, y) is followed by the diffusion step: 

1 cij = (1 - D)ci j  + ~D(c(~+l)j + c~(j+l) + cu+~)j + c~(j-1)) (4 )  

where 0 < D < 1. On each iteration, this damps out the 2Ax wave by a factor (1 - D).  A 
generally similar approach has been employed by Ott  et al. [10], and Du and Ott  [11] to 
study diffusive effects on fast magnetic dynamos. 

3. FREELY DECAYING EVOLUTION 

Because of the introdt:ction of dissipation, the variance of the tracer field c~(x, y) will 
decay to zero with time. The first property of interest is the rate of decay, and how the 
rate scales with diffusivity D. The variance decay for D = 0.5 and D = 1 is shown in Fig. 
1; the initial condition for this case is c(x, y) = cos (x) cos (y) ,  which would not perceptibly 

Decay of variance 
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Fig. 1. Decay of variance for mixing by randomized sine-sine map, with two different values of diffusion D. 



1094 R.T. PIERREtlUMBERT 

decay over the time period shown, were it not for the exponential amplification of 
gradients caused by the chaotic mixing. 

At long times, the variance reaches a small nonzero asymptotic value. This is an artifact 
of the numerical method,  arising from a small variance source associated with interpolation 
errors in going between the map (1) and the discrete grid on which the diffusive step is 
carried out. Apart  from this, the variance decay is independent of D, and has an 
exponential  stage at intermediate times. We conjecture that the exponential stage would 
continue indefinitely were it not for discretization error; verification of this conjecture must 
await formulation of a more accurate discrete advection-diffusion scheme. 

The diffusion-independent decay stage shows that the simple map can reproduce the 
classical inertial-range cascade to small scales, where variance can be dissipated. The 
independence of D, of course, comes from the fact that as D gets smaller, the dissipation 
range simply moves to smaller scales. Further  light can be shed on the decay properties 
through examination of the variance equation 

--a (c2) = -, (IVcl2), (5) 
dt 

where ~c is the molecular diffusivity. If /1 is the stretching rate experienced by a fluid 
element  (roughly the typical Lyapunov exponent) ,  then balancing strain against diffusion 
yields a filament scale L = ~/(K//I), whence the gradient scales like 6c/L, where 6c is the 
typical concentration gradient across a filament. Then,  if 6c can be estimated as 6c = b 
~/(c 2) the variance decay rate becomes simply b2/1, which is indeed independant of 
diffusivity. In the numerical experiments,  the variance decays approximately like 
e x p ( - 0 . 1 7 8 n ) .  Using /1--0.5 from the Lyapunov exponent  calculation, we infer b - - 0 . 6 .  
The fact that b is order  unity indicates that the concentration values are well 'scrambled. '  
The typical jump across a filament is similar to what would be obtained by randomly 
picking values from a distribution covering the range prevailing over the entire domain. It 
can easily be shown that these results are not altered if the stretching rate is characterized 
by a distribution of different / l  instead of a unique value. As long as 6c is independent  of/1, 
fluctuations in/1 only require replacing/1 in the above formulae by its mean value. 

The exponential decay suggests that, following a transient adjustment stage, the 
concentration pattern settles into an 'eigenmode. '  The amplitude decays, but the pattern is 
(in some statistical sense) time-invariant. A snapshot of the concentration eigenmode at 
n = 25 is shown in Fig. 2. One is tempted to invoke the term 'fractal, '  but it would perhaps 
be less prejudicial at this point to refer to it as a 'strange eigenmode. '  The indication is, at 
any rate, that this 'eigenmode'  has arbitrarily fine scales, that are limited only by the 
presence of diffusion. The behavior is similar to the 'horrible eigenvalue problems' 
discussed by Bayley [12]. There  is a close analogy with the less exotic example of 
critical-line singularity in the shear instability problem. In that case, as viscosity approaches 
zero the eigenmodes show arbitrarily fine structure near the line where Doppler-shifted 
phase speed vanishes. Perhaps the 'strange eigenmodes'  can profitably be viewed as a 
situation in which the 'critical line,' which is really just a form of resonance, becomes 
space-filling. 

To flesh out the notion of a 'strange eigenmode'  we need to quantify in what sense the 
'eigenmode'  is t ime-independent,  by studying statistical characterizations of the spatial 
structure of the concentration field. The power spectrum is one of the most familiar 
characterizations of the spatial structure of a field. Power spectra at n = 10, 20 and 30 are 
shown on a log-l inear  plot in Fig. 3. All fields have been normalized to have unit variance, 
and the wavenumbers have been normalized such that k = 512 corresponds to the 2Ax 
wave. Notably, the spectra collapse onto the same curve for wavenumbers > 10, indicating 
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Fig. 2. Snapshot of concentration pattern for the decaying mode after 25 iterations. 
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Fig. 3. Concentration power spectra of the decaying mode at n = 10, 20, 30 and 250 (note linear-log axes). 
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self-similar behavior  in time. Further,  the spectra do not have a power-law form (k -~ or 
otherwise) even at large scales that are not directly affected by dissipation. Rather ,  the 
spectra show exponential  roUoff at constant rate for wavenumbers  > 10. Thus, the spectral 
behavior  supports the notion that a (strange) e igenmode emerges,  but also shows that 
Batchelor 's  argument  leading to a k -~ spectrum fails when where is not a sufficient 
resupply of variance from large scales. In fact, the possibility of a breakdown of this sort 
was hinted at in ref. [1]; it was remarked  there that the k -1 spectrum implies unbounded 
variance in the limit of small dissipation, whereas the variance is globally bounded for 
many  physical means of maintaining concentrat ion variance (e.g. introducing dye at a fixed 
concentration).  Batchelor  noted that something different must happen when the supply of 
variance ('02-stuff, ' as he called it) f rom large scales is insufficient to fill out the k -1 
spectrum. Up to now, there have been no suggestions as to just what happens when the 
breakdown takes place. We conjecture that as the global limit of '02-stuff ' becomes much 
smaller than that needed to fill out the k -1 spectrum to the dissipation range, the 
exponential  behavior  characteristic of the e igenmode takes over. We shall see in Sections 4 
and 5, however,  that there appear  to be other  factors at work that also tend to yield 
spectra s teeper  than k -1. 

The concentrat ion PDF provides more  detailed information about  the tracer variability, 
though by itself it contains no information about  spatial scales. Following the experimental  
work on tempera ture  PDFs in turbulent convection (see ref. [13] and references therein) 
and the theoretical work by Sinai and Yakhot  [7] and by Pumir et al. [14], there has been 
considerable interest in the mechanisms leading to non-Gaussian PDFs. In particular, the 
appearance  of exponential  rather  than Gaussian tails implies a relatively high probabil i ty of 
extreme events- -parce ls  surviving a long time without mixing much with their environ- 
ment.  PDFs of concentration at n = 25 are shown in Fig. 4(a). The PDF is self-similar for 
n = 10 through 30, which further supports the notion that the decaying field is an 
eigenmode.  The PDF is unimodal,  indicating efficient mixing between high and low 
concentrations present  in the initial field. While the profile is Gaussian for small to 
intermediate fluctuations, the large-fluctuation tail is markedly exponential.  The decaying 
' e igenmode '  we have studied is a perfect match for the assumptions of Sinai and Yakhot  
[7]; these authors have shown that non-Gaussian tails arise from correlations between the 
concentrat ion field and its gradient,  and that the advect ion-diffusion equation can generate 
such correlations on its own. We believe the decaying mode of the advect ion-diffusion 
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Fig. 4(a). PDF of concentrations for the decaying mode at n = 25 (linear-log plot). The PDF is symmetric about 
c = 0, so only positive concentrations are shown. 
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map is the simplest example to date of a system in which the S ina i -Yakhot  theory works. 
In the next section, however ,  we will see that the theory can break  down in the 
forced/dissipated equilibrium situation. 

The concentrat ion field itself has bounded variations and therefore  cannot  show 
multifractal scaling. Indeed,  a calculation of the behavior  of the concentrat ion PDFs under  
various degrees of spatial smoothing revealed no interesting scaling behavior.  The gradient 
fields, however,  can have singularities (at long time, in the limit of small diffusion), and 
therefore can conceivably show multifractal scaling. The PDFs of gradients also contain 
information about  the spatial a r rangement  of the concentration fluctuations. To address 
this question, we normalized the n = 25 field to have unit variance, computed  the 
squared-gradient  of  this field, subjected the resulting field to various degrees of smoothing, 
and computed  the PDFs. Results are shown in Fig. 4(b). These curves are fit almost 
exactly by the lognormal distribution: 

1 [ (l°g(g/gl)) 2] 
P(g) - go%rr exp - cr ' (6a) 

where g is the squared-gradient.  The parameters  of the fit are given in Table 2. 
The qth momen t  of the distribution (6a) is 

~q = gl q exp (oZq2/4). (6b) 

The behavior  of gl and o under smoothing thus determine the scaling propert ies  of the 
gradient field. If  we assume the log of the gradient to be a random field of  some sort 
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Fig. 4(b). Squared-gradient PDF as function of smoothing for n = 25 in the decaying case. Abscissa is fixed for all 
smoothings, and has not been renormalized. 

Table 2. 

Box size gl o 

4 2.32 1.03 
8 2.13 0.80 

16 2.00 0.67 
32 1.9 0.57 
64 1.9 0.24 

128 1.9 0.16 
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(related to the distribution of Lyapunov exponents) ,  then the scaling of o gives the 
effective number  of degrees of f reedom within a box of side m. If  the field were 2D white 
noise, then the number  of  degrees of f reedom is m 2, so we would have o = m -I.  If  the 
field were constant on each of an array of space-filling thin filaments, but randomly 
distributed across filaments, the number  of degrees of f reedom would be m 1, and so we 
would have a = m -°5. Other  values of the exponent  would be indicative of a 'fractal 
number  of  degrees of  f reedom. '  However ,  power-law scaling of o (with gl fixed) would not 
correspor/d to a multifractal. For  the field to be multifractal, ~q must be a power-law in m,  
the exponent  of which determines the generalized dimension Dq for the squared-gradient 
measure.  According to (6b), then, multifractal scaling requires o 2 =  - a l o g ( m / M ) .  If  
o 2 = m -Y instead, the scaling of ~q treated as a power-law is asymptotically trivial, and we 
have Dq = D ,  where D is the dimension of the whole space. It is interesting to note that 
we obtain a non-intermit tent  field (Dq--: D) in the limit of a random field which is 
nowhere-differentiable as well as in the limit a smooth field. Smooth fields and random 
fields are opposite extremes of non-intermittency,  with multifractals lying in between. 
Clearly, when Oq = D ,  the multifractat formalism fails to characterize the geometry  of the 
field. On the other  hand, the exponent  y does contain important  geometr ic  information. 
We introduce the term 'fractal degree of f reedom'  (FDF) field for random fields that have 
a power  law for o having non-integer "/. 

For the data in Table 2, the width pa ramete r  exhibits the scaling o ~ - m  -°29,  and is 
decidedly different from the behavior  required of a multifractal. Thus, the squared-gradient 
field for this advect ion-diffusion problem appears  to be an FDF random field rather  than a 
multifractal. Since 7 = 0.58, the spatial structure of concentration gradients exhibits more 
long-range order  than even the fi lamentary model  would imply, as filaments yield 7 - - 1 .  
This suggests considerable correlations of gradient values amongst  bundles of filaments, 
which retard the convergence of the coarse-grained gradient to its mean value. 

Multifractal scaling of gradients of undiffused tracers has been predicted by Varosi et al. 
[15] but, apart  f rom the nondiffusive limitation, there are some important  differences 
between the approach of Varosi et al. and that employed here. in their theoretical formula 
linking the generalized dimension spectrum to the PDF of Lyapunov exponents,  Varosi et 
al. employ a variable box-size cover designed to resolve each filament individually. Boxes 
in the cover do not contain an ensemble of filaments. This makes it possible to compute  
multifractal propert ies  of the field in terms of the PDF of Lyapunov exponents,  but in the 
process, all information about  the spatial ar rangement  of the filaments is lost; it makes  no 
difference whether  the filaments are straight or curled, or whether  the high-gradient 
filaments are segregated or randomly distributed. Our  fixed-box calculation, in contrast,  
retains the geometr ic  information. Most analysis of experimental  data would use a cover 
that is more  like the uniform-sized cover we employ in our analysis. In such a case, we 
would predict that the squared-gradient field is an FDF random field rather  than a 
multifractal,  for concentration fluctuations dominated by advection having a characteristic 
timescale. This comment  notwithstanding, the relation of our results to results of the type 
of Varosi et al. requires further exploration. 

The scaling propert ies  of squared-gradient fields provide a lot of interesting information 
about  the ar rangement  of  gradients, but lose all information relating to the sign of the 
gradients; these characterizations would be invariant under multiplication of the underlying 
signed gradient by an arbitrary field taking on the values +1 or - 1 .  Worse still, in two 
dimensions we can rearrange not only the sign of the gradients but also the directions 
without altering the scaling propert ies  of  the squared-gradient fields. The lost information 
is of great importance to many physical applications, because it makes a great deal of 
difference whether  gradients of like sign tend to congregate,  or whether  alternating signs 
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occur in close proximity so that in the average they tend to cancel out. The problem, of 
course, arises from the fact that the operations of smoothing and taking the square do not 
commute.  

Interest in matters related to sign-singularity and restoration of the missing information 
has arisen in a number of contexts recently. The classical way of characterizing the 
variability of a field 0(r)  is through its set of structure functions: 

ZL(q) = L-q(lO(r + L~) - O(r)] q) (7) 

where L is a length and ~ is a unit vector whose direction is immaterial in a statistically 
isotropic situation. Angle brackets represent a spatial average over the entire domain. The 
description in terms of Z(q ,  L)  is equivalent to a description in terms of the PDF I Ic (g  ) of 
the mean gradient 

10(r + L ~ )  - 0(r)l 
g = (8)  

L 

since the PDF can be recovered from the set of moments  and vice versa provided that the 
tails of the PDF are steeper than algebraic. The structure functions retain information 
about the sign of the bare gradient, because the averaging over L is performed before the 
absolute value is taken. Scaling laws for velocity structure functions have long played a key 
role in characterization of turbulence, and through application of Kolmogorov's  second 
hypothesis can be linked to the generalized dimensions of the energy dissipation field (see 
ref. [16] and references therein). If ZL(q) has a power-law behavior in L,  the exponents 
behave very much like generalized dimensions, and the relation between Z and FI obeys a 
thermodynamic formalism essentially identical to that relating Dq and f (o  0 for multi- 
fractals. This has been exploited in analysis of turbulence data by D u e t  al. [17] for analysis 
of magnetic fields and turbulent velocity fields, and by Marshak et al. [18] and Davis et al. 
[19] in characterization of a variety of cloud-related atmospheric quantities. It has recently 
become clear that the structure functions are in fact intimately related to the generalized 
dimensions Dq of the gradient-magnitude field IVOI, provided one additional bit of 
i n f o r m a t i o n - t h e  cancellation exponent is specified. Cancellation exponents were first 
introduced by Ott et al. [10] and Du and Ott  [11], and have been subsequently explored in 
more depth by Du et al. [17] and by Vainshtein et al. [20]. Our discussion in the following 
is based loosely on these works, except that we have made a few straightforward changes 
to allow us to deal with concentration gradients rather than magnetic fields or vorticity 
fields. 

Let  ?(r)  be the concentration field smoothed spatially over lengthscale L. We imagine 
the smoothing to be carried out by spatially averaging over a shape of size L (e.g. a square 
or a circle) centered on r. Now define the moments 

Zt.(q) = ( I V c I  q ) .  (9) 

In one dimension, this is identical to the structure function (7). In two or more dimensions, 
it is similar to, but not identical to, a structure function. The difference arises because the 
mean gradient g in (8) results from integrating the gradient along a line, whereas the 2D 
smoothing operator  in (9) implies 

w - -   fFc(r)(- dy + ;dx), (10) 

where A is the area of the smoothing region and F is its boundary.  For a square-averaging 
region, this yields the spatial difference between the one-dimensional averages of c along 
opposing edges of the square, rather than between the values of c itself. The extra average 
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is what keeps ZL in (9) from being identical to the classical structure function. In some 
cases, it may be possible to relate the two structure functions by employing auxiliary 
assumptions about the field. Henceforth,  by 'structure function' we will mean (9). The 
corresponding PDF of the mean gradient will be referred to as the 'structure PDF. '  

If ZL(q)  has a power-law dependence on q, then the spectrum of cancellation exponents 
1Cq is defined by 

ZL(q) ~ L -~-~q-~)~. (11) 

This formula differs somewhat in appearance from that used by D u e t  al. [17], because we 
have defined ZL in terms of an average instead of a sum, but it is in fact equivalent. ZL(2 ) 
gives the scaling of the smoothed variance field, and so 1< 2 is directly related to the power 
spectrum. Specifically, if the power spectrum of c has the scaling k [~, then ZL(2 ) ~ L l~ 3 
whence 

~c 2 = 3 -  / 3 -  D .  (12) 

It is a very remarkable result, due to D u e t  al. [17], that the Kq a r e  not all independent,  
and in fact can be determined given knowledge of K 1 and the generalized dimensions Dq 
for the gradient-magnitude field. This means the x~ alone is sufficient to characterize the 
cancellation, and to permit reconstruction of structure functions from knowledge of Dq. 
The remarkable relationship is: 

Kq = qK 1 - (q - 1)Dq (13) 

whence 

ZL(q) ~- t -q~'-(q-1)(D Dq). (14) 

This permits all the cancellation exponents to be obtained in terms of Dq and the familiar 
power spectrum. It is interesting to note that the fractional integration approach in Tessier 
et al. [21] characterizes cloud-field variability by a Dq for the gradient-magnitude field and 
a power spectrum H for underlying field; the implication of (14) is that the fractionally 
integrated fields obtained from their procedure should have the correct structure function, 
despite the fact that only the behavior of the variance scaling H is built into the 
construction. 

1 From (12) and (13) it follows that tq = ~ ( D 2 -  D + 3 -  fl). The generalized dimension 
D 2 measures the intermittency of the dissipation field. For the Batchelor spectrum, x~ 
ranges from 1 for space-filling dissipation (D2 = D = 2) to 0 for dissipation concentrated on 
isolated points (D2 = 0). The Batchelor spectrum is thus compatible with both intermittent 
and non-intermittent dissipation fields, because differences in the intermittency can be 
offset by different degrees of cancellation. Intermittency is reflected in the behavior of the 
structure PDF, however. If the [Vc I field is monofractal,  with Dq = D'  for all q, then (14) 
implies that the corresponding structure PDF is self-similar under rescaling of its argument 
by L -KI-(D-D'). In the limit of a space-filling gradient field, so D '  = D, the renormalization 
factor is ZL(1 ) itself. Such behavior can be referred to as 'Kolmogorovian, '  by analogy with 
a similar hypothesis made concerning the relation between velocity structure functions and 
the energy dissipation field in the K41 homogeneous turbulence phenomenology.  On the 
other  hand, if IVcl is a multifractal field the PDFs will not be self-similar. 

We can estimate ZL(2) in terms of random field models of the signed quantity Vc, much 
as we did for the squared-gradient field. Consider the two-dimensional case. If Vc is white 
noise distributed on filaments, then ZL(2 ) ~ L -1, whence /3 = 2. This result provides an 
alternate derivation of the Saffman k- :  spectrum [22], which arises from uncorrelated 
jumps of the value of a scalar across smooth curves. If Vc is 2D white noise, then 
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ZL(2) ~ L -z, and we have the Batchelor spectrum /3 = 1. This provides a geometric 
interpretation of the Batchelor spectrum, as well as of spectra with steepness intermediate 
between the Batchelor and Saffman spectra. Intermediate spectra correspond to gradient 
structures that are more folded than filaments, yet not so much crinkled as to produce 2D 
white noise. 

Because the concentration power spectrum for the decaying tracer case does not exhibit 
a well-defined power-law, one cannot unambiguously compute a cancellation exponent  for 
this case. One can nonetheless compute the structure PDF and examine its scaling 
properties under averaging of c. In Fig. 4(c) we show the structure PDFs for various m 
after 25 iterations. For  each m, the argument of the PDF has been rescaled by the mean 
gradient (IV~l). The most important  result is that the rescaled PDFs are almost exactly 
self-similar under variation of averaging length m. This is what would be expected for a 
non-intermittent gradient magnitude field with Dq = D for all q. A further interesting 
feature is that the most probable gradient is nonzero.  This demonstrates the existence of 
long-range correlations in the fields. If the smoothed gradient were behaving like the 
difference of two samples randomly chosen from the concentration PDF, the most probable 
gradient would instead be zero. 

4. EQUILIBRIUM PROBLEMS 

The preceding has provided a characterization of the tracer variability for the freely 
decaying case, and we have seen that the overall picture may be described in terms of a 
'strange eigenmode. '  In many situations of physical interest, however,  the tracer variance is 
maintained against small-scale dissipation by large-scale forcing. In the present section, we 
will see how the introduction of such forcing alters the picture obtained in the decaying 
case. 

We employ the following forcing protocol to maintain variance. Within a strip of width 
2e centered on the line y = 7r/2, we reset the concentration to +1 at each iteration; the 
corresponding strip centered on y = -~r/2 is reset to - 1 .  This kind of forcing is adopted 
rather than the more common (in numerical experiments only!) additive forcing c ~ c + F 
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Fig. 4(c). Rescaled PDFs of magnitude of the gradient computed after various degrees of smoothing of the 
concentration field. Abscissa has been rescaled by the r.m.s, gradient for each curve. Note that this is the PDF for 
the gradient, rather than for the squared-gradient. The squared-gradient PDF peaks at zero gradient instead of a 

finite value. 
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because we believe it to be more representative of the means by which concentration 
variance is maintained in most physical experiments. In particular, the 'resetting' forcing 
assures that the concentrations will remain in a bounded range c e [ - 1 ,  1], so that the 
variance remains globally bounded. This is similar to the situation in which the tracer 
represents dye concentration, and the dye is introduced at fixed concentration from a 
nozzle, or by diffusion from a solid source at a boundary (whereupon concentration is 
maintained at saturation in a diffusive boundary layer). It is also similar to the situation 
prevailing for temperature in convection experiments. Fluid parcels in that case are reset to 
either the temperature  T 1 of the hot lower boundary or T2 of the cold upper boundary 
only when they are processed through the thin thermal-boundary layers near each plate. 
The PDF theory described by Sinai and Yakhot [7] neglects the dynamics of variance 
maintenance associated with this process, and so it will be of particular interest to see what 
concentration PDF emerges in the equilibrium case. 

It should be noted that our forcing protocol destroys some small-scale variance within the 
thin strips, as well as maintaining the large-scale variance. Variance is free to cascade to 
small scales outside the strips, however. The rate at which the forcing protocol removes 
variance depends on the frequency with which parcels are processed through the forcing 
strips. Assuming ergodicity, a parcel has a high probability of passing through one of the 
strips after 7r/2e iterations. For small e, this leaves ample time for exponential enhancement  
of gradients outside the strips. Similar considerations are of physical interest in the case of 
diffusive thermal or concentration boundary layers in laboratory experiments. 

We turn first to the spectra, which have settled into an equilibrium after 25 iterates. The 
spectra for n = 25, 50, 250 and 500 with ~" = 0.1 are shown in Fig. 5. Apart  from some 
continued evolution in the dissipation range, the spectra have converged by n = 25. These 
calculations were carried out with dissipation D = 0.5. Notably, there is a clear power-law 
range. Equally notably, however, the spectrum is steeper than the k -1 Batchelor spectrum. 
The best fit power-law for k > 20 is k -1'6. It thus appears that though this is a situation 
where Batchelor 's  argument ought to apply precisely, the tracer spectrum shows anomalous 
steepness. This phenomenon appears to be robust, extending well beyond passive tracers 
and mixing by iterated maps; anomalous steepness has been found in a family of fully 
nonlinear 2D turbulence models [22] in the range where large-eddy advection should 
dominate. In particular, the spectral shape for G = 2 is k -1'4 and for o: = 3 is k t.3. Is this 
anomalous steepness due to insufficient separation between the dissipation range and the 

Equilibrium spectrum 
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Fig. 5. Spectra for equilibrium advection-diffusion, forced with e - 0.1 strips. Various times. 
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injection range? In Section 5 we will present  some evidence that this is indeed the case. 
However ,  it will be seen that truly enormous  resolutions are needed to approach the 
Batchelor  spectrum. It  seems to us a more  important  mat ter  to resolve the question of how 
dissipation determines the anomalously steep spectrum. We raise the question, but do not 
yet have an answer. 

The concentrat ion PDF for the equilibrium case is shown in Fig. 6. There  is a spike at 
Icl = 1, arising f rom the forcing in the strips; the plotting of this has been suppressed to 
make  the rest of the PDF clearer. The PDFs take longer to reach equilibrium than do the 
spectra, particularly for small concentrations. For  Icl > 0.2 the PDF has converged by 
n = 50, but the smaller concentrations continue to evolve gradually up to about  n = 250. 
We cannot at this t ime discount the possibility that the slow evolutign of the small 
concentrat ion values is influenced by numerical  error in our mapping scheme. At  n = 250, 
the PDF is very different f rom that prevailing in the decay case. Rather  than being 
Gaussian, or even exponential ,  the PDF is characterized by a linear decay f rom its peak  at 
c = 0, tailing off to a uniform distribution for 0.67 < Icl < 1. We do not suggest that all 
forcings will produce such dramatic discrepancies with the decay PDFs,  but our results 
certainly show that the nature of the forcing cannot be swept under the rug when 
considering equilibrium concentrat ion PDFs. Incorporat ing forcing into the theory of 
concentrat ion PDFs will be an interesting and challenging task for the future. 

A counterpoint  to these results is provided by analysis of the pseudo-vorticity PDFs for 
the family of turbulence models simulated in Pierrehumber t  et al. [23]. These are also 
equilibrium runs, but rather  than the tracer (in this case pseudo-vorticity) values being 
reset to a fixed value at each t ime-step,  only the large-scale projection is re-set, and even 
then the phase is randomized.  This system results in PDFs (Fig. 7(a)) that are more  like 
those prevailing in the decaying tracer case. The PDFs appear  to have non-Gaussian tails. 
Rather  remarkably ,  there does not seem to be any great difference in the PDFs between 
the spectrally local case (dominated by small-scale advection) cr = 1, and the highly 
nonlocal case c~ = 3 dominated by large-scale advection. The marginally local case cr = 2 
does show some peculiar and erratic behavior  in the tails. 

Returning for the m om en t  to the passive tracer case, we note that although the 
concentrat ion fields show markedly  different behavior  f rom the decay case, the gradient 
PDFs (not shown) exhibit essentially the same behavior  as that prevailing in the decay 
case. They are lognormal,  and self-similar under  scaling. At  n = 25 the width of the 
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Fig. 6. Concentration PDF for equilibrium case. 
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distribution, o, scales like m - ° ' 37 ,  with box-size which is slightly steeper than the scaling 
law in the decay case. The 'structure PDFs'  (i.e. with the squared-gradient computed after 
smoothing) also show similar shapes and scaling to those in the decay case. 

The squared-gradient PDFs for the turbulence models of Pierrehumbert  et al. [23] show 
behavior that is quite similar to those we have seen for the passive tracer case. Some 
representative curves are shown in Fig. 7(b). The width-scaling law for the gradient PDF is 
m -° '34  for o: = 1, m - ° 3 8  for oc = 2, and m - 0 3 2  for o~ = 3. To within the errors of the 
estimate, these can all be considered the same, and the indication is that the gradient field 
is an FDF random field rather than an intermittent multifractal. In this case, however,  we 
cannot discard the possibility of multifractality with as much confidence as we did in the 
passive tracer case. The extent of the scaling range is smaller for the turbulence models, 
and so the logarithmic behavior required for multifractality can arguably fit the data as 
well. Considerably higher resolutions will be needed to resolve this question. The 
substantial independence of o~ indicates that although o~ = 1 is formally more local 
spectrally than the other cases, and although the tracer filaments curdle rather than 
remaining lamellar (see ref. [23]), the curdling process is evidently intermittent enough that 
the gradient field over most of the domain is still controlled by large-scale processes. 

The structure PDFs are shown in Fig. 7(c) for c~ = 1. These are rather different from 
what we have seen for the passive tracers. Rather  than collapsing onto a single curve, the 
rescaled PDFs systematically change shape as m is increased, and only collapse between 
m = 16 and m = 32. This is indicative of a substantially different kind of long-range order  
than that prevailing in the passive scalar advection problem. Other  values of o~ behave 
similarly. This result is somewhat at odds with the previous indications that the squared- 
gradient field is FDF rather than multifractal, and therefore formally has Dq = D. Such a 
system should have self-similar ( 'Kolmogorovian ')  structure PDFs. However ,  this predic- 
tion is dependent  on the link between Kq and Dq and other  asymptotic relations. Since the 
scaling associated with Dq = D is only asymptotically valid at large m, the behavior of the 
structure PDFs may just result from the failure of asymptoticity. Again, much higher 
resolutions are needed to resolve the question. 

The fact that none of the PDFs we have discussed is able to distinguish the obviously 
different tracer morphology prevailing between c~ = 1 and c~ = 2 (see Fig. 2 in ref. [23]) 
reveals that these tools still leave much to be desired. 

5. ULTRA-HIGH RESOLUTION UNDIFFUSED SOLUTIONS 

The question naturally arises as to whether the anomalous spectral steepness in the 
equilibrium case is simply due to insufficient resolution. With a full 2D calculation, it is 
unlikely that sufficient resolution will be available definitively to answer the question 
anytime soon. However ,  for undamped exactly conservative tracers, it is possible to 
determine the spectrum at resolutions several order  of magnitudes higher. This is so 
because in the absence of diffusion, the concentration value on a particle is independent of 
that on neighboring particles. Thus, we can compute the equilibrium concentration profile 
c(x) along a given line by running trajectories backwards for each point on the line, and 
determining whether they originate in the + 1 forcing strip or the - 1  forcing strip. Isotropy 
can be probed by doing the calculation for lines of various orientations. 

It should be noted that even in the absence of small-scale damping, the forced problem 
as we have outlined it has a shortwave cutoff scale, which arises in the following manner.  
For  forcing strips of total area A, the probability of a particle avoiding the forcing region 
for n iterations is ( 1 -  A/(4~))",, which becomes very small for n >> 4~/A.  Thus, a 
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Table 3. 

e Inner scale 

0.50000 0.043214 
0.25000 0.00093373 
0.10000 3.0141 x 10 -s 
0.0100000 I0 -69 

' typical '  age of a parcel following its most recent resetting is 4rr2/A iterations. If  )~ is the 
typical Lyapunov exponent ,  the scale generated in this t ime from forcing strips of thickness 
e is eexp (-~,4~-2/A). With )~ = 0.5 and the forcing geometry  we have adopted,  this inner 
length scale is given in Table 3. The inner scale is exceedingly small (smaller in fact than 
the radius of  an electron, for e = 0.01), but it is in fact present. 

Spectra computed  along the lines x = 7r and y = Tr were found to be practically identical 
at small scales, confirming that there is sufficient isotropy for spectra along a single line to 
be indicative of the full behavior.  Spectra for the former  line at various e are shown in Fig. 
8(a). These were computed  based on 1 048 576 points, and with such an enormous range of 
scales the power-law scaling cannot be held in dispute. Given that the inner cutoff scale is 
only marginally resolved for e = 0.1, and is orders of magnitude below the sampling 
interval for e = 0.01 and e = 0.001, error  due to aliasing is a pr ime concern. For e = 0.001, 
the spectrum is entirely flat; because of undersampling, all information about spatial 
correlation is lost and the signal is indistinguishable from white noise. For e - - 0 . 0 1 ,  the 
white noise spectrum due to aliasing is visible at short wavelengths, but there is indication 
of a power-law spectrum at somewhat  longer waves. The spectral slope of this range is 
a p p r o x i m a t e l y  k - ° 6 .  Given that the power  in this spectrum is highly divergent, however,  
one must be suspicious that it, too, is an artifact of aliasing. This is confirmed by examining 
spectra computed  from signals subsampled by a factor of 16 and 64, and also by 
recomputing spectra for the full 1 048576 points arranged on a segment of length 0.001 the 
original one. Both spectra (not shown) indicate that the e = 0.01 spectra in Fig. 8(a) are 
strongly influenced by unresolved small scales. 

Finally, for e = 0.1, a k -1 Batchelor  spectrum is obtained. Given that k -1 is divergent, 
one must still be wary of aliasing in this case. However ,  the fact that the inner scale is only 
slightly shorter  than the sampling interval partly allays this fear. Further,  in Fig. 8(b) we 
compare  the spectra for the full record with spectra computed from subsampling by a factor 
of 16 and 64. It appears  that the aliasing error reliably moves to short waves as the 
sampling increases. From this we conclude that the Batchelor spectrum is indeed realizable 
given an extensive enough inertial range. The results suggest that extremely high resolu- 
tions are needed to recover the spectrum, however.  

As e is increased beyond 0.1, the inner scale increases and moves into the range of the 
resolved scales, compressing the ' inertial '  range. When this happens,  the spectra begin to 
be influenced by the detailed physics determining the statistics of the inner scale. In fact, 
there is not really a unique ' inner scale' but ra ther  a spectrum of "inner scales' associated 
with the spread of Lyapunov exponents and the spread of times taken before an orbit 
encounters a resetting region. In the limit of  an inner scale that is sharply bounded below, 
one would recover the k -2 jump spectrum as in the theory of Saffman [22]. Small-scale 
events are sufficiently probable  to render the spectra shallower than Saffman's theory, but 
s teeper than k -1. For  e = 0.25, the spectral shape is k -1"25, and for e - - 0 . 5  the shape is 
k-l52. 
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Fig. 8. (a) High-resolution (1 048 576 point spectra) for undamped equilibrium case with various forcing widths e. 
(b) Effect of subsampling for e = 0.1, showing localization of aliasing errors at high wavenumbers. 

6. CONCLUSIONS 

We have outlined a general computationaUy tractable approach for addressing a range of 
problems concerning tracer microstructure created by large-scale advection and small-scale 
diffusion, through the use of i terated maps. Using this technique, we have studied spectra, 
concentration PDFs, multifractal scaling of squared-gradients, and cancellation exponents. 
Results for the idealized system have been compared and contrasted with similar diagnost- 
ics applied to a family of fully nonlinear two-dimensional turbulence models. While more 
questions have been raised than have been resolved, a few clear points have at least 
emerged. 

For  the freely decaying advection-diffusion problem, there is evidence that the evolution 
settles into a 'strange eigenmode'  which has arbitrarily fine-scaled variability limited only 
by diffusion, but which is statistically self-similar in time. The variance decays exponentially 
in time, with a rate governed by the dominant Lyapunov exponent,  and independent of 
diffusivity. The concentration power spectrum for this eigenmode is not algebraic, but 
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rather exhibits a broad exponential rolloff. The concentration PDFs are self-similar in time, 
and are approximately Gaussian for small concentrations but have exponential tails for 
extreme concentration excursions. These PDFs appear to conform well to the theory of 
Sinai and Yakhot  [7]. It is clear from these results that a Batchelor k -I spectrum is not the 
long-term solution for the freely evolving case in the presence of dissipation. The 'strange 
eigenmode'  is the correct end-state. 

A very different picture is obtained when the variance is maintained against decay by 
periodically reintroducing unit-magnitude concentration in certain strips at large scales. In 
this case, the spectrum is indeed algebraic, though it is significantly steeper than k -~. It is 
significant that, at similar resolutions, the pseudo-vorticity spectra for the large-eddy 
dominated cases cr -- 2 and oL = 3 in the 2D turbulence models of Pierrehumbert  et al. [23] 
show the same kind of anomalous steepness. We suggest that steep spectra of this sort are 
characteristic of mixing by large-scale advection and small-scale diffusion, at least until 
truly enormous resolutions (perhaps 106x 106) in 2D. An undiffused simulation at the 
latter extremely high resolution indeed shows a k -~ spectrum when aliasing problems are 
surmounted and when the non diffusive concentration microscale (which we have defined 
above) is sufficiently far removed from the inertial range. There is as yet no quantitative 
theory of the diffusively influenced steep spectra prevailing in the lower resolution 
calculations. 

The PDFs of concentration in the equilibrium case are markedly different from those in 
the freely decaying case. Apart  from a spike at the concentration value introduced by the 
forcing, these distributions are much more uniform than those in the decaying problem. 
This indicates that theories of the type of Sinai and Yakhot do not always work in the 
presence of variance maintenance by large-scale forcing. In contrast, though, the equili- 
brium pseudo-vorticity PDFs for the turbulence models of Pierrehumbert  et al. [23] do 
show a behavior that is more like the Sinai-Yakhot  theory, though the range of Gaussian 
behavior is broader  and the exponential tails are less pronounced. 

A robust result we have found throughout all the models we have examined--decaying 
tracer, equilibrium tracer and 'oL-turbulence' (Pierrehumbert  et al. [23])--is that the 
squared-gradient field is a 'fractal degree of freedom' random field rather than a 
multifractal. We have argued that the scaling of the width of the lognormal distribution of 
the squared gradient under smoothing is anomalous, and reflects the underlying geometry. 
The lognormal behavior of the squared-gradient PDF is closely related to the Gaussian 
distribution of Lyapunov exponents,  which is known for the advection-diffusion problem, 
and which we conjecture for the ol-turbulence problems. 

We have also made a foray into the subject of cancellation exponents,  by examining the 
PDFs of the magnitude of the gradient computed after smoothing is first applied to the 
concentration (or pseudo-vorticity) field. For both the decaying and equilibrium passive 
tracer case, the concentration structure PDFs for various degrees of smoothing are 
'Kolmogorovian, '  in the sense that they are self-similar under rescaling by the mean 
gradient. It was argued that this is indicative of a non-intermittent squared-gradient 
field. We gave a concrete realization of the k -~ Batchelor spectrum in terms of a non- 
intermittent space-filling random gradient model. However ,  it was also shown that the 
Batchelor spectrum is perfectly compatible with intermittent models as well, because of the 
leeway provided by varying the degree of cancellation between positive and negative 
gradient regions. 

The structure PDFs are less self-similar for the or-turbulence cases and suggest that 
(relative to the typical gradient at each scale) weak gradients are more probable at small 
scales then they are at large scales, as if localized weak-gradient regions are systematically 
eaten up by neighboring same-signed high gradients when the field is smoothed. Most of 
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our  resul ts  conce rn ing  or- turbulence shou ld  be  r e g a r d e d  as t en ta t ive ,  t hough ,  owing  to a 
marg ina l ly  r e so lved  iner t ia l  range ,  

U n d e r  wha t  s i tua t ions  wou ld  b e h a v i o r  of  the  sor t  we have  seen  a b o v e  be  e x p e c t e d  to 
p reva i l?  It  comes  down  to a ques t ion  of  w h e t h e r  the  advec t ing  f ie ld has  in some  sense  a 
d o m i n a n t  t imesca le ,  and  the  ex i s tence  of  such a t imesca le  can  be  p r o b e d  by  e x a m i n a t i o n  of  
the  f in i t e - t ime  L y a p u n o v  e x p o n e n t s  for  the  t r a j ec to ry  p r o b l e m  ar is ing f rom a g iven  ve loc i ty  
f ield.  F o r  the  i t e r a t e d  m a p  we have  s tud ied ,  these  e x p o n e n t s  a re  w e l l - b e h a v e d  by 
cons t ruc t ion .  F o r  a t u r b u l e n t  ve loc i ty  f ie ld wi th  smal l  scales ,  h o w e v e r ,  the  L y a p u n o v  
e x p o n e n t s  cou ld  be  h ighly  d e p e n d e n t  on  the  d iss ipa t ive  cutoff .  N o t a b l y ,  for  a k -5/3 ene rgy  
spec t rum,  the  a s soc ia t ed  ve loc i ty  f ie ld has  d ive rgen t  g rad ien ts .  In  p r inc ip le ,  then ,  the  
L y a p u n o v  e x p o n e n t s  cou ld  b e c o m e  d ive rgen t  as r e so lu t ion  is inc reased .  This  n e e d  no t  
h a p p e n ,  howeve r ,  if the  co r r e l a t i on  t ime  o f  h igh -g rad ien t  reg ions  is suff ic ient ly  short .  
I n d e e d ,  this  a p p e a r s  to h a p p e n  for  a t m o s p h e r i c  winds  s imu la t ed  by  a gene ra l  c i rcu la t ion  
m o d e l ,  for  which  case the  t r a j ec to ry  p r o b l e m  has  a we l l -de f ined  e x p o n e n t  [5]. T h e  ve loc i ty  
f ie ld for  the  oc = 1 t u rbu l ence  m o d e l  d iscussed  in P i e r r e h u m b e r t  et  a l .  [23] also has 
d ive rgen t  g rad ien t s .  W h i l e  we have  no t  c o m p u t e d  L y a p u n o v  e x p o n e n t s  ye t  for  this case,  
the  P D F s  o f  the  s q u a r e d - g r a d i e n t  f ie ld a re  s t rong ly  sugges t ive  o f  b e h a v i o r  s imi lar  to tha t  of  
the  i t e r a t e d  m a p .  C o m i n g  to an u n d e r s t a n d i n g  of  f in i t e - t ime  L y a p u n o v  e x p o n e n t  d i s t r ibu-  
t ions  for  t r a j ec to ry  p r o b l e m s  ar is ing f rom t u r b u l e n t  ve loc i ty  f ie lds  is, in any even t ,  of  p r i m e  
i m p o r t a n c e .  T h e  ol = 1 m o d e l  p rov ides  a g o o d  f o r u m  for  p r o b i n g  the  re la t ive  ro le  of  
l a rge-sca le  and  smal l - sca le  advec t ion ,  and  wou ld  be  a g o o d  s ta r t ing  po in t  for  such a s tudy.  
S imula t ions  o f  pass ive  t r ace r  mix ing  by  the  ve loc i ty  f ie ld o f  this m o d e l  w o u l d  p rov ide  
inva luab le  c o m p l e m e n t a r y  i n fo rma t ion .  
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