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We present a synthesis of theoretical results concerning the probability distribution of the
concentration of a passive tracer subject to both diffusion and to advection by a spatially smooth
time-dependent flow. The freely decaying case is contrasted with the equilibrium case. A
computationally efficient model of advection-diffusion on a lattice is introduced, and used to test
and probe the limits of the theoretical ideas. It is shown that the probability distribution for the freely
decaying case has fat tails, which have slower than exponential decay. The additively forced case
has a Gaussian core and exponential tails, in full conformance with prior theoretical expectations.
An analysis of the magnitude and implications of temporal fluctuations of the conditional diffusion
and dissipation is presented, showing the importance of these fluctuations in governing the shape of
the tails. Some results concerning the probability distribution of dissipation, and concerning the
spatial scaling properties of concentration fluctuation, are also presented. Though the lattice model

is applied only to smooth flow in the present work,

it is readily applicable to problems involving

rough flow, and to chemically reacting tracers. 2000 American Institute of Physics.
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The evolution of the concentration field of a nonreacting
chemical substanceg(a “passive tracer”) subject to rear-
rangement by advection and by molecular diffusion pre-
sents a rich variety of questions of deep theoretical inter-
est. Advection-diffusion is also central to a variety of
problems of considerable practical importance, such as
combustion, and atmospheric chemistry. The probability
distribution, or histogram of the tracer concentration
field, provides much information about the mixing pro-
cess, and has been the subject of much numerical and
theoretical attention. We survey progress that has been
made in understanding the PDF for the case of advection-
diffusion by smooth flow, expose some remaining gaps in
the current understanding, and point out a few aspects of
the problem that have not hitherto been sufficiently ap-
preciated. In addition, a computationally efficient lattice-
based model problem suitable for exploratory inquiries
into the subject is introduced. The utility of the method is
illustrated through applications to spatially smooth ad-
vection of a nonreactive tracer, and suggestions are made
for extensions to problems where the theoretical under-
pinnings are not so well developed.

I. INTRODUCTION

The advection-diffusion problem has been the subject of

advected by a specified time-dependent flow field, and sub-
ject to sources and to mixing by diffusion. Such a tracer is
governed by the nondimensional equation

J0
—+v-VOo=Pe 1V29+1,

P (€

where @ is the concentrationy is the velocity, Pe is the
Peclet number, antlis a source of tracer variance. The Pe-
clet number is a measure of the strength of the diffusivity
and is defined ablL/«, whereU is the typical velocity scale

of the advecting flowL is its typical length scale, and is

the diffusivity of the tracer. We will confine attention to the
case where is nondivergent, and will be most interested in
the weakly diffused case, i.e., large Pe. Because of the scale-
selective dissipation, the diffusion acts strongly on suffi-
ciently small scales even though Pe is large. The equétion
gets interesting precisely because the straining action of the
velocity continually creates fluctuations i of a spatial
scale small enough to be dissipated. It will be assumed that
the average of over the entire domain vanishes, so that in a
well-mixed state there is no tendency for the mean valug of
to grow without bound. Attention will be confined to the
two-dimensional case, though many of the techniques and
arguments admit ready generalizations to three dimensions.
Throughout, we employ Cartesian coordinatesy] with
corresponding velocity components, ().

In the limit of infinite Pe and vanishin§ Eq. (1) states

intense interest because it makes an appearance in a widgnply that the value o is conserved following trajectories.
range of physical phenomena about which one would like tz large literature on the properties of chaotic trajectories
make predictions. Equally, the advection diffusion probleminduced by incompressible time-dependent flow in 2D has

serves as a testbed for ideas on the statistical structure

blilt up, and the subject generally goes by the name “chaotic

turbulence, since it offers many of the same mathematicahdvection.” Tracer rearrangement by pure advection causes
challenges, but in a setting that is not quite so demanding a$ie probability distribution functior(hereafter “PDF") of

the fully nonlinear Navier—Stokes equations. We shall bethe gradient of) to evolve, but it leaves the PDF éf P(6),
concerned with the statistical properties of a scalar traceinvariant. Introducing diffusivity to the problem makes it
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considerably richer, since fluid parcels can exchange tracehe flow for a length of timéT. If € is sufficiently small and
with their neighbors, leading to evolution of the PDF@&f  the velocity gradients are always finite, then the disk will be
This PDF is the object of first interest in many applications,distorted into an ellipse with semi-major and minor akes
and it will be our prime concern in the following. Much of and L,. If the flow is nondivergentl;L,=¢€? and the
what has been learned about the generation of tracer graditraining is characterized by the expansion rate alone. From
ents from the study of pure chaotic advection will prove ofthis, we define the FTLE for the given time interval and the
great utility in the study of howP(6) evolves. A very com- given initial point as the smak limit of
plete understanding of the tracer evolution is available for )
the case of advection by random unidirectional shear, and AX0,¥o,to, T)=T (L /e). ©)
also for general flows in the limit where the spatial scale ofThe FTLEs for incompressible flow, defined in this fashion,
the tracer variation is much larger than that of the advectingire either positive or zero. Note that vanishitign the limit
flow (the “homogenization problem):* In the present work, of small e still allows for algebraic growth of the major axis
we concentrate on the case in which the underlying adveosf the ellipse, as occurs in steady shear flow and other re-
tion problem vyields chaotic trajectories, and we do not im-gions of invariant tori. The FTLEs are well defined for all
pose any particular restriction on the spatial scale of thdrajectories if the flow field is spatially smooth, by which we
tracer fluctuation. mean that the velocity gradients are everywhere finite. If the
Numerical experimentation is an important means of for-kinetic energy spectrum of the advecting flow field is shal-
mulating and testing conjectures in the less explored aredswer thank 3 at large wave numbek, then the velocity
regarding the statistics @f). The case of random advection gradients are generally singular at some points. A fundamen-
by smooth flow is the best understood from a theoreticatally different approach, perhaps based on the rate of separa-
standpoint, but even there, major gaps remain in the undetion of trajectories initially a small bufinite distance apart,
standing of the shape and evolutionRfg). One purpose of may be needed for the characterization of mixing in such
this paper is to introduce a computationally efficient modelflows. The definition ofA in (3) continues to exist for any
problem for the study of advection-diffusion, and to illustratefinite e, but it diverges for smalk for trajectories that spend
its utility in probing the major theoretical questions in the a sufficiently long time near a singularity of the gradient.
context of random advection by smooth flow. First, we sur-  The quantity of interest is the probability distribution of
vey the basic theoretical underpinnings concerrfd{@) in A over an ensemble of trajectories obtained by integrating
Sec. Il, taking time to tie up some loose ends regarding th€2) for a fixed length of timeT beginning from a suitable
smooth flow case. The numerical model is described in Secollection of initial conditions X,,Y,,t;). One common
[1. Numerical results for smooth flow are given in Sec. IV; choice for the ensemble is to sample the space of all initial
for the most part, these conce{ ), but we also provide a conditions with a regular or random collection of,(y,),
few results concerning the PDF of the tracer gradient, anéind carry out all integrations starting &=0. Another
concerning the lack of anomalous scaling of the tracer fieldchoice is to take a single very long trajectory starting at a
Though the numerical algorithm is applied here only to theparticular §&,,y,), and to make the ensemble out of seg-
smooth flow case, it can also be used to probe the behavignents of the trajectory of length. If the system is noner-
of systems for which the state of understanding is muctgodic, or if the ergodic relaxation time is longer thanthe
more rudimentary, notably the case of advection by flowshoice of ensemble affects the outcome. We shall refer to the
with singular velocity gradients, and problems involving PDF of the FTLEs a€Q(A,T). For two-dimensional spa-
chemical reactions. A few such suggested extensions are odutally smooth flow whose associated trajectory probl@nis

lined in Sec. V. ergodic in the whole spatial domain, it has been stothat
for large T

Il. THEORETICAL PRELIMINARIES CONCERNING aT —

THE PDF QA T)=/—e aTh-N7 (4)

A. General considerations provided thatA is not extremely far from its most probable

In the limit of vanishing dissipation and forcingl) re-  valueA. In (4), the coefficienta is a constant characterizing
duces to the statement that the valuedak conserved fol-  the overall level of velocity gradient fluctuations in the ad-

lowing fluid trajectories. Therefore, it is no surprise that thevecting flow. The method used by Chertkewal? for prov-

associated Lagrangian trajectory problem ing this is very specific to two dimensions. Nonergodic be-
dx dy havior, arising from invariant tori, cantorii and other
a=u(x,y,t), a:v(x,y,t) 2 transport barriers, leads to significant deviations from Gaus-

sianity. In particular, the phenomenon of “sticking” to in-
should play an important role in the limit of weak diffusivity, variant tori at the boundary of a chaotic region is known to
i.e., large Pe. The behavior (2) enters into the statistics of lead to anomalously large probabilities of low? Although
the solution of(1) primarily through the statistics of tHaite ~ analytic results like4) may not be generally available, the
time Lyapunov exponent@bbreviated FTLBEs For two-  fact remains that an evaluation 6i(A,T), by numerical
dimensional flows, the meaning of the FTLEs can be graspetheans if necessary, is the starting point for the analysis of
by placing an infinitesimal disk of dye, with radiusat a  the mixing properties of any novel smooth flow one may
point (Xq,Yo) at timet,, and allowing it to be advected by wish to treat.
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When A is nonzero, and hence positive, any gradients The second equality irf7) and (8) implies a relation
initially present in the tracer distribution are amplified expo-between the conditional diffusion and the conditional dissi-
nentially. The point of contact with the diffusive problem is pation, namely,
made by examining the scale at which the amplification of
gradients by strain is balanced by diffusion. In nondimen-  (V26),=3d4(|V 6]%) 4+ (|V 6]%) 434In(P), 9

sional terms, this scale is - ) ) )
so that the two quantities are not independent. This relation

l,=(APe 12 (5) was also derived by Nakamufdn a study of atmospheric
tracer mixing. Note that Eq9) is purely kinematic; it pro-
An initially large scale structure will cascade down to this ceeds directly from integration by parts, and is independent
dissipation scale, and thereafter not get any smaller. Becausé# the equation that governs the evolutionéfThe relation-
there is a range of values df characterized byQ(A,T),  ship between conditional dissipation and conditional diffu-
there is a range of dissipation scales over the domain. It takesion is dependent on the tracer PDFPIff) is Gaussian and
a finite time for tracer fluctuations to cascade down to the(|V 6]?), is independent o8, then(V?26), is proportional to
dissipation scale. If the initial scale Is then the time for —6(]V6|?),. Alternately, Eq.(9) can be solved foP, in

dissipation to set in is which case it yields an expression for the PDF in terms of an
integral over the ratio of conditional diffusion to conditional
t,=A"n(L/l,) (6) dissipatior® Being kinematic, the resulting expression is

valid for any twice-differentiable field. It would work as

on account of the exponential amplification of the gradientswel| for a digitized image of the Canadian Olympic hockey
Because of the fluctuations i, there is a range df, ; the  team as it would for an advected-diffused tracer evolving
fluctuations of the dissipation time are governed primarily byunder Eq.(1).
the prefactorA %, rather than by the fluctuations i), , Equations(7) and(8) are exact, but they make the prob-
which affects the dissipation time only logarithmically. In- |em of representing the evolution &) look a bit simpler
formation on the fluctuations df, andt, can be used sys- than it really is. The hidden problem is that the conditional
tematically to obtain information on the statistics of the gverages, such a¥2%0),, are not actually functions of,
tracer field, as was done for the white-noise forced case byyt are actually fluctuating quantities, whose fluctuations
Chertkovet al? Shortly, we will pursue the same enterprise need to be characterized, and whose fluctuations can affect
more simply, though less rigorously. the evolution. This is especially serious on the tails of the

Another approach to determinirf(6) is to derive the djstribution, where the fluctuations can be large compared to
transport equation governing the PDF. The use of PDF tranghe mean. Previous work on the PDF transport equation does
port equations has a long and well-developed history in thgot seem to have appreciated this point. The importance of
combustion and chemical engineering literattf@nd many  the fluctuations can be immediately grasped through consid-
of the ideas that became popular during the recent revival ération of the case of white noise forcing without either ad-
interest in PDF approaches to advection-diffusion in fact hadsection or diffusion,viz. 9,6=f, in which f has zero spatial
their first expression in that literature. Sinai and Yaﬁhnt and ensemble mean. This equation is the familiar random-
directly adopted the PDF transport approach, by forming gvalk problem, and it is a classic result that the PDFIGE

heirarchy of equations governing the mome(#8). It has  governed by a diffusion equation. Yet, the PDF transport
been showhthat the transport equation can be easily derivecbquation obtained as a special casé®fis

by noting that P(Z,t)=(8(Z— 6(x,y,t))), where angle

brackets denote a spatial average drisla dummy variable. AP (0,t)=— 3 {P(6)(f)e} (10)
The transport equation follows by taking the time derivative

of this expression foP(Z,t) and systematically making use and the mean value ¢f), over the ensemble of realizations

of the fact thatd satisfies(1). The result is is zero, leading to no evolution &f at all. The resolution of
this conundrum is thatf), has nonzero values in any par-
aP=—Pe 29,{P(0)(V?8) s — d,{P(0)(F) e} (7)  ticular realization, and that the fluctuations entirely govern

the evolution ofP. To make it explicit how the fluctuations
=—Pe 29,{P(O){(IVO|2) g} —9,{P(0){f),}, (8 come into the picture, note theR(Z){f),=(fs(Z—6)),
whence
where(- - - ), represents the conditional average of the indi-
cated quantity over all parts of the domain whéreakes on IfS(Z—6))y=—(f5"(Z— 6)3,0)
the specified value. The advection terms affect the PDF only 2
through their effect on the conditioned diffusion and forcing. = —0f°8(2=0))
The hard part of the problem is coming up with a theory of = —aZ{P(Z)<f2>Z}_ (11)
the conditioned diffusion or dissipation. If the typical length
scale of the dissipating structuresljsand the typical tracer Now suppose that the statistics bhre homogeneous, and
fluctuation over this length scale &9, then the conditioned that its spatial correlation is small enough that each contour
dissipation may be estimated &¥ 6|2),= 56/12. So, the  of constantZ averages enough fluctuations ti{&f),=(f?)
salient questions are: What &? What is|? How do they is independent oZ. Suppose further thdtremains constant
depend orp? over a timeAt, after which it switches to a new randomly
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with large A have anomalously small concentration values,

while the large fluctuations are due to anomalously small
T To get the concentration PDF from this argument, we

\ start with the concentration PDF conditional An which is

ol. I P(GIA)~exp( —blf*e“02> (13)

: (14)

Ir*e(A—AO)T"ez

~exp(—b

FIG. 1. Schematic illustrating the range of initial concentrations that are ~ L
mixed together to make up the concentrattbnear a specified point, after where 6= ¢ exp (AOT/Z)' We then convolve it with the PDF

a timeT has passed. of A. Since the incompressible system is time reversible,
then the statistics of FTLE for the reverse-trajectory problem
are the same as that for the forward problem. The desired

chosen value. Then, upon integratifig) in time, assuming convolution is
(f)y to be initially zero, one finds that théme-averaged

conditional forcing appearing ifl0) is P(G,T)=f Q(A, T)P(O|A) dA (15
0
S At
P(O)(f)o=— 75 (1%)d,P, (12) .
~f ex% —la(A—Ag)%T

in which the overbar denotes a time average over the interval 0
AT and we have relabeled the dummy variaBlback toé6. I,
Substitution in(10) yields the familiar diffusion equation. +bre(A’A0)TT92 ] dA. (16)

The point of this exercise it not to rederive the diffusion

equation, but to emphasize that fluctuations in the termsn the second equality, we have assumed the Gaussian form
(V?6), and(|V 6]%), appearing in(7) and(8) lead to strong  of Q given in (4), but other forms can be used if they are
modifications in the evolution and equilibrium shape of gvaijlable from some other theory. What we do next is rather
P(0). dependent on the specific form @ and, more specifically,
how rapidly it collapses onto a spike with increasihg

At large T we may approximate the integral (h6) using
steepest descent. The exponent is minimized when

A basic understanding of the PDF for the decaying case |
is obtained by examining a small well-mixed parcel at time _ Ix (A-AQTH2_
and looking backwards in time to see where this fluid came 2a(A=Ao)+b L ¢ =0. @
from, and which initial concentrations were mixed together, - :
to make the final concentration. We will assume that the Sizé/Ve_have neglected some te_rms arising f”“? /.dA' which

. oo : vanish at largeT. For any fixedT, the statistics are then

of the test parcel is the dissipation schleappropriate to the ) ] ) ) ) oy
point where it is located. Suppose now that the FTLE fordominated by trajectories with a uniquie= A, if 6% is suf-
backwards in timerajectories of lengttT emanating from ~ficiently small. However, for any fixed?, the statistics be-
the point isA. Then, the mixed parcel originated from a long come dominated b\ <A, at largeT, and this happens ex-
filament of fluid of lengthl, exp (AT) snaking randomly ponentially quickly. Thus, the range of dominated by a
across the initial domain, as depicted in Fig. 1. This filamenfixed A 3, and for which the PDF is hence Gaussian, vanishes
samples the initial range of concentrations, and the longeasT gets large. In fact(17) implies that the PDF is eventu-
the filament, the more independent concentration values awly controlled by negative\, which is a spurious result,
mixed together to make up the final concentration. When theince the maximum FTLE is always non-negative. In reality,
filament is long, the PDF of the final concentration, for giventhe Gaussian form o€ breaks down neahA =0, so that
A, is determined by the central limit theorem. For definite-optimization argument really tells us that the behavior of the
ness, suppose that the initial concentration pattern is a checkencentration PDF at long times is governed by the scaling
erboard with square sizle, and that each square is colored of the PDF of A for small A. The anomalous almost-
with alternatelyd=1 or 6= —1. Then, the final concentra- nonchaotic orbits give the remanent concentration fluctua-
tion is the mean of approximateN= (I, /L)exp(AT) inde- tions that are most reluctant to give up the ghost, and domi-
pendent randomly chosen terms, each of which has the valuete the long-time concentration pattern. Antonséral°
+1 or —1. By the central limit theorem, the PDF of this found that the power spectrum for the decaying case was
mean is Gaussian, centered on zero, and has variance piiofluenced strongly by those initial concentration gradients
portional toN. The argument generalizes to an arbitrary ini- which are poorly aligned with the principal axis of the strain;
tial condition with spatial correlation length As time goes similar considerations are likely to come into play for the
on, the PDF collapses exponentially to a spike centered atoncentration PDF as well. The general implicatiorilof) is
zero concentration. Further, for fixed time, the trajectorieghat in the long term, the PDF for the decaying case should

B. Theory of the decaying case
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have no Gaussian core, and should have fat tails whose speusly and it provides some useful intuition. Some more pre-
cific form is determined by the behavior (A,T) near cise results on the decaying problem have been recently ob-
A=0. tained by Balkovsky and Fouxda.

The analysis of the decaying case in terms of the PDF
transport equation plays out as follows. This case works out
most readily in terms of the conditional dissipation fof@.  C. Theory of the stochastically forced case

Let o(t) be the standardzdeviation of 2and introduce the The starting point for the analysis of the forced problem
assumption that Pé(|V 6|%),=G(6/o)o?, whereG is pre- s the observation that, in the absence of diffusit, re-
sumed time invariant. Then, the PDF transport equation igy,ces tod g/dt=f, which can be solved following an indi-

the absence of forcing can be cast in the form vidual trajectory, independently of what is happening on
other trajectories. If is suitably random following the tra-
3,P+34{(9,G)P}=— 3, GdyP}, (18)  jectory, then the equation describes a Brownian motion pro-

cess forf. Thus, for an ensemble of trajectories that have

wheredr= o?dt. Note that ifoc decays faster than %, then  run for lengthT, the PDF of# is Gaussian, with variance
the limit t—o corresponds to a finite value of say ... proportional to(f?)T. In the absence of diffusion, the con-
Note that this is an advection-diffusion problem 8y but  centration is Gaussian, but its variance builds up without
with negative diffusivitywhich makes the problem exceed- bound the longer the system is run. With diffusion, the vari-
ingly ill posed. Short waves in the initial condition amplify ance only builds up until the timg, after which diffusion
with a growth rate that is quadratic in the wave number, withkills off further growth. It is reasonable to estiméteby the
the result that solutions become singular after a finite timedissipation timet, given in(6). The dissipation time differs
unless the initial data is exceedingly smooth—specificallyamong the various trajectories, sinigeis a function ofA.
having a spatial power spectrum that decays faster than Bo the extent that the behavior is dominated by a single
Gaussian with respect to wave number. Consider the specighlue of A, then P(6#) is Gaussian, and the variance is
caseG=const. Then, it is only the special initial condition (f?)t, . The variance increases like In (Pe) as the Peclet
P~exp (—62%(27.)) that collapses t&#(6) at r=7.,, as can humber is increased, yielding infinite equilibrium variance in
be seen by running a conventional diffusion equation backthe absence of dissipation.
wards in time. This special solution corresponds to a Gauss- Fat tails in the PDF arise from anomalously large values
ian form of P whose width collapses to zero exponentially asof t, , corresponding to anomalously small values /of
t—o. More generally, ifG increases monotonically with However, arbitrarily small values ot do not dominate the
|6/a|, then the advection term on the left-hand sidg18) PDF, because such values have exceedingly small probabil-
has the effect of expelling probability from the vicinity of ity, and the probability becomes yet smallertgsbecomes
0=0, leading to fat tails in the distribution. large. The dominant contribution to the PDF is determined

The more typical theoretical approachRg¢a,t) for the by an optimization problem similar to that which yielded
decaying case is to seek a particular solution of the forn{17), but in this case\ enters through finding the optimg|
P(6,t)=P,(6/c)/o, which can be done consistently f to make a big fluctuation, whereas in the decay case the
decays exponentially with time. With this transformation, aoptimum is done over trajectories over a fixed time interval
closed form forP; in terms of G can be found; ifG is  T. Assuming a Gaussian form of the PDF of the FTLEs, the
constant, therP; is Gaussian, and iG increases with in- optimization in this case yields

creasing| 6|, then the PDF has tails which decay more >
slowly than a Gaussidh’'! The discussion of18) shows ¢ :i\/(ln(L/I )2+ 4 (19)
that this particular solution is not actually the end-state of * Ag * a(f?)

(18) for arbitrary initial data, a point that does not seem to_. . L
. . . o SincelL/l, grows like the Peclet numbefl9) implies that
have been appreciated previously. The time variatio®of fhe concentration PDF is dominated by a single and

and perhaps also its stochastic fluctuations, are crucial tPnence is Gaussian, for a rangegivhich grows like the log

mediating the approach to the asymptotic behavior. IR
Naivg scalinpg would suggestythgltv 82), scales like of the Peclet number. Within this randg, grows and hence
o212 whereG is expected o be a constail f to the extentthe concentration variance grows logarithmically with Pe.
b Further, for fixed Peclet number, the width of the Gaussian

* 7
that the value of\ (and hencé, ) dominating the dissipation core is proportional to the standard deviation of the pumping
magnitude. For much larget, the PDF is dominated b,

is the same for al. Moreover, given5), G becomes inde-
pendent of the Peclet number, since a larger Peclet number is

2 . — 71 . - -
exactly offset in the dissipation term by a smaller dissipation 61, or equivalentlyA ~ (| 6[In(Pe))”*. Substitution of this

scale. It has been hypothesi$&dhatG( /) increases qua- Into the convolution for the concentration PDF yields expo-

dratically with increasing/a|, but no theoretical justifica- nential tails. Schraiman and Siggizobtained a similar re-

tion of this expectation has been advanced. The filamentarysiult’Tt;y ZnZ?)?;eeWthg d;gizl?;rtit?r;gulgnsgt.vi 47). we write

f;:gﬁg?g fg:gthl]rgeen)E Zgg?;\”iﬁgt(lg) Ifztl)gr]'thle pdrg\clfeiazzmeP(ﬂgz —Ddg4P, whereD is a constant quadratic in the forc-
P y ing amplitude, as pefl2), where the steady form of7)

will be non-Gaussian, with perhaps very little Gaussian core
. . . . _hecomes
From the standpoint of rigor, this argument leaves something
to be desired, but it does not seem to have been made previ- 0=—Pe& 19,,{P(0){|V 0]?) s} + DdyyP. (20)
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Upon integration ove#, P drops out and one finds the rather where we require)(g,h)/d(x,y) =1 so as to make the map
surprising constraint that P&(|V4|?),=D, i.e., that in area preserving. The choice of an area-preserving map re-
equilibrium the conditioned dissipation is constarthe ef- tains the essential features of incompressible flow(lip
fect of fluctuations of the conditioned dissipation can relaxsince an incompressible flow in 2D acting over a finite time
this constraint. Sinc® drops out of the conditioned dissipa- induces an area-preserving map on the plane, namely the
tion form of the transport equation, one must look to themapping of points from their initial positions to their ad-
conditioned diffusion form in order to determine the shape ofvected positions some time later. The m@3) induces a
P. From (7) it follows that, in equilibrium, rearrangement of the concentration fieldd(x,y)
] 2 —0(g(x,y),h(x,y)). This rearrangement alters the PDF of
D3gP(0)=Pe P(O)(V=0),. 21) the gradient o9, but does not affedP(6) itself, since con-
This equation represents the balance between the tendency@éntration is not allowed to mix between one parcel and an-
the white-noise pumping to drive to a spreading Gaussian, other. This mixing is accomplished in a diffusion step, which
and the selective damping tendency of the conditioned diffuis alternated with{23), and if there is to be a source of tracer

sion which tends to sharpdén variance, it is also inserted in this step. The mixing and forc-
If we make the estimate ing step may be expressed abstractly as
Pe Y(V20),~Pe 10/12~ A9, (22 6—So+f,(0,x,y), (24)

then the solution tq21) is Gaussian if the dominant is  whereSis a linear smoothing operator which damps small
independent ob. This is the Gaussian-core range discussedcales more strongly than large scales, &2, andf rep-
above. Note, however, that this argument fails to capture thgesents the action of the forcing applied at iteratavhich
Iogarithmic growth of tracer variance with increasing Pe. Formay S|mp|y be a random or ordered increment added to the
large values of6 the optimization calculation yielded tracer field.
~(| 6] In(Pe))*, so that the conditional diffusion for large The advection stef23) can be carried out with concen-
6 becomes Pe(V?6),~In(Pe) *6/|6|, which is indepen- tration tagged to a finited number of particles that are al-
dent of 9. The corresponding solution {@1) is now expo-  |owed to go wherever the map takes them from one iteration
nential, rather than Gaussian. In short, the expected form qb the next, and the associated concentration field can be
the conditioned diffusion is linear for small to moderate val-interpolated to a regular grid at the end for graphical pur-
ues of|g], but flattens out at large values |af]. poses if desired. However, the smoothing operator is most
The form of the PDF for the white-noise forced case waseasily implemented if the concentration field is available on a
obtained more rigorously by Chertkaat al,” without the  regular grid. For this reason, in our earlier formulatfotne
intermediary of the PDF transport equation. The same opticoncentration field was reinterpolated to a regular grid
mization problem overA appears, but it is used to obtain {(xi,y)).i=1,...ny, j=1,...n,} after each advection
P(0) indirectly as a limiting form of the PDF of the corre- step, whereafter the diffusion step was applied in the form of
lation function(6(r4) 6(r,)); the problem is treated through a four-point smoothes(x; Yj)—0(x; ,y;) +Dj;, where
evaluation of the heirarchy of moments of the correlation )
function? Our direct derivation in terms of the transport ~ Dij=a(0(Xi+1,y))+ 6(Xi—1,¥)) + (X ¥j+1)
equation, or in te_rms of the optimal tra]ec_tory for making a + 0%,y 1))~ 00X,Y))- (25)
large fluctuation, is meant to shed some light on the mecha-
nisms leading to the Gaussian core and exponential tails, anthis is also the dissipation employed in the present work. If
provide some physical intuition that can be of use in guidingthere areN lattice points in each direction, and if the char-

generalizations of the theory to more complex situationsacteristic length scale over which the advecting figjdmdh
perhaps involving chemical reactions. vary is that of the whole domain, then the effective Peclet

number corresponding to this dissipationN$.

The interpolation step introduces a spurious source of
tracer variance which can interfere with the long-term simu-
lation of a freely decaying tracer field, and can obscure the
effect of the true forcing imposed i24).

Direct numerical simulation of the PD@) can be used High-order interpolation schemes could be used to mini-
to explore the statistics of its solutioffsTo solve the system mize the spurious interpolation noise source, as was in effect
with the resolution required to accurately reproduce the PDEmployed in the Fourier space method of Antonseal™
and scaling properties requires a considerable expenditure i the present work we instead modify the m@g) slightly
computer resources, owing to the amount of time that need30 as to coerce it onto a lattice, and thus eliminate the inter-
to be spent in time-stepping the advection. In our previougolation error entirely. The same trick has been employed
work®® a class of model problems was proposed, which rewith success in an undiffused flame propagation stGaye
tains the essential qualitative features(bf while offering ~ will illustrate the method for the special case of an alternat-
great computational economy. The essential idea is to rgng direction shear flow and a Cartesian lattice, but some
place the mixing action of advection by an area-preservingeneralizations will be suggested in the discussion. Consider
map iteration: the map

ij

IIl. DESCRIPTION OF THE LATTICE MIXING
ALGORITHM

x—=g(x,y),y—h(x,y), (23 X=X+ Up(Y), Y=y +vn(X), (26)
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FIG. 2. Schematic of the advection
step on a lattice, showing rearrange-
ment by the composition of a shift op-
eration in thex-direction followed by a
shift operation in the/-direction.

wheren is the iteration index, and the mapyfs understood X 1000 lattice can be rearranged irf10r roughly 1¢ °°© 000
to make use of the updated valuexofThis is manifestly area ways. This is unimaginably greater than the number of pico-
preserving; the “standard map” is a special case of this classeconds since the beginning of the Universe. In fact, if the
of maps. Because, and v, are continuous functions, if entire mass of the Universe were converted into a parallel
(x,y) is originally located on the discrete lattice, its image processor with each element having the mass of an electron,
will not in general lie on the lattice. If we adopt a regular and if each processor processed one lattice state per picosec-
grid with spacing Ax,Ay), then by slightly modifying the ond since the beginning of time, only around*®0lattice
map (26), we can define a nearby map that bijectively mapsstates would have been examined. Clearly, any attainable
the lattice to itself. The required modified map is physical system or simulation thereof samples only an insig-
nificant proportion of the totality of states of the system, so
X=X+ [Un(y)/AX]AX,y=y +[on(x)/AYIAY, @7) that the relevance of true ergodicity seems obscure. What is
where[ . ..] is the nearest-integer function. The associatednore at issue in statistical arguments is whether a sparse
concentration is shuffled along the lattice like tiles in thesampling of an enormous phase space provides stable esti-
familiar puzzle-tray, or like colors on the surface of a Ru-mates of the gross statistical properties in which one is inter-
bik's cube. An example is shown in Fig. 2. ested, as if most of the vast number of states are in some
The lattice-rearrangement representation of the adveaense alike.
tion step has the desirable consequence that the advection Following our earlier work® we shall study mixing in a
step by itselfexactlypreserves(6). This property is diffi-  doubly periodic domain, induced by the shear
cult or impossible to achieve for numerical representations of
the advection operatar- V appearing inf1). Exact preserva-
tion of P() is equivalent to conserving all the moments of . .
6, which is a property the exact solution ¢f) has in the Un(y) =4sin(y+én),  vn(X)=sin (X+ ), (28)
limit f=0, Pe—w, but which humerical solutions have not
been able to reproduce. A further advantagé€23j is that it
can generally be implemented as a shift operation on thahere ¢, and ¢, are independent random phases chosen in
rows and columns of the matrix of values @f so that the the interval[0,27]. The randomization was employed so as
advection step does not require any floating point operation® break up invariant tori and assure ergodicity over the
at all. Simulations can therefore be carried out at very highwhole domain. The consequences of the presence of tori and
resolution, with modest expenditures of computer time. other transport-inhibiting structures are interesting, but will
Some interesting aspects of the ergodicity problem arde left to future work. A small deviation from the original
revealed starkly when thought of in terms of the latticemap? is that we now randomize the phase of both shears,
model. For example, one may raise the question as toather than just one of them. This had little impact on the
whether every possible state of ahmxX N lattice can be forced equilibrium cases, but was found to be necessary in
reached from an initial state via a sequence of shift operathe simulation of the very long-term behavior of the decay-
tions of the form in Eq. 27. If not all states are accessiblejng case.
one would like to know the number of distinct equivalence In the following, we present results for the freely decay-
classes of mutually accessible states the set of shift mapeg case {=0) with a large-scale initial condition, and for
defines, and the minimum and average number of transfoitwo flavors of forced-equilibrium cases. The first type of
mations needed to take one given state into another acce®rced case, and the one we will emphasize, is simple addi-
sible one. One could inquire as to whether the set of all statetive forcing, in whichf, is a specified function of space and
accessible from a given condition are in some sense dense iteration. It could be made a random function of space and
the space of all lattice configurations. With regard to appli-time with a definite spatial and temporal correlation length,
cations to statistical mechanics on the lattice—and perhapsut in pursuit of somewhat greater relevance to problems of
to statistical mechanics in general—it must be remarked thgthysical relevance, we chose the steady large-scale incre-
guestions of ergodicity are perhaps academic. A 1000nent f(y)=sin (y). Since the trajectories are chaotic, the
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FIG. 3. Concentration variance as a function of iteration for the freely /

decaying cases at 2048esolution. FIG. 4. Concentration PDF as a function of concentration normalized by its
standard deviation, for the decaying case with 40@8olution.

time series of forcing seen by a particle should be random
even thougHf itself is fixed and ordered, so that in the La- decay continues down to machine precision. Obviating the
grangian sense the forcing is expected to be random enougtecessity of high-order interpolation schemes, the lattice

that the behavior of the system is in most regards as ongap is both efficient and easy to generalize to arbitrary shear
would expect for random forcing in the Eulerian sense. Theields.

numerical results will bear out this expectation. As noted The PDF of normalized concentratioflo(t) for a
elsewherd? additive forcing is rather unlike the physical 4096 simulation is shown in Fig. 4 at a number of times.
source appearing in realistic tracer problems, since realistithe PDF attains a time-independent form, and is highly non-
tracer sources tend to “reset” the value to certain saturatiorGaussian. There is a small Gaussian core, in the sense that
concentrations when the parcel wanders into a source regiothe logarithmic probability is parabolic near the peak, but
For this reason, we also present a few results with a “resetthis range is exceedingly small; the logarithmic probability is
ting” forcing (ineptly called “multiplicative” formerly*), in  concave except very near the peak. Numerical results quoted
which 6 is reset at each iteration to1 for particles residing by Yakhot et al.” suggested that the Gaussian core grows
in a strip of width e centered on the lower half of the do- slowly with time, but this does not seem to be the case for
main, whereag is reset to— 1 for a similar strip centered in - smooth advection-diffusion simulated at high resolution.
the upper half of the domain. For resetting forcing, the conMoreover, dominance of the non-Gaussian behavior every-
centration is strictly bounded betweerl and—1, whereas where at long times is consistent with the role of the anoma-

there is noa priori bound for the additive case. lously low Lyapunov exponents discussed in connection with
(17). The fat tails in the decaying case are slower than
IV. RESULTS OF NUMERICAL SIMULATIONS Gaussian, and in fact even slower than exponential tails. This

is also to be expected froifl7). No theoretical arguments
have ever been put forth for exponential tails in the decaying
In Fig. 3 we show the concentration variance as a funcecase; Sinai and Yakhbonly produce a PDF whose tails look
tion of time in the decaying case. As argued in our earlierexponential over a limited range, and even that is based only
work!® after an initial adjustment period during which the on an arbitrarily specified form of the conditional dissipation.
tracer variance cascades down to the dissipation scale, ti@ur previous simulations of the decaying cassuggested
variance decays exponentially with time, at a rate that isexponential tails, but in retrospect this appearance was due to
order unity, even though the Peclet number is large. Wehe limited dynamic range of and the relatively short times
argued further that because of the scalind ofvith Pe, the  which could be treated with the continuous-space map.
decay rate would be independent of Pe, and would be on the The self-similar form of the PDF implies that") de-
order of the dominant Lyapunov exponent. Subsequent workays like exp{y,t) with y,~n. This result is inconsistent
with a reduced wave number motfshas confirmed the gen- with theoretical results on the decaying case obtained by
erality of the decay, and has also shown that the LyapunoBalkovsky and Fouxof? which state that for sufficiently
exponent that determines the decay is systematically shifteldrgen, vy, should be independent af It is possible that the
by a finite amount from the most-probable exponent, despiteliscrepancy arises because the behavior calculated by Balk-
the fact that(4) collapses onto its mode at large times. With ovsky and Fouxon arises from values @0 far out on the
the continuous-space mapthe decay is only seen for a tail of P(6) that they are not resolved in the numerical cal-
limited time before interpolation noise halts further decay.culation. Balkovsky and Fouxon also note that their Eg.
For the lattice map results shown in Figure 3, the exponential3.9), which gives the form ofy,, becomes invalid as the

A. Concentration PDF for freely decaying case
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Conditional Diffusion Concentration PDF for additively forced case
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(a) Normalized Concentration 3]
Conditional Dissipation FIG. 6. Concentration PDF for the additive forcing case with 40@8olu-
Decay case, 4096 x 4096 resolution tion. The PDF shown is the composite of the final 700 iterations of an
g 70 L T T N R S ] 800-iteration run. The best-fit Gaussian is also shown.
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2 5 — & -7.400000e+02 J small 6, but becomes asymptotic witself for large 6; the
A 50 K ==X ==7.600000e+02 ; ; ; s P
= . .4 - 78000006402 fl corresponding estimate of the normalized conditioned dissi-
£ 40 A pation is thera, + a,(6/ o). The scaling 059 makes sense,
g m===== Mean since for smalld the concentration of a “neighboring” par-
S 30 cel randomly chosen from the available values has a high
3 probability of being as large as, but not much chance of
N . .
5 20 being a lot larger. On the other hand, if keowa parcel has
g 10 an unusually large concentratiafy then its neighbors are
Z overwhelmingly likely to be of more normal magnitude, i.e.,
0 relatively near zero. On the other hand, the apparent con-
-10 -5 0 5 10 stancy ofl in this argument is difficult to reconcile with the
(b) Normalized Concentration optimization argument17), which appears to require that

FIG. 5. Normalized conditional averages of dissipation and diffusion for theIargel dominate Iarge fluctuations. Perhaps the gl’OWthISf
decaying case with 4086esolution. Results are shown as a function of (00 Weak to overcome the growth of the typical fluctuation.
concentration normalized by its standard deviagorConditional diffusion ~ This is a matter whose definitive resolution we shall be con-
is normalized byo, while the conditional dissipation is normalized by. tent to leave to a future date.

The mean conditional diffusion is very linear ia,
lation i f the ad ing flow i The lati though individual snapshots show strong fluctuations for the
correlation time of the advecting flow increases. e lattic arger values of the argument. It must be emphasized,

map we consider is equ_ivalent to a flow with COrreIationthough that in thedecayingcase, in contrast to the forced
times compz_irable to the inverse Lyapunoy e_:xponent, S0 th%tase, the linear part of the conditional diffusion has no bear-
the system is not close to th&correlated limit. We specu-

e . L . ing on the form of the concentration PDF, and in particular
late that the self-similar PDF is characteristic of advection- 9 b

diffusion by fl ith moderatelv | lation ti does not imply Gaussianity. Froii7), any functional form
usion by Tows with moderately fong correfation imes.. V(0) of the conditional diffusion simply leads to an advec-
The conditional diffusion and dissipation are shown in

. ) . .. tion equation which moves around the initial probability
Flgh..:tattsever?ll tltme?. It "? no:ﬁwolrthy that Ithe q;:fam't'eswithout causing it to converge to any unique shape. For ex-
exnibit strong fluctuations for the 1arger values @to, ample, if the conditional diffusion is linear ié with a nega-
which as we have argued, affects the forms of the tails of th

. . o ive proportionality constant, then the equivalent velocity
concentration PDF. The conditional dissipation shows Vengald just advects the initial probability towards=0. It is
strong variations withd/o, which is consistent withand

) . not even the deviations of the conditioned diffusion from
indeed leads t?o_the strqngly r_10n-Gau55|an PDF. Mo linearity that count, but rather the effect of tfectuationsof
=0, the conditioned dissipation has value 0.32, and th

value rises more than two orders of magnitude| @fo| he conditioned diffusion.
=10.0. The mean conditional dissipation is very nearly qua- . I
dratic in its argument, over the whole domain for which sta-B' Concentration PDF for forced equilibrium case

tistics could be reliably compiled. A phenomenological pic- In Fig. 6 we show the concentration PDF for the equi-
ture of this can be obtained by assuming that the length scalérium additively forced case. It shows a very clear Gauss-

| of the dissipating structures is fixed for &l but that the ian core, which indeed dominates the behavior. Comparison
typical concentration fluctuatiodd is on the order oftr for  with the best-fit Gaussian does reveal that the tails are slower
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Conditional Diffusion

which we can better explore the long-term statistics, and
have found that for suitable choice of parameters, there is a
range in which behavior similar to that for the additive case
can be observed. The PDF obtained with resetting strips of a
width 0.1/7 relative to the domain size is shown for a single
time slice in Fig. 8. The behavior can be regarded as a kind
of cascade irg-space. For concentration values near those to
which the concentration is reset in the strips, there are large
FIG. 7. Conditional averages of dissipation and diffusion for the additivefluctuations and nonuniversal behavior. As positive and
forcing case with 4096 resolution. Results are shown for the long-term negative values are mixed together to make smaller concen-
mean, and for several individual iterations. trations, the PDF begins to be governed by its asymptotic
statistics. The smallest concentrations are generally the result

of the largest number of mixing events, and it is here that the

than Gaussian, but we are iny picl_<ing up the very beginninglbDF is most Gaussian. Between this and the extreme values
hmts of the exponentl_al tails reqwred by theory. The re'?" ossible, there is an intermediate range with exponential
tively large concentrations at which the crossover to fat tail ails

occurs is a result of the particular value of the coefficient

appearing in the Lyapunov PDORB) for the particular advect- . - .

ing process employed. The coefficient enters the crossovgr' Some statistics characterizing spatial structure

via (19). Evidently, the value o# is large enough to nearly The shape and evolution of the functi®{#6) is influ-

suppress the fat-tail behavior over the range of concentraenced by the spatial arrangement of the tracer, via the con-

tions for which good statistics can be obtained. Processeditional dissipation, but it does not itself provide any direct

with smallera would show the exponential tails more promi- information on the spatial structure. Some very basic infor-

nently. mation on spatial structure is encapsulated in the PDF of the
The conditional diffusion and dissipation are shown indissipation field, which we shall caR4(|V 6|?). The theory

Fig. 7. As in the decaying case, there are large fluctuationsef P, is not nearly as well worked out as that f8( ¢), and

for extreme concentrations. The conditional diffusion, whichit does not appear that a useful transport equatioriPfohas

is the prime statistic for the equilibrium case, is linear foryet been derived, even for advection-diffusion by smooth

small arguments, and shows the beginnings of the tendendiow. For the initial value problem in the absence of forcing

to flatten out at large arguments. This is in accord with theand diffusion, the exponential amplification of initial tracer

fact that the fat tails only just begin to emerge in the PDF.gradients implied by4) has the consequence ttt should

The dissipation PDF is also shown for completeness. It i9e log-normal. Diffusion substantially alters the picture, by

generally parabolic, but is much more constant than was theelectively eliminating the small scale structures which typi-

case for the freely decaying calculation. This, too, is consiseally support the largest gradients. Some theoretical results

tent with the nearly Gaussian form of the PDF. are available for smooth flow that i$-correlated in timé/
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| Disirsion POR, 406 x 0 rslion 2= 4+~ A0 e
@ decay case 1 wheren is a unit vector in some direction. For isotropic
= 0.1 —+& - Additive forcing case processes it does not matter what direction we take. Knowl-
= 001 - ] edge ofZ, for all g is equivalent knowing the PDF of tracer
.‘§ fluctuations across a spatial incrementprovided the tails
E‘ 0.001 & X ] of this PDF decay at least exponentially. The second-order
kS ~ 3 function Z, provides information equivalent to the power
TE"' 0.0001 ¢ \ O spectrum of6. For scalar advection by flows with a charac-
S F = ] teristic time scale, one expects theé ! Batchelor power
10° ¢ = spectrumt® which corresponds t&,(p)~In(p/p,), where

X p, 1S an inner scale similar to the scale at which the tracer
D — field begins to look smooth. I21q=(22)q/2 for all p, then the
0 10 Nggnaﬁze(fgissipaﬁ‘:)?lf 50 field is said to have “simple scaling.” For simple scaling,
the PDF of tracer increment for any gives can be obtained
FIG. 9. Normalized PDF of the dissipation field for the decaying and addi-from that for another valug, by rescaling the argument of
tively forced cases at 409Gesolution. The argument E=|V¢|* for the  the PDF by the ratio of the standard deviations of the tracer
forced case antl =|V 6|/ for the decaying case, whewdt) is the tracer fiyctyation between the twp. This is a strong and conve-
standard deviation. The gradient is based on a unit grid size. In both cases, L .
the result shown is the long-term mean of the final 700 iterations of annlent form of self—S|m|Iar|ty. Any other form of scallng than
800-iteration simulation. this is called “anomalous.” It has been argued that anoma-
lous scaling is equivalent to multifractal structure of the mea-
sure implied by the dissipation field!® The dissipation
PDF, P4(T'), discussed in the preceding paragraph does not
and these results suggest tiaf(I") has a logarithmic cusp have any bearing on the multifractality of the dissipation
near I'=0, and a stretched-exponential tail of the form field; multifractality is a statement about how the PDF of the
exp (—cI'Y3) except for extremely largE. The fact that the spatially smoothed dissipation field varies as a function of
dissipation PDF is strongly affected by diffusivity makes it athe length scale of the smoothing.
good diagnostic of the influence of small scale diffusivity in The Batchelor spectrum should apply to advection-
experimental, observational and numerical work, in casesliffusion by smooth flow, and to the advection-diffusion map
where the physical mechanism of dissipation is unknown ofor a smooth map, provided that there is enough pumping to
difficult to observe. meet Batchelor's criterion of a sufficient supply of
In Fig. 9 we show numerical results féty(I'), for the  * #%-stuff.” The decaying case does not meet this criterion,
decaying and additively forced run discussed previously. Thand instead has long-time behavior that settles down into a
non-Gaussian nature of the dissipation field is immediately‘strange eigenmode” that does not exhibit spatial scafhg.
apparent, as a Gaussian would yield a parabola on the log-he reasons for this are now well understood, and a theory is
probability plot, where as the computed distribution is every-available for the form of the strange eigenmdle.
where concave, with a cusp at smEll Transforming to the It has been shown with some rigor that the Batchelor
PDF of the gradient field itself does not eliminate the cusp ospectrum should apply to smooth advection-diffusion subject
the concavity. Both the cusp and the shape of the tail aréo white-noise pumping,and that, moreover, the higher-
suggestive of the expectations of the theory of Chertkowrder scaling should be simple rather than anomalous. The
et al,!’ though in view of the fact that the present simula- gradient measure for pure advection without diffusion can be
tions are not fors-correlated flow, one should not necessar-regarded as multifractal, at least with respect to certain fami-
ily expect too close a match. Over the whole range shown ities of covers?® Our previous numerical wotR gave indica-
Fig. 9, the PDF can be fit almost exactly by expc{°3 for  tions that diffusive damping of small scales eliminated the
the decaying case and expdI™®39) for the forced case, multifractality, so that simple scaling is expected. The lack
which are not far from the exponent predicted by theory forof multifractality for smooth advection-diffusion is borne out
the 5-correlated case. On a cautionary note, it must be emby the theory developed by Antonsenal,'® and is in ac-
phasized that the numerical results do not rule out a logeord with the results of Chertkost al?
normal form of the tail. For the range &f shown, a log- In Fig. 10 we show the structure functions for several
normal fits the data nearly as well as does the stretchedalues of q, for the equilibrium additively forced lattice
exponential. The essential difficulty is tHat behaves rather model of advection-diffusion. In accordance with all theoret-
logarithmically for smalle, so that a very large dynamic ical expectations of this case, the second-order correlations
range is needed to distinguish the stretched-exponentiare logarithmic, and the scaling is simple. The best fits to the
model from the log-normal model. This may compromise thebehavior expected from simple Batchelor scaling are in fact
effective use of the dissipation PDF as a diagnostic of effectplotted in the figure, but they are so accurate that the theo-
of small scale dissipation. retical curves are hardly visible behind the simulations. In
More detailed information on spatial structure can beour earlier work we presented results from a model with
found from the scaling behavior of the tracer. This is char-resetting forcing, that suggested that Batchelor scaling would
acterized by the structure function only be seen at exceedingly high resolutfSiHere, we see

3
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FIG. 10. Structure functions for the additively forced equilibrium case, computed with?2@é8lution. Best fits to the form (IN)¥? predicted by
non-anomalous Batchelor scaling are plotted, but in most cases are so exact as to be not visible on the graph.

that for additive forcing, in contrast, Batchelor scaling can beby a chaotically wandering parcel is sufficient to make the
observed at resolutions that are easily achieved in two disystem behave like the stochastically forced case. With suit-
mensions. The Batchelor spectrum is fragile, in the sense thable choice of parameters, the Gaussian core and exponential
the resolut_ion needed to observe it is dependent on the natufgiis can even be seen in the “resetting” forcing case, where
of the forcing. the tracer is pumped intermittently by resetting concentration
to +1 or —1 when it enters specified regions of the domain.
V. DISCUSSION For any forced case, the PDF results from a balance between
From both numerical simulations and theory for the action of the conditional diffusion and the conditional
advection-diffusion for smooth flow, we have learned thatforcing, and the result is as much dependent on the nature of
the factors governing the concentration PDF differ greatlythe conditional forcing as it is on the behavior of the condi-
between the freely decaying case and the stochasticallyonal diffusion.
forced equilibrium case. For the decaying case, it is the con-  For either case, both numerics and theory reveal a pre-
ditional dissipation that is most important. The long-termyiously overlooked consideration regarding the PDF trans-
fluctuations are dominated by trajectories with anomalously,ort equation: Fluctuations in the conditional averages of
low Lyapunov exponents, there is little or no Gaussian COrgjissipation or diffusion have a strong effect on the shape of
of the concentration PDF, and the tails of the PDF are no he tails of the concentration PDF. In formulating theories,

only non-Gaussian, bUt. are actually fatFer thqn exponenﬂa hese quantities need to be represented as stochastic terms
The PDF of concentration rescaled by its variance attains ﬁ . .
uctuating about a mean, rather than functions of concentra-

time-independent form. . . L "
The additively forced equilibrium case shows an extention. The fluctuations lead to nontrivial “eddy transports” of

sive Gaussian core, with some indication of the theoreticallyProbability.

expected exponential tails, even though the forcing em- The numerical simulations do not indicate that there is
ployed is steady and spatially fixed in the laboratory refer-anything greatly wrong with the current theoretical under-
ence frame. Evidently the randomization of the forcing seerstanding of the concentration PDF for the smooth flow case,
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directions, rather than just two, and should make the statis-
tics more isotropic. More generally, as indicated in Fig. 11,
advection by vortices centered on any grid cell can be well
represented on a hexagonal grid. The possibilities are so rich
that the lattice model could perhaps even evolve from a toy
model to a practically useful computational scheme for in-
compressible advection-diffusion. The main limitation on the
kinds of mixing that can be represented is that the transfor-
mation must map the lattice bijectively to itself, leaving no
lattice sites unoccupied, and leaving none multiply occupied.
This is no more than the expression of the incompressibility
constraint, as applied to the lattice.

A further area of fruitful application of the lattice model
would be in advection-diffusion problems with a chemically
reacting tracer. The chemical reaction is incorporated by
simply making the forcing term dependent on concentration
FIG. 11. Advection on a hexagonal lattice, showing the possibility of rep-Of ON€ or more species. From the standpoint of the PDF
resenting a vortex or rotation. transport equation, one can distinguish two cases. The first

case is “weak chemistry,” which leaves the form of the
conditional diffusion unchanged from the passive case. The

though the theory for the decaying case has some aspectgeory of this case is relatively easy, as nonlinear chemical
that remain to be fully worked out. reactions simply add an advection-like term to the PDF

Theory for the PDF of the dissipation field is not so transport equation, which is easily derived from the stoichi-

complete. Even for smooth flow, it has only been worked ouMetry of the reaction. The other case is “strong chemis-
for a few special situations. Forced and freely decaying nul’y;” for which the chemistry significantly alters the form of
merical experiments show a non-Gaussian form of the pDFN€ conditional diffusion. This case presents much greater
with stretched exponential tails and a cusp at zero dissiptﬁ‘eoret"?aI challenges, and would particularly benefit from
tion. This suggests that the theory worked out for advectiofgXPloration using a lattice model.

fields that ares-correlated in time may be more generally

valid. The numerical results for the additively forced equi- ACKNOWLEDGMENTS
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