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Lattice models of advection-diffusion
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~Received 10 May 1999; accepted for publication 10 November 1999!

We present a synthesis of theoretical results concerning the probability distribution of the
concentration of a passive tracer subject to both diffusion and to advection by a spatially smooth
time-dependent flow. The freely decaying case is contrasted with the equilibrium case. A
computationally efficient model of advection-diffusion on a lattice is introduced, and used to test
and probe the limits of the theoretical ideas. It is shown that the probability distribution for the freely
decaying case has fat tails, which have slower than exponential decay. The additively forced case
has a Gaussian core and exponential tails, in full conformance with prior theoretical expectations.
An analysis of the magnitude and implications of temporal fluctuations of the conditional diffusion
and dissipation is presented, showing the importance of these fluctuations in governing the shape of
the tails. Some results concerning the probability distribution of dissipation, and concerning the
spatial scaling properties of concentration fluctuation, are also presented. Though the lattice model
is applied only to smooth flow in the present work, it is readily applicable to problems involving
rough flow, and to chemically reacting tracers. ©2000 American Institute of Physics.
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The evolution of the concentration field of a nonreacting
chemical substance„a ‘‘passive tracer’’… subject to rear-
rangement by advection and by molecular diffusion pre-
sents a rich variety of questions of deep theoretical inter-
est. Advection-diffusion is also central to a variety of
problems of considerable practical importance, such as
combustion, and atmospheric chemistry. The probability
distribution, or histogram of the tracer concentration
field, provides much information about the mixing pro-
cess, and has been the subject of much numerical an
theoretical attention. We survey progress that has been
made in understanding the PDF for the case of advection-
diffusion by smooth flow, expose some remaining gaps in
the current understanding, and point out a few aspects of
the problem that have not hitherto been sufficiently ap-
preciated. In addition, a computationally efficient lattice-
based model problem suitable for exploratory inquiries
into the subject is introduced. The utility of the method is
illustrated through applications to spatially smooth ad-
vection of a nonreactive tracer, and suggestions are mad
for extensions to problems where the theoretical under-
pinnings are not so well developed.

I. INTRODUCTION

The advection-diffusion problem has been the subjec
intense interest because it makes an appearance in a
range of physical phenomena about which one would like
make predictions. Equally, the advection diffusion proble
serves as a testbed for ideas on the statistical structur
turbulence, since it offers many of the same mathemat
challenges, but in a setting that is not quite so demandin
the fully nonlinear Navier–Stokes equations. We shall
concerned with the statistical properties of a scalar tra
611054-1500/2000/10(1)/61/14/$17.00
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advected by a specified time-dependent flow field, and s
ject to sources and to mixing by diffusion. Such a tracer
governed by the nondimensional equation

]u

]t
1v•¹u5Pe21¹2u1 f , ~1!

where u is the concentration,v is the velocity, Pe is the
Peclet number, andf is a source of tracer variance. The P
clet number is a measure of the strength of the diffusiv
and is defined asUL/k, whereU is the typical velocity scale
of the advecting flow,L is its typical length scale, andk is
the diffusivity of the tracer. We will confine attention to th
case wherev is nondivergent, and will be most interested
the weakly diffused case, i.e., large Pe. Because of the sc
selective dissipation, the diffusion acts strongly on su
ciently small scales even though Pe is large. The equation~1!
gets interesting precisely because the straining action of
velocity continually creates fluctuations inu of a spatial
scale small enough to be dissipated. It will be assumed
the average off over the entire domain vanishes, so that in
well-mixed state there is no tendency for the mean value ou
to grow without bound. Attention will be confined to th
two-dimensional case, though many of the techniques
arguments admit ready generalizations to three dimensi
Throughout, we employ Cartesian coordinates (x,y) with
corresponding velocity components (u,v).

In the limit of infinite Pe and vanishingf, Eq. ~1! states
simply that the value ofu is conserved following trajectories
A large literature on the properties of chaotic trajector
induced by incompressible time-dependent flow in 2D h
built up, and the subject generally goes by the name ‘‘cha
advection.’’ Tracer rearrangement by pure advection cau
the probability distribution function~hereafter ‘‘PDF’’! of
the gradient ofu to evolve, but it leaves the PDF ofu, P(u),
invariant. Introducing diffusivity to the problem makes
© 2000 American Institute of Physics
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considerably richer, since fluid parcels can exchange tra
with their neighbors, leading to evolution of the PDF ofu.
This PDF is the object of first interest in many application
and it will be our prime concern in the following. Much o
what has been learned about the generation of tracer g
ents from the study of pure chaotic advection will prove
great utility in the study of howP(u) evolves. A very com-
plete understanding of the tracer evolution is available
the case of advection by random unidirectional shear,
also for general flows in the limit where the spatial scale
the tracer variation is much larger than that of the advec
flow ~the ‘‘homogenization problem’’!.1 In the present work,
we concentrate on the case in which the underlying adv
tion problem yields chaotic trajectories, and we do not i
pose any particular restriction on the spatial scale of
tracer fluctuation.

Numerical experimentation is an important means of f
mulating and testing conjectures in the less explored a
regarding the statistics of~1!. The case of random advectio
by smooth flow is the best understood from a theoret
standpoint, but even there, major gaps remain in the un
standing of the shape and evolution ofP(u). One purpose of
this paper is to introduce a computationally efficient mo
problem for the study of advection-diffusion, and to illustra
its utility in probing the major theoretical questions in th
context of random advection by smooth flow. First, we s
vey the basic theoretical underpinnings concerningP(u) in
Sec. II, taking time to tie up some loose ends regarding
smooth flow case. The numerical model is described in S
III. Numerical results for smooth flow are given in Sec. IV
for the most part, these concernP(u), but we also provide a
few results concerning the PDF of the tracer gradient,
concerning the lack of anomalous scaling of the tracer fie
Though the numerical algorithm is applied here only to
smooth flow case, it can also be used to probe the beha
of systems for which the state of understanding is mu
more rudimentary, notably the case of advection by flo
with singular velocity gradients, and problems involvin
chemical reactions. A few such suggested extensions are
lined in Sec. V.

II. THEORETICAL PRELIMINARIES CONCERNING
THE PDF

A. General considerations

In the limit of vanishing dissipation and forcing,~1! re-
duces to the statement that the value ofu is conserved fol-
lowing fluid trajectories. Therefore, it is no surprise that t
associated Lagrangian trajectory problem

dx

dt
5u~x,y,t !,

dy

dt
5v~x,y,t ! ~2!

should play an important role in the limit of weak diffusivity
i.e., large Pe. The behavior of~2! enters into the statistics o
the solution of~1! primarily through the statistics of thefinite
time Lyapunov exponents~abbreviated FTLEs!. For two-
dimensional flows, the meaning of the FTLEs can be gras
by placing an infinitesimal disk of dye, with radiuse at a
point (x0 ,y0) at time t0, and allowing it to be advected b
er
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the flow for a length of timeT. If e is sufficiently small and
the velocity gradients are always finite, then the disk will
distorted into an ellipse with semi-major and minor axesL1

and L2. If the flow is nondivergent,L1L25e2, and the
straining is characterized by the expansion rate alone. F
this, we define the FTLE for the given time interval and t
given initial point as the smalle limit of

L~x0 ,y0 ,t0 ,T!5T21ln~L1 /e!. ~3!

The FTLEs for incompressible flow, defined in this fashio
are either positive or zero. Note that vanishingL in the limit
of smalle still allows for algebraic growth of the major axi
of the ellipse, as occurs in steady shear flow and other
gions of invariant tori. The FTLEs are well defined for a
trajectories if the flow field is spatially smooth, by which w
mean that the velocity gradients are everywhere finite. If
kinetic energy spectrum of the advecting flow field is sh
lower thank23 at large wave numberk, then the velocity
gradients are generally singular at some points. A fundam
tally different approach, perhaps based on the rate of sep
tion of trajectories initially a small butfinite distance apart,
may be needed for the characterization of mixing in su
flows. The definition ofL in ~3! continues to exist for any
finite e, but it diverges for smalle for trajectories that spend
a sufficiently long time near a singularity of the gradient.

The quantity of interest is the probability distribution o
L over an ensemble of trajectories obtained by integrat
~2! for a fixed length of timeT beginning from a suitable
collection of initial conditions (xo ,yo ,to). One common
choice for the ensemble is to sample the space of all in
conditions with a regular or random collection of (xo ,yo),
and carry out all integrations starting atto50. Another
choice is to take a single very long trajectory starting a
particular (xo ,yo), and to make the ensemble out of se
ments of the trajectory of lengthT. If the system is noner-
godic, or if the ergodic relaxation time is longer thanT, the
choice of ensemble affects the outcome. We shall refer to
PDF of the FTLEs asQ(L,T). For two-dimensional spa
tially smooth flow whose associated trajectory problem~2! is
ergodic in the whole spatial domain, it has been shown2 that
for largeT

Q~L,T!5AaT

p
e2aT(L2L̄)2

, ~4!

provided thatL is not extremely far from its most probabl
valueL̄. In ~4!, the coefficienta is a constant characterizin
the overall level of velocity gradient fluctuations in the a
vecting flow. The method used by Chertkovet al.2 for prov-
ing this is very specific to two dimensions. Nonergodic b
havior, arising from invariant tori, cantorii and othe
transport barriers, leads to significant deviations from Ga
sianity. In particular, the phenomenon of ‘‘sticking’’ to in
variant tori at the boundary of a chaotic region is known
lead to anomalously large probabilities of lowL.3 Although
analytic results like~4! may not be generally available, th
fact remains that an evaluation ofQ(L,T), by numerical
means if necessary, is the starting point for the analysis
the mixing properties of any novel smooth flow one m
wish to treat.
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When L is nonzero, and hence positive, any gradie
initially present in the tracer distribution are amplified exp
nentially. The point of contact with the diffusive problem
made by examining the scale at which the amplification
gradients by strain is balanced by diffusion. In nondime
sional terms, this scale is

l * 5~LPe!21/2. ~5!

An initially large scale structure will cascade down to th
dissipation scale, and thereafter not get any smaller. Bec
there is a range of values ofL characterized byQ(L,T),
there is a range of dissipation scales over the domain. It ta
a finite time for tracer fluctuations to cascade down to
dissipation scale. If the initial scale isL, then the time for
dissipation to set in is

t* 5L21ln~L/ l * ! ~6!

on account of the exponential amplification of the gradien
Because of the fluctuations inL, there is a range oft* ; the
fluctuations of the dissipation time are governed primarily
the prefactorL21, rather than by the fluctuations inl * ,
which affects the dissipation time only logarithmically. In
formation on the fluctuations ofl * and t* can be used sys
tematically to obtain information on the statistics of t
tracer field, as was done for the white-noise forced case
Chertkovet al.2 Shortly, we will pursue the same enterpri
more simply, though less rigorously.

Another approach to determiningP(u) is to derive the
transport equation governing the PDF. The use of PDF tra
port equations has a long and well-developed history in
combustion and chemical engineering literature,4,5 and many
of the ideas that became popular during the recent reviva
interest in PDF approaches to advection-diffusion in fact h
their first expression in that literature. Sinai and Yakhot6 in-
directly adopted the PDF transport approach, by formin
heirarchy of equations governing the moments^uq&. It has
been shown7 that the transport equation can be easily deriv
by noting that P(Z,t)5^d(Z2u(x,y,t))&, where angle
brackets denote a spatial average andZ is a dummy variable.
The transport equation follows by taking the time derivat
of this expression forP(Z,t) and systematically making us
of the fact thatu satisfies~1!. The result is

] tP52Pe21]u$P~u!^¹2u&u%2]u$P~u!^ f &u% ~7!

52Pe21]uu$P~u!^u¹uu2&u%2]u$P~u!^ f &u%, ~8!

where^•••&u represents the conditional average of the in
cated quantity over all parts of the domain whereu takes on
the specified value. The advection terms affect the PDF o
through their effect on the conditioned diffusion and forcin
The hard part of the problem is coming up with a theory
the conditioned diffusion or dissipation. If the typical leng
scale of the dissipating structures isl, and the typical tracer
fluctuation over this length scale isdu, then the conditioned
dissipation may be estimated as^u¹uu2&u5du2/ l 2. So, the
salient questions are: What isdu? What isl? How do they
depend onu?
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The second equality in~7! and ~8! implies a relation
between the conditional diffusion and the conditional dis
pation, namely,

^¹2u&u5]u^u¹uu2&u1^u¹uu2&u]uln~P!, ~9!

so that the two quantities are not independent. This rela
was also derived by Nakamura,8 in a study of atmospheric
tracer mixing. Note that Eq.~9! is purely kinematic; it pro-
ceeds directly from integration by parts, and is independ
of the equation that governs the evolution ofu. The relation-
ship between conditional dissipation and conditional dif
sion is dependent on the tracer PDF. IfP(u) is Gaussian and
^u¹uu2&u is independent ofu, then^¹2u&u is proportional to
2u^u¹uu2&u . Alternately, Eq.~9! can be solved forP, in
which case it yields an expression for the PDF in terms of
integral over the ratio of conditional diffusion to condition
dissipation.9 Being kinematic, the resulting expression
valid for any twice-differentiable fieldu. It would work as
well for a digitized image of the Canadian Olympic hock
team as it would for an advected-diffused tracer evolv
under Eq.~1!.

Equations~7! and~8! are exact, but they make the prob
lem of representing the evolution ofP(u) look a bit simpler
than it really is. The hidden problem is that the condition
averages, such aŝ¹2u&u , are not actually functions ofu,
but are actually fluctuating quantities, whose fluctuatio
need to be characterized, and whose fluctuations can a
the evolution. This is especially serious on the tails of t
distribution, where the fluctuations can be large compare
the mean. Previous work on the PDF transport equation d
not seem to have appreciated this point. The importanc
the fluctuations can be immediately grasped through con
eration of the case of white noise forcing without either a
vection or diffusion,viz. ] tu5 f , in which f has zero spatia
and ensemble mean. This equation is the familiar rando
walk problem, and it is a classic result that the PDF ofu is
governed by a diffusion equation. Yet, the PDF transp
equation obtained as a special case of~7! is

] tP~u,t !52]u$P~u!^ f &u% ~10!

and the mean value of^ f &u over the ensemble of realization
is zero, leading to no evolution ofP at all. The resolution of
this conundrum is that̂f &u has nonzero values in any pa
ticular realization, and that the fluctuations entirely gove
the evolution ofP. To make it explicit how the fluctuations
come into the picture, note thatP(Z)^ f &u5^ f d(Z2u)&,
whence

] t^ f d~Z2u!&52^ f d8~Z2u!] tu&

52]Z^ f 2d~Z2u!&

52]Z$P~Z!^ f 2&Z%. ~11!

Now suppose that the statistics off are homogeneous, an
that its spatial correlation is small enough that each cont
of constantZ averages enough fluctuations that^ f 2&Z5^ f 2&
is independent ofZ. Suppose further thatf remains constan
over a timeDt, after which it switches to a new randoml
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chosen value. Then, upon integrating~11! in time, assuming
^ f &u to be initially zero, one finds that thetime-averaged
conditional forcing appearing in~10! is

P~u!^ f &u52
Dt

2
^ f 2&]uP, ~12!

in which the overbar denotes a time average over the inte
DT and we have relabeled the dummy variableZ back tou.
Substitution in~10! yields the familiar diffusion equation
The point of this exercise it not to rederive the diffusio
equation, but to emphasize that fluctuations in the te
^¹2u&u and^u¹uu2&u appearing in~7! and~8! lead to strong
modifications in the evolution and equilibrium shape
P(u).

B. Theory of the decaying case

A basic understanding of the PDF for the decaying c
is obtained by examining a small well-mixed parcel at timeT
and looking backwards in time to see where this fluid ca
from, and which initial concentrations were mixed togeth
to make the final concentration. We will assume that the s
of the test parcel is the dissipation scalel * appropriate to the
point where it is located. Suppose now that the FTLE
backwards in timetrajectories of lengthT emanating from
the point isL. Then, the mixed parcel originated from a lon
filament of fluid of length l * exp (LT) snaking randomly
across the initial domain, as depicted in Fig. 1. This filam
samples the initial range of concentrations, and the lon
the filament, the more independent concentration values
mixed together to make up the final concentration. When
filament is long, the PDF of the final concentration, for giv
L, is determined by the central limit theorem. For defini
ness, suppose that the initial concentration pattern is a ch
erboard with square sizeL, and that each square is colore
with alternatelyu51 or u521. Then, the final concentra
tion is the mean of approximatelyN5( l * /L)exp(LT) inde-
pendent randomly chosen terms, each of which has the v
11 or 21. By the central limit theorem, the PDF of th
mean is Gaussian, centered on zero, and has variance
portional toN. The argument generalizes to an arbitrary i
tial condition with spatial correlation lengthL. As time goes
on, the PDF collapses exponentially to a spike centere
zero concentration. Further, for fixed time, the trajector

FIG. 1. Schematic illustrating the range of initial concentrations that
mixed together to make up the concentrationu near a specified point, afte
a timeT has passed.
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with large L have anomalously small concentration value
while the large fluctuations are due to anomalously smallL.

To get the concentration PDF from this argument,
start with the concentration PDF conditional onL, which is

P~uuL!;exp S 2b
l *
L

eLTu2D ~13!

;exp S 2b
l *
L

e(L2L0)Tũ2D , ~14!

whereũ5u exp (L0T/2). We then convolve it with the PDF
of L. Since the incompressible system is time reversib
then the statistics of FTLE for the reverse-trajectory probl
are the same as that for the forward problem. The des
convolution is

P~u,T!5E
0

`

Q~L,T!P~uuL! dL ~15!

;E
0

`

expH 2S a~L2L0!2T

1b
l *
L

e(L2L0)Tũ2D J dL. ~16!

In the second equality, we have assumed the Gaussian
of Q given in ~4!, but other forms can be used if they a
available from some other theory. What we do next is rat
dependent on the specific form ofQ, and, more specifically,
how rapidly it collapses onto a spike with increasingT.

At largeT we may approximate the integral in~16! using
steepest descent. The exponent is minimized when

2a~L2L0!1b
l *
L

e(L2L0)Tũ250. ~17!

We have neglected some terms arising fromdl* /dL, which
vanish at largeT. For any fixedT, the statistics are then
dominated by trajectories with a uniqueL5L0 if ũ2 is suf-
ficiently small. However, for any fixedũ2, the statistics be-
come dominated byL!L0 at largeT, and this happens ex
ponentially quickly. Thus, the range ofũ2 dominated by a
fixed L0, and for which the PDF is hence Gaussian, vanis
asT gets large. In fact,~17! implies that the PDF is eventu
ally controlled by negativeL, which is a spurious result
since the maximum FTLE is always non-negative. In real
the Gaussian form ofQ breaks down nearL50, so that
optimization argument really tells us that the behavior of
concentration PDF at long times is governed by the sca
of the PDF of L for small L. The anomalous almost
nonchaotic orbits give the remanent concentration fluct
tions that are most reluctant to give up the ghost, and do
nate the long-time concentration pattern. Antonsenet al.10

found that the power spectrum for the decaying case
influenced strongly by those initial concentration gradie
which are poorly aligned with the principal axis of the stra
similar considerations are likely to come into play for th
concentration PDF as well. The general implication of~17! is
that in the long term, the PDF for the decaying case sho

e
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have no Gaussian core, and should have fat tails whose
cific form is determined by the behavior ofQ(L,T) near
L50.

The analysis of the decaying case in terms of the P
transport equation plays out as follows. This case works
most readily in terms of the conditional dissipation form~8!.
Let s(t) be the standard deviation ofu, and introduce the
assumption that Pe21^u¹uu2&u5G(u/s)s2, whereG is pre-
sumed time invariant. Then, the PDF transport equation
the absence of forcing can be cast in the form

]tP1]u$~]uG!P%52]u$G]uP%, ~18!

wheredt5s2dt. Note that ifs decays faster thant21, then
the limit t→` corresponds to a finite value oft, say t` .
Note that this is an advection-diffusion problem forP, but
with negative diffusivity, which makes the problem excee
ingly ill posed. Short waves in the initial condition amplif
with a growth rate that is quadratic in the wave number, w
the result that solutions become singular after a finite ti
unless the initial data is exceedingly smooth—specifica
having a spatial power spectrum that decays faster tha
Gaussian with respect to wave number. Consider the spe
caseG5const. Then, it is only the special initial conditio
P;exp (2u 2/(2t`)) that collapses tod(u) at t5t` , as can
be seen by running a conventional diffusion equation ba
wards in time. This special solution corresponds to a Gau
ian form ofP whose width collapses to zero exponentially
t→`. More generally, ifG increases monotonically with
uu/su, then the advection term on the left-hand side of~18!
has the effect of expelling probability from the vicinity o
u50, leading to fat tails in the distribution.

The more typical theoretical approach toP(u,t) for the
decaying case is to seek a particular solution of the fo
P(u,t)5P1(u/s)/s, which can be done consistently ifs
decays exponentially with time. With this transformation
closed form forP1 in terms of G can be found; ifG is
constant, thenP1 is Gaussian, and ifG increases with in-
creasing uuu, then the PDF has tails which decay mo
slowly than a Gaussian.6,7,11 The discussion of~18! shows
that this particular solution is not actually the end-state
~18! for arbitrary initial data, a point that does not seem
have been appreciated previously. The time variation ofG,
and perhaps also its stochastic fluctuations, are crucia
mediating the approach to the asymptotic behavior.

Naive scaling would suggest that^u¹uu2&u scales like
s2/ l

*
2 , whereG is expected to be a constant to the exte

that the value ofL ~and hencel * ) dominating the dissipation
is the same for allu. Moreover, given~5!, G becomes inde-
pendent of the Peclet number, since a larger Peclet numb
exactly offset in the dissipation term by a smaller dissipat
scale. It has been hypothesized6,7 thatG(u/s) increases qua
dratically with increasinguu/su, but no theoretical justifica-
tion of this expectation has been advanced. The filament
sampling argument summarized in Fig. 1 provides so
rationale for the expectation thatP(u) for the decay case
will be non-Gaussian, with perhaps very little Gaussian co
From the standpoint of rigor, this argument leaves someth
to be desired, but it does not seem to have been made p
pe-
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ously and it provides some useful intuition. Some more p
cise results on the decaying problem have been recently
tained by Balkovsky and Fouxon.12

C. Theory of the stochastically forced case

The starting point for the analysis of the forced proble
is the observation that, in the absence of diffusion,~1! re-
duces todu/dt5 f , which can be solved following an indi
vidual trajectory, independently of what is happening
other trajectories. Iff is suitably random following the tra
jectory, then the equation describes a Brownian motion p
cess foru. Thus, for an ensemble of trajectories that ha
run for lengthT, the PDF ofu is Gaussian, with variance
proportional to^ f 2&T. In the absence of diffusion, the con
centration is Gaussian, but its variance builds up with
bound the longer the system is run. With diffusion, the va
ance only builds up until the timet1, after which diffusion
kills off further growth. It is reasonable to estimatet1 by the
dissipation timet* given in ~6!. The dissipation time differs
among the various trajectories, sincet* is a function ofL.
To the extent that the behavior is dominated by a sin
value of L, then P(u) is Gaussian, and the variance
^ f 2&t* . The variance increases like ln (Pe) as the Pe
number is increased, yielding infinite equilibrium variance
the absence of dissipation.

Fat tails in the PDF arise from anomalously large valu
of t* , corresponding to anomalously small values ofL.
However, arbitrarily small values ofL do not dominate the
PDF, because such values have exceedingly small prob
ity, and the probability becomes yet smaller ast* becomes
large. The dominant contribution to the PDF is determin
by an optimization problem similar to that which yielde
~17!, but in this caseL enters through finding the optimalt*
to make a big fluctuation, whereas in the decay case
optimum is done over trajectories over a fixed time inter
T. Assuming a Gaussian form of the PDF of the FTLEs,
optimization in this case yields

t* 5
1

L0
A~ ln~L/ l * !!21

u2

a^ f 2&
. ~19!

SinceL/ l * grows like the Peclet number,~19! implies that
the concentration PDF is dominated by a singlet* , and
hence is Gaussian, for a range ofu which grows like the log
of the Peclet number. Within this range,t* grows and hence
the concentration variance grows logarithmically with P
Further, for fixed Peclet number, the width of the Gauss
core is proportional to the standard deviation of the pump
magnitude. For much largeru, the PDF is dominated byt*
;uuu, or equivalentlyL;(uuu ln(Pe))21. Substitution of this
into the convolution for the concentration PDF yields exp
nential tails. Schraiman and Siggia13 obtained a similar re-
sult, by a somewhat different argument.

To analyze the equilibrium PDF via~7!, we write
P^ f &u52D]uP, whereD is a constant quadratic in the forc
ing amplitude, as per~12!, where the steady form of~7!
becomes

052Pe21]uu$P~u!^u¹uu2&u%1D]uuP. ~20!
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Upon integration overu, P drops out and one finds the rath
surprising constraint that Pe21^u¹uu2&u5D, i.e., that in
equilibrium the conditioned dissipation is constant. The ef-
fect of fluctuations of the conditioned dissipation can re
this constraint. SinceP drops out of the conditioned dissipa
tion form of the transport equation, one must look to t
conditioned diffusion form in order to determine the shape
P. From ~7! it follows that, in equilibrium,

D]uP~u!5Pe21P~u!^¹2u&u . ~21!

This equation represents the balance between the tenden
the white-noise pumping to driveP to a spreading Gaussian
and the selective damping tendency of the conditioned di
sion which tends to sharpenP.

If we make the estimate

Pe21^¹2u&u;Pe21u/ l
*
2 ;Lu, ~22!

then the solution to~21! is Gaussian if the dominantL is
independent ofu. This is the Gaussian-core range discuss
above. Note, however, that this argument fails to capture
logarithmic growth of tracer variance with increasing Pe. F
large values ofu the optimization calculation yieldedL
;(uuu ln (Pe))21, so that the conditional diffusion for larg
u becomes Pe21^¹2u&u; ln (Pe)21u/uuu, which is indepen-
dent ofu. The corresponding solution to~21! is now expo-
nential, rather than Gaussian. In short, the expected form
the conditioned diffusion is linear for small to moderate v
ues ofuuu, but flattens out at large values ofuuu.

The form of the PDF for the white-noise forced case w
obtained more rigorously by Chertkovet al.,2 without the
intermediary of the PDF transport equation. The same o
mization problem overL appears, but it is used to obta
P(u) indirectly as a limiting form of the PDF of the corre
lation function^u(r 1)u(r 2)&; the problem is treated throug
evaluation of the heirarchy of moments of the correlat
function.2 Our direct derivation in terms of the transpo
equation, or in terms of the optimal trajectory for making
large fluctuation, is meant to shed some light on the mec
nisms leading to the Gaussian core and exponential tails,
provide some physical intuition that can be of use in guid
generalizations of the theory to more complex situatio
perhaps involving chemical reactions.

III. DESCRIPTION OF THE LATTICE MIXING
ALGORITHM

Direct numerical simulation of the PDE~1! can be used
to explore the statistics of its solutions.14 To solve the system
with the resolution required to accurately reproduce the P
and scaling properties requires a considerable expenditu
computer resources, owing to the amount of time that ne
to be spent in time-stepping the advection. In our previo
work15 a class of model problems was proposed, which
tains the essential qualitative features of~1! while offering
great computational economy. The essential idea is to
place the mixing action of advection by an area-preserv
map iteration:

x°g~x,y!,y°h~x,y!, ~23!
x

f

of

-

d
e
r

of
-

s

ti-

a-
nd
g
,

F
of

ds
s
-

e-
g

where we require](g,h)/](x,y) 51 so as to make the ma
area preserving. The choice of an area-preserving map
tains the essential features of incompressible flow in~1!,
since an incompressible flow in 2D acting over a finite tim
induces an area-preserving map on the plane, namely
mapping of points from their initial positions to their ad
vected positions some time later. The map~23! induces a
rearrangement of the concentration fieldu(x,y)
°u(g(x,y),h(x,y)). This rearrangement alters the PDF
the gradient ofu, but does not affectP(u) itself, since con-
centration is not allowed to mix between one parcel and
other. This mixing is accomplished in a diffusion step, whi
is alternated with~23!, and if there is to be a source of trac
variance, it is also inserted in this step. The mixing and fo
ing step may be expressed abstractly as

u°Su1 f n~u,x,y!, ~24!

whereS is a linear smoothing operator which damps sm
scales more strongly than large scales, e.g.,¹22, and f rep-
resents the action of the forcing applied at iteraten, which
may simply be a random or ordered increment added to
tracer field.

The advection step~23! can be carried out with concen
tration tagged to a finited number of particles that are
lowed to go wherever the map takes them from one itera
to the next, and the associated concentration field can
interpolated to a regular grid at the end for graphical p
poses if desired. However, the smoothing operator is m
easily implemented if the concentration field is available o
regular grid. For this reason, in our earlier formulation15 the
concentration field was reinterpolated to a regular g
$(xi ,yj ),i 51, . . . ,nx , j 51, . . . ,ny% after each advection
step, whereafter the diffusion step was applied in the form
a four-point smootheru(xi ,yj )°u(xi ,yj )1Di j , where

Di j 5
1
4 ~u~xi 11 ,yj !1u~xi 21 ,yj !1u~xi ,yj 11!

1u~xi ,yj 21!!2u~xi ,yj !. ~25!

This is also the dissipation employed in the present work
there areN lattice points in each direction, and if the cha
acteristic length scale over which the advecting fieldsg andh
vary is that of the whole domain, then the effective Pec
number corresponding to this dissipation isN2.

The interpolation step introduces a spurious source
tracer variance which can interfere with the long-term sim
lation of a freely decaying tracer field, and can obscure
effect of the true forcing imposed in~24!.

High-order interpolation schemes could be used to m
mize the spurious interpolation noise source, as was in ef
employed in the Fourier space method of Antonsenet al.10

In the present work we instead modify the map~23! slightly
so as to coerce it onto a lattice, and thus eliminate the in
polation error entirely. The same trick has been employ
with success in an undiffused flame propagation study.16 We
will illustrate the method for the special case of an altern
ing direction shear flow and a Cartesian lattice, but so
generalizations will be suggested in the discussion. Cons
the map

x°x1un~y!,y°y1vn~x!, ~26!
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FIG. 2. Schematic of the advection
step on a lattice, showing rearrange
ment by the composition of a shift op
eration in thex-direction followed by a
shift operation in they-direction.
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wheren is the iteration index, and the map ofy is understood
to make use of the updated value ofx. This is manifestly area
preserving; the ‘‘standard map’’ is a special case of this cl
of maps. Becauseun and vn are continuous functions, i
(x,y) is originally located on the discrete lattice, its ima
will not in general lie on the lattice. If we adopt a regul
grid with spacing (Dx,Dy), then by slightly modifying the
map ~26!, we can define a nearby map that bijectively ma
the lattice to itself. The required modified map is

x°x1@un~y!/Dx#Dx,y°y1@vn~x!/Dy#Dy, ~27!

where@ . . . # is the nearest-integer function. The associa
concentration is shuffled along the lattice like tiles in t
familiar puzzle-tray, or like colors on the surface of a R
bik’s cube. An example is shown in Fig. 2.

The lattice-rearrangement representation of the adv
tion step has the desirable consequence that the adve
step by itselfexactlypreservesP(u). This property is diffi-
cult or impossible to achieve for numerical representation
the advection operatorv•¹ appearing in~1!. Exact preserva-
tion of P(u) is equivalent to conserving all the moments
u, which is a property the exact solution of~1! has in the
limit f 50, Pe→`, but which numerical solutions have no
been able to reproduce. A further advantage of~27! is that it
can generally be implemented as a shift operation on
rows and columns of the matrix of values ofu, so that the
advection step does not require any floating point operat
at all. Simulations can therefore be carried out at very h
resolution, with modest expenditures of computer time.

Some interesting aspects of the ergodicity problem
revealed starkly when thought of in terms of the latti
model. For example, one may raise the question as
whether every possible state of anN3N lattice can be
reached from an initial state via a sequence of shift ope
tions of the form in Eq. 27. If not all states are accessib
one would like to know the number of distinct equivalen
classes of mutually accessible states the set of shift m
defines, and the minimum and average number of trans
mations needed to take one given state into another ac
sible one. One could inquire as to whether the set of all st
accessible from a given condition are in some sense den
the space of all lattice configurations. With regard to app
cations to statistical mechanics on the lattice—and perh
to statistical mechanics in general—it must be remarked
questions of ergodicity are perhaps academic. A 10
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31000 lattice can be rearranged in 106! or roughly 106 000 000

ways. This is unimaginably greater than the number of pi
seconds since the beginning of the Universe. In fact, if
entire mass of the Universe were converted into a para
processor with each element having the mass of an elec
and if each processor processed one lattice state per pico
ond since the beginning of time, only around 10100 lattice
states would have been examined. Clearly, any attain
physical system or simulation thereof samples only an ins
nificant proportion of the totality of states of the system,
that the relevance of true ergodicity seems obscure. Wha
more at issue in statistical arguments is whether a sp
sampling of an enormous phase space provides stable
mates of the gross statistical properties in which one is in
ested, as if most of the vast number of states are in so
sense alike.

Following our earlier work,15 we shall study mixing in a
doubly periodic domain, induced by the shear

un~y!54sin ~y1fn!, vn~x!5sin ~x1cn!, ~28!

wherefn andcn are independent random phases chosen
the interval@0,2p#. The randomization was employed so
to break up invariant tori and assure ergodicity over
whole domain. The consequences of the presence of tori
other transport-inhibiting structures are interesting, but w
be left to future work. A small deviation from the origina
map15 is that we now randomize the phase of both shea
rather than just one of them. This had little impact on t
forced equilibrium cases, but was found to be necessar
the simulation of the very long-term behavior of the deca
ing case.

In the following, we present results for the freely deca
ing case (f 50) with a large-scale initial condition, and fo
two flavors of forced-equilibrium cases. The first type
forced case, and the one we will emphasize, is simple a
tive forcing, in whichf n is a specified function of space an
iteration. It could be made a random function of space a
time with a definite spatial and temporal correlation leng
but in pursuit of somewhat greater relevance to problems
physical relevance, we chose the steady large-scale in
ment f (y)5sin (y). Since the trajectories are chaotic, th
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time series of forcing seen by a particle should be rand
even thoughf itself is fixed and ordered, so that in the L
grangian sense the forcing is expected to be random eno
that the behavior of the system is in most regards as
would expect for random forcing in the Eulerian sense. T
numerical results will bear out this expectation. As not
elsewhere,15 additive forcing is rather unlike the physica
source appearing in realistic tracer problems, since real
tracer sources tend to ‘‘reset’’ the value to certain satura
concentrations when the parcel wanders into a source reg
For this reason, we also present a few results with a ‘‘re
ting’’ forcing ~ineptly called ‘‘multiplicative’’ formerly15!, in
which u is reset at each iteration to11 for particles residing
in a strip of widthe centered on the lower half of the do
main, whereasu is reset to21 for a similar strip centered in
the upper half of the domain. For resetting forcing, the c
centration is strictly bounded between11 and21, whereas
there is noa priori bound for the additive case.

IV. RESULTS OF NUMERICAL SIMULATIONS

A. Concentration PDF for freely decaying case

In Fig. 3 we show the concentration variance as a fu
tion of time in the decaying case. As argued in our ear
work15 after an initial adjustment period during which th
tracer variance cascades down to the dissipation scale
variance decays exponentially with time, at a rate tha
order unity, even though the Peclet number is large.
argued further that because of the scaling ofl * with Pe, the
decay rate would be independent of Pe, and would be on
order of the dominant Lyapunov exponent. Subsequent w
with a reduced wave number model10 has confirmed the gen
erality of the decay, and has also shown that the Lyapu
exponent that determines the decay is systematically sh
by a finite amount from the most-probable exponent, des
the fact that~4! collapses onto its mode at large times. W
the continuous-space map,15 the decay is only seen for
limited time before interpolation noise halts further deca
For the lattice map results shown in Figure 3, the exponen

FIG. 3. Concentration variance as a function of iteration for the fre
decaying cases at 20482 resolution.
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decay continues down to machine precision. Obviating
necessity of high-order interpolation schemes, the lat
map is both efficient and easy to generalize to arbitrary sh
fields.

The PDF of normalized concentrationu/s(t) for a
40962 simulation is shown in Fig. 4 at a number of time
The PDF attains a time-independent form, and is highly n
Gaussian. There is a small Gaussian core, in the sense
the logarithmic probability is parabolic near the peak, b
this range is exceedingly small; the logarithmic probability
concave except very near the peak. Numerical results qu
by Yakhot et al.7 suggested that the Gaussian core gro
slowly with time, but this does not seem to be the case
smooth advection-diffusion simulated at high resolutio
Moreover, dominance of the non-Gaussian behavior eve
where at long times is consistent with the role of the anom
lously low Lyapunov exponents discussed in connection w
~17!. The fat tails in the decaying case are slower th
Gaussian, and in fact even slower than exponential tails. T
is also to be expected from~17!. No theoretical arguments
have ever been put forth for exponential tails in the decay
case; Sinai and Yakhot6 only produce a PDF whose tails loo
exponential over a limited range, and even that is based o
on an arbitrarily specified form of the conditional dissipatio
Our previous simulations of the decaying case15 suggested
exponential tails, but in retrospect this appearance was du
the limited dynamic range ofu and the relatively short times
which could be treated with the continuous-space map.

The self-similar form of the PDF implies that^un& de-
cays like exp(2gnt) with gn;n. This result is inconsisten
with theoretical results on the decaying case obtained
Balkovsky and Fouxon,12 which state that for sufficiently
largen, gn should be independent ofn. It is possible that the
discrepancy arises because the behavior calculated by B
ovsky and Fouxon arises from values ofu so far out on the
tail of P(u) that they are not resolved in the numerical c
culation. Balkovsky and Fouxon also note that their E
~3.9!, which gives the form ofgn , becomes invalid as the

y

FIG. 4. Concentration PDF as a function of concentration normalized by
standard deviation, for the decaying case with 40962 resolution.
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correlation time of the advecting flow increases. The latt
map we consider is equivalent to a flow with correlati
times comparable to the inverse Lyapunov exponent, so
the system is not close to thed-correlated limit. We specu
late that the self-similar PDF is characteristic of advectio
diffusion by flows with moderately long correlation times.

The conditional diffusion and dissipation are shown
Fig. 5 at several times. It is noteworthy that the quantit
exhibit strong fluctuations for the larger values ofu/s,
which as we have argued, affects the forms of the tails of
concentration PDF. The conditional dissipation shows v
strong variations withu/s, which is consistent with~and
indeed leads to! the strongly non-Gaussian PDF. Atu/s
50, the conditioned dissipation has value 0.32, and
value rises more than two orders of magnitude atuu/su
510.0. The mean conditional dissipation is very nearly q
dratic in its argument, over the whole domain for which s
tistics could be reliably compiled. A phenomenological p
ture of this can be obtained by assuming that the length s
l of the dissipating structures is fixed for allu, but that the
typical concentration fluctuationdu is on the order ofs for

FIG. 5. Normalized conditional averages of dissipation and diffusion for
decaying case with 40962 resolution. Results are shown as a function
concentration normalized by its standard deviations. Conditional diffusion
is normalized bys, while the conditional dissipation is normalized bys2.
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small u, but becomes asymptotic tou itself for largeu; the
corresponding estimate of the normalized conditioned di
pation is thena11a2(u/s)2. The scaling ofdu makes sense
since for smallu the concentration of a ‘‘neighboring’’ par
cel randomly chosen from the available values has a h
probability of being as large ass, but not much chance o
being a lot larger. On the other hand, if weknowa parcel has
an unusually large concentrationu, then its neighbors are
overwhelmingly likely to be of more normal magnitude, i.e
relatively near zero. On the other hand, the apparent c
stancy ofl in this argument is difficult to reconcile with th
optimization argument~17!, which appears to require tha
largel dominate large fluctuations. Perhaps the growth ofl is
too weak to overcome the growth of the typical fluctuatio
This is a matter whose definitive resolution we shall be c
tent to leave to a future date.

The mean conditional diffusion is very linear inu,
though individual snapshots show strong fluctuations for
larger values of the argument. It must be emphasiz
though, that in thedecayingcase, in contrast to the force
case, the linear part of the conditional diffusion has no be
ing on the form of the concentration PDF, and in particu
does not imply Gaussianity. From~7!, any functional form
V(u) of the conditional diffusion simply leads to an adve
tion equation which moves around the initial probabili
without causing it to converge to any unique shape. For
ample, if the conditional diffusion is linear inu with a nega-
tive proportionality constant, then the equivalent veloc
field just advects the initial probability towardsu50. It is
not even the deviations of the conditioned diffusion fro
linearity that count, but rather the effect of thefluctuationsof
the conditioned diffusion.

B. Concentration PDF for forced equilibrium case

In Fig. 6 we show the concentration PDF for the eq
librium additively forced case. It shows a very clear Gau
ian core, which indeed dominates the behavior. Compari
with the best-fit Gaussian does reveal that the tails are slo

e

FIG. 6. Concentration PDF for the additive forcing case with 40962 resolu-
tion. The PDF shown is the composite of the final 700 iterations of
800-iteration run. The best-fit Gaussian is also shown.
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than Gaussian, but we are only picking up the very beginn
hints of the exponential tails required by theory. The re
tively large concentrations at which the crossover to fat t
occurs is a result of the particular value of the coefficiena
appearing in the Lyapunov PDF~4! for the particular advect-
ing process employed. The coefficient enters the cross
via ~19!. Evidently, the value ofa is large enough to nearly
suppress the fat-tail behavior over the range of concen
tions for which good statistics can be obtained. Proces
with smallera would show the exponential tails more prom
nently.

The conditional diffusion and dissipation are shown
Fig. 7. As in the decaying case, there are large fluctuati
for extreme concentrations. The conditional diffusion, wh
is the prime statistic for the equilibrium case, is linear f
small arguments, and shows the beginnings of the tende
to flatten out at large arguments. This is in accord with
fact that the fat tails only just begin to emerge in the PD
The dissipation PDF is also shown for completeness. I
generally parabolic, but is much more constant than was
case for the freely decaying calculation. This, too, is con
tent with the nearly Gaussian form of the PDF.

FIG. 7. Conditional averages of dissipation and diffusion for the addi
forcing case with 40962 resolution. Results are shown for the long-ter
mean, and for several individual iterations.
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In earlier work,15 we treated the equilibrium problem
only for resetting forcing, and suggested that for such forc
the Gaussian core and exponential tails are not observed
have reexamined this problem with the lattice model, w
which we can better explore the long-term statistics, a
have found that for suitable choice of parameters, there
range in which behavior similar to that for the additive ca
can be observed. The PDF obtained with resetting strips
width 0.1/p relative to the domain size is shown for a sing
time slice in Fig. 8. The behavior can be regarded as a k
of cascade inu-space. For concentration values near those
which the concentration is reset in the strips, there are la
fluctuations and nonuniversal behavior. As positive a
negative values are mixed together to make smaller con
trations, the PDF begins to be governed by its asympt
statistics. The smallest concentrations are generally the re
of the largest number of mixing events, and it is here that
PDF is most Gaussian. Between this and the extreme va
possible, there is an intermediate range with exponen
tails.

C. Some statistics characterizing spatial structure

The shape and evolution of the functionP(u) is influ-
enced by the spatial arrangement of the tracer, via the c
ditional dissipation, but it does not itself provide any dire
information on the spatial structure. Some very basic inf
mation on spatial structure is encapsulated in the PDF of
dissipation field, which we shall callPd(u¹uu2). The theory
of Pd is not nearly as well worked out as that forP(u), and
it does not appear that a useful transport equation forPd has
yet been derived, even for advection-diffusion by smoo
flow. For the initial value problem in the absence of forcin
and diffusion, the exponential amplification of initial trac
gradients implied by~4! has the consequence thatPd should
be log-normal. Diffusion substantially alters the picture,
selectively eliminating the small scale structures which ty
cally support the largest gradients. Some theoretical res
are available for smooth flow that isd-correlated in time,17

e

FIG. 8. Concentration PDF for the resetting-forcing case with 10242 reso-
lution, at iteration 100.
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71Chaos, Vol. 10, No. 1, 2000 Lattice models of advection-diffusion
and these results suggest thatPd(G) has a logarithmic cusp
near G50, and a stretched-exponential tail of the for
exp (2cG1/3) except for extremely largeG. The fact that the
dissipation PDF is strongly affected by diffusivity makes i
good diagnostic of the influence of small scale diffusivity
experimental, observational and numerical work, in ca
where the physical mechanism of dissipation is unknown
difficult to observe.

In Fig. 9 we show numerical results forPd(G), for the
decaying and additively forced run discussed previously. T
non-Gaussian nature of the dissipation field is immedia
apparent, as a Gaussian would yield a parabola on the
probability plot, where as the computed distribution is eve
where concave, with a cusp at smallG. Transforming to the
PDF of the gradient field itself does not eliminate the cusp
the concavity. Both the cusp and the shape of the tail
suggestive of the expectations of the theory of Chertk
et al.,17 though in view of the fact that the present simu
tions are not ford-correlated flow, one should not necess
ily expect too close a match. Over the whole range show
Fig. 9, the PDF can be fit almost exactly by exp (2cG0.32) for
the decaying case and exp (2cG0.39) for the forced case
which are not far from the exponent predicted by theory
the d-correlated case. On a cautionary note, it must be
phasized that the numerical results do not rule out a l
normal form of the tail. For the range ofG shown, a log-
normal fits the data nearly as well as does the stretc
exponential. The essential difficulty is thatGa behaves rathe
logarithmically for smalla, so that a very large dynami
range is needed to distinguish the stretched-expone
model from the log-normal model. This may compromise
effective use of the dissipation PDF as a diagnostic of effe
of small scale dissipation.

More detailed information on spatial structure can
found from the scaling behavior of the tracer. This is ch
acterized by the structure function

FIG. 9. Normalized PDF of the dissipation field for the decaying and ad
tively forced cases at 40962 resolution. The argument isG5u¹uu2 for the
forced case andG5u¹uu2/s2 for the decaying case, wheres(t) is the tracer
standard deviation. The gradient is based on a unit grid size. In both c
the result shown is the long-term mean of the final 700 iterations of
800-iteration simulation.
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Zq~r!5^uu~r1n̂r!2u~r !uq&, ~29!

where n̂ is a unit vector in some direction. For isotrop
processes it does not matter what direction we take. Kno
edge ofZq for all q is equivalent knowing the PDF of trace
fluctuations across a spatial incrementr, provided the tails
of this PDF decay at least exponentially. The second-or
function Z2 provides information equivalent to the powe
spectrum ofu. For scalar advection by flows with a chara
teristic time scale, one expects thek21 Batchelor power
spectrum,18 which corresponds toZ2(r); ln(r/r* ), where
r* is an inner scale similar to the scale at which the tra
field begins to look smooth. IfZq5(Z2)q/2 for all r, then the
field is said to have ‘‘simple scaling.’’ For simple scalin
the PDF of tracer increment for any givenr2 can be obtained
from that for another valuer1 by rescaling the argument o
the PDF by the ratio of the standard deviations of the tra
fluctuation between the twor. This is a strong and conve
nient form of self-similarity. Any other form of scaling tha
this is called ‘‘anomalous.’’ It has been argued that anom
lous scaling is equivalent to multifractal structure of the me
sure implied by the dissipation field.15,19 The dissipation
PDF, Pd(G), discussed in the preceding paragraph does
have any bearing on the multifractality of the dissipati
field; multifractality is a statement about how the PDF of t
spatially smoothed dissipation field varies as a function
the length scale of the smoothing.

The Batchelor spectrum should apply to advectio
diffusion by smooth flow, and to the advection-diffusion m
for a smooth map, provided that there is enough pumping
meet Batchelor’s criterion of a sufficient supply o
‘‘ u2-stuff.’’ The decaying case does not meet this criterio
and instead has long-time behavior that settles down in
‘‘strange eigenmode’’ that does not exhibit spatial scaling15

The reasons for this are now well understood, and a theo
available for the form of the strange eigenmode.10

It has been shown with some rigor that the Batche
spectrum should apply to smooth advection-diffusion sub
to white-noise pumping,2 and that, moreover, the highe
order scaling should be simple rather than anomalous.
gradient measure for pure advection without diffusion can
regarded as multifractal, at least with respect to certain fa
lies of covers.20 Our previous numerical work15 gave indica-
tions that diffusive damping of small scales eliminated t
multifractality, so that simple scaling is expected. The la
of multifractality for smooth advection-diffusion is borne o
by the theory developed by Antonsenet al.,10 and is in ac-
cord with the results of Chertkovet al.2

In Fig. 10 we show the structure functions for seve
values of q, for the equilibrium additively forced lattice
model of advection-diffusion. In accordance with all theor
ical expectations of this case, the second-order correlat
are logarithmic, and the scaling is simple. The best fits to
behavior expected from simple Batchelor scaling are in f
plotted in the figure, but they are so accurate that the th
retical curves are hardly visible behind the simulations.
our earlier work we presented results from a model w
resetting forcing, that suggested that Batchelor scaling wo
only be seen at exceedingly high resolution.15 Here, we see
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FIG. 10. Structure functions for the additively forced equilibrium case, computed with 20482 resolution. Best fits to the form (ln(r))q/2 predicted by
non-anomalous Batchelor scaling are plotted, but in most cases are so exact as to be not visible on the graph.
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that for additive forcing, in contrast, Batchelor scaling can
observed at resolutions that are easily achieved in two
mensions. The Batchelor spectrum is fragile, in the sense
the resolution needed to observe it is dependent on the na
of the forcing.

V. DISCUSSION

From both numerical simulations and theory f
advection-diffusion for smooth flow, we have learned th
the factors governing the concentration PDF differ grea
between the freely decaying case and the stochastic
forced equilibrium case. For the decaying case, it is the c
ditional dissipation that is most important. The long-te
fluctuations are dominated by trajectories with anomalou
low Lyapunov exponents, there is little or no Gaussian c
of the concentration PDF, and the tails of the PDF are
only non-Gaussian, but are actually fatter than exponen
The PDF of concentration rescaled by its variance attain
time-independent form.

The additively forced equilibrium case shows an exte
sive Gaussian core, with some indication of the theoretic
expected exponential tails, even though the forcing e
ployed is steady and spatially fixed in the laboratory ref
ence frame. Evidently the randomization of the forcing se
e
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ly
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n

by a chaotically wandering parcel is sufficient to make t
system behave like the stochastically forced case. With s
able choice of parameters, the Gaussian core and expone
tails can even be seen in the ‘‘resetting’’ forcing case, wh
the tracer is pumped intermittently by resetting concentrat
to 11 or 21 when it enters specified regions of the doma
For any forced case, the PDF results from a balance betw
the action of the conditional diffusion and the condition
forcing, and the result is as much dependent on the natur
the conditional forcing as it is on the behavior of the con
tional diffusion.

For either case, both numerics and theory reveal a p
viously overlooked consideration regarding the PDF tra
port equation: Fluctuations in the conditional averages
dissipation or diffusion have a strong effect on the shape
the tails of the concentration PDF. In formulating theorie
these quantities need to be represented as stochastic
fluctuating about a mean, rather than functions of concen
tion. The fluctuations lead to nontrivial ‘‘eddy transports’’ o
probability.

The numerical simulations do not indicate that there
anything greatly wrong with the current theoretical und
standing of the concentration PDF for the smooth flow ca
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though the theory for the decaying case has some asp
that remain to be fully worked out.

Theory for the PDF of the dissipation field is not s
complete. Even for smooth flow, it has only been worked
for a few special situations. Forced and freely decaying
merical experiments show a non-Gaussian form of the P
with stretched exponential tails and a cusp at zero diss
tion. This suggests that the theory worked out for advect
fields that ared-correlated in time may be more genera
valid. The numerical results for the additively forced eq
librium case also confirm theoretical expectations that
tracer field is characterized by logarithmic correlatio
equivalent to thek21 Batchelor spectrum, and that there
no anomalous scaling.

For smooth flow, the utility of the lattice model has be
demonstrated, and a few loose ends have been tied up. T
have been no big surprises here. The real interest come
the possible application of the lattice advection-diffusi
model to situations where the theoretical picture is consid
ably more murky. The first among these to come to mind
the problem of advection-diffusion by rough flow, havin
singular velocity gradients. In this case, the nature of
PDF, and of the spatial scaling of the concentration field
still a matter of considerable controversy. Some lattice mo
calculations for the rough flow case have been reported
Ngan and Pierrehumbert.21 For either rough or smooth flow
the effect of nonergodicity, as manifest by various barriers
transport carving up the domain, has not been much
plored. This generalization is particularly important for a
mospheric and oceanic applications, in which promin
strong jets act as nearly impenetrable transport barriers.

The class of flows that can be represented in the lat
model is greatly expanded by replacing the rectangular
tice we have used with a hexagonal one, as shown in Fig
With diagonal indexing, a hexagonal grid can easily be r
resented as a two-index array, so the only additional a
rithmic baggage required is a bit more bookkeeping to k
track of all the neighbors of a given point. A hexagonal g
offers the possibility of shearing motions in three distin

FIG. 11. Advection on a hexagonal lattice, showing the possibility of r
resenting a vortex or rotation.
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directions, rather than just two, and should make the sta
tics more isotropic. More generally, as indicated in Fig. 1
advection by vortices centered on any grid cell can be w
represented on a hexagonal grid. The possibilities are so
that the lattice model could perhaps even evolve from a
model to a practically useful computational scheme for
compressible advection-diffusion. The main limitation on t
kinds of mixing that can be represented is that the trans
mation must map the lattice bijectively to itself, leaving n
lattice sites unoccupied, and leaving none multiply occupi
This is no more than the expression of the incompressib
constraint, as applied to the lattice.

A further area of fruitful application of the lattice mode
would be in advection-diffusion problems with a chemica
reacting tracer. The chemical reaction is incorporated
simply making the forcing term dependent on concentrat
of one or more species. From the standpoint of the P
transport equation, one can distinguish two cases. The
case is ‘‘weak chemistry,’’ which leaves the form of th
conditional diffusion unchanged from the passive case. T
theory of this case is relatively easy, as nonlinear chem
reactions simply add an advection-like term to the P
transport equation, which is easily derived from the stoic
ometry of the reaction. The other case is ‘‘strong chem
try,’’ for which the chemistry significantly alters the form o
the conditional diffusion. This case presents much grea
theoretical challenges, and would particularly benefit fro
exploration using a lattice model.
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