David Archer

Global carbon cycle, climate change, aqueous chemistry

Phone: 773 702 0823
E-mail: d-archer at uchicago.edu
Office #: HGS 419


I have been a professor in the Department of The Geophysical Sciences at the University of Chicago since 1993. I have worked on a wide range of topics pertaining to the global carbon cycle and its relation to global climate, with special focus on ocean sedimentary processes such as CaCO3 dissolution and methane hydrate formation, and their impact on the evolution of atmospheric CO2. I teach classes on global warming, environmental chemistry, and global geochemical cycles.


Free Open-access Online Classes (MOOCS)

Online Interactive Models


Other Stuff

Journal Articles

Archer, D.E., B.A. Buffett, and P.C. McGuire (2012) A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles. Biogeosciences., 9, 1-20, doi:10.5194/bg-9-1-2012, 2012

Archer, D.E. and B.A. Buffett (2012) A two-dimensional model of the methane cycle in a sedimentary accretionary wedge. Biogeosciences, 9, 3323-3336, doi:10.5194/bg-9-3323-2012, 2012

Siedlecki, S.A., A. Mahadevan, and D. Archer. (2012) Mechanism for export of sediment-derived iron in an upwelling regime. Geophys. Res. Lett. 39: L03601, doi:10.1029/2011GL050366

Jokulsdottir, T., and D.E. Archer. A Stochastic, Lagrangian Model of Sinking Biogenic Aggregates in the Ocean: Model Formulation, Validation and Sensitivity. Global Biogeochem. Cycles (submitted).

Siedlecki, S.A., D.E. Archer and A. Mahadevan. Modeling mechanisms for nutrient supply and ventilation of benthic gases at the continental shelf break. J. Geophys. Res. 116: WOS:000292384500001.

Brovkin, V., A. Ganopolski, D. Archer, and G. Munhoven (2012) Glacial CO2 cycle as a succession of key physical and biogeochemical processes. Clim. Past, 8, 251-264.

Kleinen, T., V. Brovkin, W. von Bloh, D. Archer, and G. Munhoven (2010), Holocene carbon cycle dynamics, Geophys. Res. Lett., 37, L02705, doi:10.1029/2009GL041391

Atmospheric lifetime of fossil-fuel carbon dioxide. D. Archer, M. Eby, V. Brovkin, A. Ridgwell, L. Cao, U. Mikolajewicz, K. Caldeira, K. Matsumoto, G. Munhoven, A. Montenegro, and K. Tokos, Annual Reviews of Earth and Planetary Sciences 37:117-134, doi 10.1146/annurev.earth.031208.100206, 2009.

Atmospheric carbon dioxide concentration across the mid-Pleistocene transition, B. Honisch, N.G. Hemming, D. Archer, and M. Siddall, Science 324: 1551-1554, 2009.

Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations, M. Eby, K Zickfield, A. Montenegro, D. Archer, K.J. Meissner, and A.J. Weaver. J. Climate 22(10): 1502-1511, 2009.

Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure, V. Brovkin, V. Petoukhov, M. Claussen, E. Baur, D. Archer, and C. Jaeger, Climatic Change 92(3-4): 243-259, 2009.

Millennial Atmospheric Lifetime of Fossil Fuel CO2, D. Archer and V. Brovkin, Climatic Change 90:283-297, 2008.

Methane hydrate stability and anthropogenic climate change, D. Archer, Biogeosciences 4: 521-544, 2007.

Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and maring biogeochemistry. V. Brovkin, A. Ganopolski, D. Archer, and S. Rahmstorf. Paleoceanography 22: PA4202, doi:10.1029/2006PA001380, 2007.

Long term fate of anthropogenic carbon. A. Montenegro, V. Brovkin, M. Eby, D. Archer, and A.J. Weaver. Geophys. Res. Lett. 34: L19707, doi:10.1029/2007GL030905, 2007

Subsurface ocean argon disequilibrium reveals the equatorial Pacific shadow zone, Gehrie, E., D. Archer, S. Emerson, C. Stump, C. Henning, Geophys. Res. Lett. 33, L18608, doi:10.1029/2006GL026935, 2006.

The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric CO2. P. Clark, D. Archer, D. Pollard, J.D. Blum, J.A. Rial, V. Brovkin, A.C. Mix, N.G. Pisias, M. Roy. Quat. Sci. Rev. 25: 3150-3184, 2006

Argon as a tracer of cross-isopycnal mixing in the thermocline, Henning, C., D. Archer, and I. Fung, Journal of Physical Oceanography 36, 2090-2105, 2006.

A movable trigger: Fossil fuel CO2 and the onset of the next glaciation, D. Archer and A. Ganopolski, Geochem., Geophys., Geosystems, 6: Q05002,doi:10.1029/2005GL022449, 2005

Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing. D. Archer and B. Buffett, Geochem., Geophys., Geosys., 6(3) doi:10.1029/2004GC000854, 2005

Fate of fossil fuel CO2 in geologic time J. Geophys. Res. doi:10.1029/2004JC002625, 2005

Global inventory of methane clathrate: Sensitivity to changes in the deep ocean. B. Buffett and D. Archer. EPSL, 227: 185-199, 2004.

The importance of ocean temperature to global biogeochemistry Archer, D.E. P. Martin, B. Buffett, V. Brovkin, S. Rahmstorf, A. Ganopolski. EPSL 222: 333-348, 2004.

Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric pCO2 Archer, D.E., P.A. Martin, J. Milovich, V. Brovkin, G.-K. Plattner, and C. Ashendel. Paleoceanography 18 (1) 1012, doi:10.1029/2002PA000760, 2003.

Biological fluxes in the ocean and atmospheric pCO2. In Treatise on Geochemistry, Volume 6, The Oceans and Marine Geochemistry, edited by H. Elderfield, 2003

Glacial-interglacial stability of ocean pH inferred from foranifer dissolution rates D. Anderson and D. Archer. Nature 416: 70-73, 2002.

A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains. D. Archer, J.L. Morford, and S. Emerson, Global Biogeochemical Cycles 16: 10.1029/2000BG001288, 2002.

Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. C. Klaas and D. Archer. Global Biogeochemical Cycles, 2002.

Organic carbon flux and the organic carbon to calcite flux ratio recorded in the deep sea carbonate record: Demonstration and a new proxy. F. Mekik, P. Loubere, and D. Archer. Global Biogeochemical Cycles 16: 10.1029/2001GB001634, 2002.

Influence of bacterial uptake on deep-sea dissolved organic carbon. J. Bendtsen, C. Lundsgaard, M. Middelboe, and D. Archer. Global Biogeochemical Cycles 16: doi:10.1029/2002GB001947, 2002.

Modeling the response of the oceanic Si inventory to perturbation and consequences for atmospheric CO2. A. Ridgwell, A. Watson, and D. Archer. Global Biogeochemical Cycles 16: doi:10.1029/2002GB001877, 2002.

What caused the glacial / interglacial pCO2 cycles? Archer, D., A. Winguth, D. Lea, and N. Mahowald. Reviews of Geophysics 38: 159-189, 2000.

Atmospheric CO2 sensitivity to the biological pump in the ocean D. Archer, G. Eshel, A. Winguth, and W. Broecker. Global Biogeochemical Cycles 14: 1219-1230, 2000.

A model of the iron cycle in the ocean D. Archer and K. Johnson, Global Biogeochemical Cycles 14: 269-279, 2000.

The impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. Mahadevan, A., and D. Archer, J. Geophys. Res. 105: 1209-1225, 2000.

Geochemical consequences of increased atmospheric CO2 on coral reefs. Kleypas, J., R.W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and B. Opdyke, Science 284: 118-120, 1999.

Modeling CO2 in the ocean: A review D. Archer, in Scaling of Trace Gas Fluxes between Terrestrial and Aquatic Ecosystems and the Atmosphere, edited by A.F. Bouwman, Elsevier, 1999.

Dynamics of fossil fuel neutralization by Marine CaCO3, Archer, D., Kheshgi, H., and Maier-Reimer, E., Global Biogeochemical Cycles 12: 259-276, 1998

Modeling a limited region of the ocean Mahadevan, A., and D. Archer, J. Computational Physics 145: 555-574, 1998.

Multiple timescales for neutralization of fossil fuel CO2, Archer, D., Kheshgi, H., and Maier-Reimer, E., Geophysical Research Letters 24(4): 405-408, 1997

A data-driven model of the calcite lysocline. Archer, Global Biogeochemical Cycles 10: 511-526, 1996.

An atlas of the distribution of calcium carbonate in sediments of the deep sea. D. Archer, Global Biogeochemical Cycles 10(1): 159-174, 1996.

Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, D. Archer and E. Maier-Reimer, Nature, 367: 260-264, 1994

What Controls Opal Preservation in Tropical Deep Sea Sediments? Paleoceanography, 8, 7-21, 1993

Equatorial Pacific calcite preservation cycles: Production or dissolution?, Archer, Paleoceanography, 6, 561-572, 1991.

Derivation of the Relaxation Method Algorithm used in my CaCO3 diagenesis models (Appendix 1B from my thesis)


  • University of Washington, Ph.D., 1990