ANATOMY OF EXTREMELY THIN MARINE SEQUENCES LANDWARD OF A PASSIVE-MARGIN HINGE ZONE: NEOGENE CALVERT CLIFFS SUCCESSION, MARYLAND, U.S.A.

SUSAN M. KIDWELL
Department of Geophysical Sciences, University of Chicago, 5734 S. Ellis Ave., Chicago, Illinois 60637, U.S.A.

ABSTRACT: Detailed examination of Neogene strata in cliffs 25-35 m high along the western shore of Chesapeake Bay, Maryland, reveals the complexity of the surviving record of siliciclastic sequences ~150 km inland of the structural hinge zone of the Atlantic passive margin. Previous study of the lower to middle Miocene Calvert (Plum Point Member) and Choptank Formations documented a series of third-order sequences 7-10 m thick in which lowstand deposits are entirely lacking, transgressive tracts comprise a mosaic of condensed bioclastic facies, and regressive (highstand) tracts are present but partially truncated by the next sequence boundary; smaller-scale (fourth-order) cyclic units could not be resolved. Together, these sequences constitute the transgressive and early highstand tracts of a larger (second-order Miocene) composite sequence. The present paper documents stratigraphic relations higher in the Calvert Cliffs succession, including the upper Miocene St. Marys Formation, which represents late highstand marine deposits of the Miocene second-order sequence, and younger Neogene fluvial and tidal-inlet deposits representing incised-valley deposits of the succeeding second-order cycle. The St. Marys Formation consists of a series of tabular units 2-5 m thick, each with an exclusively transgressive array of facies and bounded by stranding surfaces of abrupt shallowing. These units, which are opposite to the flooding-surface-bounded regressive facies arrays of model parasequences, are best characterized as shaven sequences in which only the transgressive tract survives, and are stacked into larger transgressive, highstand, and forced-regression sets.

Biostratigraphic analyses by others indicate that this onshore record contains the same number of third-order (~1 my duration) units as present offshore, and that thinning of the hinge zone was accomplished not by omission or erosion of entire cycles of deposition, but instead by omission of some subsidiary elements (e.g., lowstand tracts), by erosional shaling of sequence tops (removing the entire regressive tract in some sequences), by a reduced number of component high-order cycles surviving per larger set, and by qualitative changes in the anatomy or composition of elements (e.g., condensed transgressive tracts; shaven sequences rather than parasequences). All of these differences can be attributed to limited accommodation, but preservation of an onshore record of such baselevel cycles was probably also favored by the large amplitude and rapidity of eustatic fluctuations during the Miocene.

INTRODUCTION

The anatomy of marine siliciclastic depositional sequences—their three-dimensional form, discontinuous boundaries, facies tracts, and stratal stacking patterns—has been documented for a variety of settings of moderate tectonic subsidence (i.e., foreland basins and passive margins seaward of tectonic hinge zones, with rock accumulation rates on the order of hundreds of meters per million years). These relatively expanded records and, to a lesser extent, studies of Holocene environments have shaped geologists' image of depositional sequences over the past 20 years, and have both influenced the search for reservoirs and served as the groundwork for models exploring the generative effects of tectonism, eustasy, and sediment supply.

Much less information is available on the expression of such sequences landward of hinge zones, in settings of very low to zero tectonic subsidence. Such settings might present many obstacles to sequence analysis. These difficulties include the modest original thickness of sequences due to low accommodation, requiring high-resolution seismic reflection data or exceptional outcrops for study; the high potential for severe or complete erosion of these landward edges of sequences during subsequent lowstands; and the presumed or actual sparsity of marine fossils in such areas, limiting biostratigraphic resolution both along tectonic strike and downlap with expanded sections in the marine depocenters. Disconformity-based subdivision and correlation is also expected to be difficult because of the complex mosaic of erosional and nondepositional surfaces that can form in the coastal environments that typify basin margins, and the potential for these surfaces to crosscut and coalesce.

Many questions thus remain on the actual anatomy of very thin records in such settings, and the controls on their formation. What is the relative importance of erosion (complete removal of selected sequences in the succession), omission (nondeposition of selected sequences), and depositional attenuation (offshore sequences represented but very thin)? What is the physical expression of thin sequences where present: are these simply shrunken versions of offshore sequences, with each component systems tract present but accounted for by sets with fewer or individually thinner subsidiary parasequences? Or does sequence composition change qualitatively across the hinge zone, for example because of: (a) erosional shaling (i.e., partial truncation of the sequence, removing part or all of the highstand systems tract and possibly part of the transgressive systems tract), (b) omission (nondeposition) of one or more component systems tracts (e.g., extreme marine overstep such that the transgressive record consists only of a single flooding surface; bypassing rather than deposition of sediment during the "highstand" phase, leaving only an omission surface; baselevel drop sufficient to disallow deposition of lowstand deposits cran-ward of the hinge zone); and/or (c) switchover from "normal" facies types to lithologically unusual facies indicative of low siliciclastic input and/or low net stratigraphic accumulation (e.g., condensed facies rich in biogenic and authigenic grains and fabrics; loss of discrete bedding planes or parasequence-type cyclicity due to amalgamation). Many different combinations of these alternatives are hypothetically possible.

Miocene strata exposed in Calvert Cliffs along the western shore of the Chesapeake Bay in Calvert County, Maryland provide an excellent vehicle to determine the anatomy of marine siliciclastic sequences landward of a passive-margin hinge zone (Fig. 1). The Cliffs contain a biostratigraphically complete record of ~10 million years of Miocene time in only ~70 m of record, approximately one-tenth the cumulative thickness of coeval strata in the offshore Baltimore Canyon Trough (Greenlee et al. 1992; de Verteuil and Norris 1992; Posg and Ward 1993). Moreover, the high quality of exposure in the Calvert Cliffs is unique in the Atlantic and Gulf Coastal Plains. A relatively continuous series of cliffs 25-35 m high are present along 40 km of shoreline in Calvert County; the largely un lithified strata dip very gently, providing good opportunities to document lateral facies changes (Figs. 1, 2). As the best-exposed onshore record of Neogene sequences in the Atlantic continental margin, the Calvert Cliffs have provided key reference outcrops for biostratigraphic zonations of shallow-water Miocene strata. They are additionally important to tests of eustatic models of sequence generation under "ichouse" conditions and the role of flexural deformation on such mature margins (Greenlee et al. 1992; Schroeder and Greenlee 1993; Sugarman et al. 1993; Posg and Ward 1987; Miller and Sugarman 1995; Pazzaglia and Gardner 1994).
The Calvert Cliffs succession includes strata from three Miocene formations—the Calvert, Choptank, and St. Marys of Shattuck (1904)—and an additional 20 m of poorly known coarse sediments of younger but uncertain age (pSM interval and cliff-top gravels; Figs. 2, 3). The anatomy of open-marine disconformity-bounded units in the Plum Point Member of the Calvert Formation and in the Choptank Formation has already been described in detail (Kidwell 1982, 1984, 1989). The present paper documents the facies composition and anatomy of the St. Marys and younger strata in comparable detail, elaborating upon a brief report by Kidwell (1988). St. Marys strata are less clearly cyclic than the Plum Point–Choptank interval, and are also muddier and less sandy, and contain more brick-sized fossils; post-St. Marys strata are coarse-grained, channel-form deposits of fluvial and tidal origin. This uppermost part of the Calvert Cliffs succession thus provides an opportunity to document sequence anatomy across a different subset of shallow marine and coastal environments and to establish a more detailed physical stratigraphic framework on which to base biostratigraphic and sequence stratigraphic correlations of onshore deposits with coeval sequences both offshore and along strike.

METHODS AND STRATIGRAPHIC OVERVIEW

Measured Sections

Because the Miocene record is very thin and laterally variable, extremely detailed methods of field description are required. Fifty-two sections of the St. Marys Formation were measured within the Calvert Cliffs, and beds were walked between sections wherever possible, with most areas revisited several times. (A complete listing of localities is available from the author.) These sections are in addition to 194 sections measured previously to document stratigraphic relations in the underlying Calvert and Choptank formations (46 of those sections are in the Calvert Cliffs; Kidwell 1982, 1984). As in that earlier study, bed thicknesses and elevations above mean sea level (msl) were cross-checked within and between sections by handlevel. Field descriptions of sediment grain size were cross-checked and quantified for 8 key sections of St. Marys and younger strata by wet-sieving 100 g samples at 0.5 phi mesh intervals. Dominant macrofossil genera and taphonomic features were recorded in the field as an additional basis for paleoenvironmental interpretation.

Sections were measured at ~ 100 m intervals wherever fresh cliff faces were available; additional sections were intercalated where the stratigraphy was especially complex (measured sections indicated by tick marks along the base of each cross section). Segments of the Calvert County shoreline where the stratigraphy is interpolated rather than documented are areas where tributary streams have destroyed shoreline topography or where wide beaches protect cliffs from wave sapping and rejuvenation. Examination of cliff faces from a distance of 50–100 m offshore is valuable to cross-check large-scale geometries of units. However, some features that from a distance appear to be important (e.g., resistant lenses) are in reality discordant with primary depositional and erosional contacts, and some key contacts are simply invisible from a distance (e.g., clay-on-clay contacts and very thin lags that are easily obscured by sheetwash).

Labeling of Disconformity-Bounded Units

Each throughgoing disconformity (i.e., laterally extensive discontinuity surface, cutting across rather than parallel to underlying facies boundaries) is numbered successively from the base of the enclosing lithostratigraphic unit, and intervening strata are named for their lower bounding surface, continuing the informal system used for the Plum Point–Choptank interval (PP- and CT-disconformities and sequences of Kidwell 1984; Fig. 3). Thus, the SM-0 surface is the disconformity that marks the base of the St. Marys Formation, and the SM-0 unit or interval refers to strata lying between this and the next higher disconformity. This is comparable to color coding of reflectors in seismic sections, although the convention generally used in subsurface records is for intervals to take the name of the upper rather than the lower bounding reflector.

Distribution

St. Marys and younger strata crop out in cliff faces from the southern tip of the Calvert County peninsula (Little Cove Point area) northward along the Chesapeake Bay shoreline to the northern edge of Baltimore Gas and Electric Company nuclear power plant property (= BGE; Figs. 1, 2). The largest gap in exposures is a 2.5 km segment at Cove Point beach. South of Cove Point beach, 5 km of cliffed shoreline extends south of Little Cove Point, providing exposures parallel to structural strike (032°). These cliffs are the most readily accessible and contain the best-preserved macrofossil and stratigraphic work on the St. Marys Formation in Calvert County.

North of Cove Point beach, cliffs extend for 7 km from Calvert Cliffs State Park to BGE in a shoreline oriented 130°, which is nearly perpendicular to structural strike. North of BGE, St. Marys and younger strata are present above 20 m elevation in cliffs between Mataoka and Western Shores and also at Governor Run, but exposures are discontinuous and very difficult to access. North of Governor Run, the Calvert Cliffs shoreline is
oriented 095°, oblique to structural strike, and exposes only Plum Point and Choptank strata.

Modifications of Original Dip

Original dip directions for Miocene strata in the Calvert Cliffs have generally been assumed to approximate present-day structural dip (i.e., ESE). The downdip decrease in grain sizes and increase in faunal diversity observed among subtidal facies within each conformity-bounded unit in the Plum Point–Choptank interval (Kidwell 1984, 1988, 1989) and in St. Marys strata (present paper) indicate that this assumption is roughly justified (Fig. 2).

This overall pattern of an eastward or southeastward original dip is disrupted by a series of small monoclines and asymmetrical anticlines (Fig. 2 and other cross sections in this paper and in Kidwell 1984). Folds are especially pronounced in the area immediately south of BGE; fold axes are also present in the vicinity of Mataoka, Parker Creek, and south of the Naval Lab (erosional channels along the CT-0 and CT-1 discontinuities should not be confused with folds). Plum Point–Choptank strata are affected most strongly, as evident by their truncation by the basal conformity (SM-0) of the St. Marys Formation over the antcline at Conoy landing just south of BGE (Fig. 2). Gentle folding of St. Marys strata in the Little Cove Point area and subtle dip changes elsewhere, including over the antcline at Conoy landing, indicate continued but slight warping into St. Marys time. The up-section die-out and fold geometry suggest growth faults or other tectonic structures at depth.

The entire succession, including cliff-top gravels of probable Pleistocene age, appears to offset a few meters along a downd-to-north fault at Moran landing (valley with unnamed stream 2 km south of BGE plant). Some fault-offset or related folding might also exist in the Cove Point beach area, inasmuch at St. Marys strata cannot be readily correlated across this gap in exposure (see later discussion).

Traditional Stratigraphic Units

Miocene strata in Maryland were subdivided into a series of 24 informal lithologic units or "Zones" by Shattuck (1904) on the basis of siliciclastic grain size, abundance of shell material, and, subordinately, the assemblage of molluscan species. Zones 3 through 23 are exposed in the Calvert Cliffs (Fig. 3). These zones are not biostratigraphic units in reality or intent, but are simply informal field labels for lithologic units that are finer than formal lithostratigraphic members.

The Zone 4 through Zone 19 interval comprises the Plum Point Member of the Calvert Formation and most of the Choptank Formation as originally defined by Shattuck (1904) (Fig. 3). Most individual zones in this series have proven to be readily identifiable by other workers throughout the Maryland coastal plain, and are widely used to describe stratigraphic relations. The Zone 4–19 interval is strongly cyclic, with alternations of bioclastic-rich well-sorted sands (Zones 10, 12, 14, 17, and 19) and relatively bioclast-poor silty intervals of comparable or greater thickness (Figs. 2, 3).

Above Zone 19, Shattuck's scheme has proven more difficult to use. Lithologic differences are generally more subtle through the Zone 20–23 interval, but Shattuck's (1904) original descriptions of these zones at BGE (his Flag Pond section) are also atypically vague. Zones 20, 21, and 22 were each described as "drab clay and sandy bands"; Zone 22 was described as "another drab band of clay" with scattered bands of fossils. This ambiguity has led to confusion among subsequent workers in the labeling of strata at BGE, which is the only site where Shattuck described the St. Marys Formation in contact with the Choptank Formation. For example, because none of the zones at BGE were described as sands, Kidwell (1988, 1989) considered a lenticular sand body truncated by the SM-0 conformity at BGE (Fig. 2; and see figures in Kidwell 1988, 1989) to be the upper part of Zone 20, leading her to describe the SM-0 conformity as lying along the Zone 20–21 contact. However, this same sand body has consistently been referred to as Zone 21 by Gernant (1970) and subsequent workers (and to eliminate confusion, the present paper adopts this apparent consensus on the labeling of strata at BGE; Figs. 3, 4). Because stratigraphic relations in this upper part of the succession are proving to be complex throughout the Calvert Cliffs, the locations of outcrops need to be carefully specified when referring to strata above Zone 19, and Shattuck's Zone 21, 22, and 23 labels should probably be abandoned entirely.

LITHOFACIES AND PALEOEENVIRONMENTS

General Features

Within the St. Marys Formation, 7 lithofacies can be differentiated on the basis of siliciclastic grain size (expressed as modal size of sand and percent admixed mud), physical sedimentary structures, extent of bioturbation (loofabody indices of Droser and Bottrij 1986, 1989), style of bioturbation (discrete burrows versus burrow-mottling and homogenization; ichnotaxa), and abundance of shell carbonate coarser than 2 mm (close-packng categories of Kidwell and Holland 1991) (Fig. 2, Table 1). An additional four lithofacies are recognized within younger post-St. Marys strata (pSM interval) and cliff-top gravels (Fig. 2, Table 1). In general, strata in the Calvert Cliffs are quartzose, with accessory glauconite and phosphate and highly variable proportions of coarse carbonate bioclasts (up to 40% by weight; mollusk specimens to 18 cm). Previous
paleoenvironmental studies have concurred that the Miocene succession records overall shallowing, although with multiple small deepening and shallowing cycles superimposed and with broad overlap in the facies composition of formations. Muddy inner to middle shelf deposits are most common in the Calvert Formation (planktonic foraminiferal diversity is highest in Zones 11–12, indicating maximum water depth), sandy shoreface deposits are volumetrically most important in the Choptank Formation, and muddy marginal marine and intertidal deposits are most common in the St. Marys Formation (Gernant et al. 1971; Blackwelder and Ward 1976; Kidwell 1984, 1989; McCartan et al. 1985; Ward and Strickland 1985; Ward 1992; Shideler 1994). Shattuck’s (1904) “Paleocenian sands and gravels”, lying above the St. Marys Formation, have been interpreted variously as shallow marine to nonmarine (Shattuck 1906; Stephenson and MacNeil 1954; Gernant et al. 1971; McCartan et al. 1985; Kidwell 1988, 1989).

St. Marys Formation

Lithofacies.—The St. Marys Formation (strata between the SM-0 and pSM conformities as defined in this paper) is composed of clay, silt, and very fine to fine sand and various admixtures of these grain sizes. Shell material is dominantly molluscan and locally abundant, and burrows and burrow motting are common in most facies. Facies include massive silty clay (facies 1), thick-bedded clay with silt and sand partings (facies 2), thin-bedded clay with silt and sand layers (facies 3), massive to thick-bedded silty fine sand (facies 4), densely packed shells with fine sand matrix and a variety of sedimentary structures (facies 5), laminated and cross-stratified fine sand (facies 6), and flat-bedded to wavy-bedded interlaminated clay and fine sand (facies 7).

Carbonate bioclasts are well preserved only in the Little Cove Point area, but molds indicate their former presence in most facies throughout the Calvert Cliffs. Assemblages are characterized by relatively thick-shelled venerid, crassatellid, and lucinid infaunal bivalves, thin-shelled tellinid, nuculid, and mactrid infaunal bivalves (the latter dominate facies 5), high-spired turritellid gastropods (especially common in thin beds and lenses within facies 2 and 3), and diverse predatory neogastropods.

Paleoenvironmental Interpretation.—This suite of lithofacies closely resembles bathymetric arrays reported from modern open-marine siliciclastic coastlines (e.g., Reineck and Singh 1971; Howard and Reineck 1981): burrow-mottled or homogeneous muds from below normal storm wave base (facies 1); muds with widely to closely spaced sand layers from the storm-stratified transition zone between normal storm and fair-weather wave bases (facies 2 and 3); burrow-mottled to thick-bedded silty sands from an upper transition zone (facies 4); clean sands rich in shelly macrobenthos, burrowed or physically stratified with silty sand interbeds from upper transition zone and shoreface settings (facies 5); well-sorted sands dominated by physical sedimentary structures, including in succession subaerially, low-angle trough, wedge/tabular cross-stratification, and low-angle parallel laminaion from shoreface and foreshore settings (facies 6); well-sort ed to silty sands with abundant Ophiomorpha burrows in slightly more protected coastline and back-barrier positions (facies 4a); and parallel-bedded to wavy-bedded burrowed-disrupted heterolithic sands and clays from tidal flats and channels (facies 7).

Macrobenthic assemblages are dominated by euryhaline molluscan genera that thrive in and muddy seafloors in modern shallow-water habitats. Their presence, along with pervasive bioturbation and a dearth of lamination in fine-grained facies, indicates environments with well-aerated waters. The absence in the St. Marys Formation of stenohaline taxa such as echinoids and colonial corals, which accompany a similar molluscan fauna and the same suite of lithofacies in the Plum Point–Choptank interval, indicates fluctuating salinity levels such as found in embayed segments of humid marine coastlines or in the mouths of large bays. The relatively low diversity and abundance of epifauna such as scallops, barnacles, and bryo zoans in the St. Marys Formation is consistent with the fine-grained bioturbated sediments, which suggest soft substrata, and with the scarcity of facies with coarse particles for attachment (e.g., facies 5 shell gravels). (Facies 5 is volumetrically much more important in the Plum Point–Choptank record, forming four 1–4 m-thick laterally extensive deposits with high epifaunal as well as infaunal diversity.) Greater brackish-water influence in the St. Marys Formation is also inferred from the declining diversity and abundance of stenohaline benthic and planktonic microfossils through the entire Plum Point–Choptank–St. Marys interval, and from the appearance of brackish-water indicator species among ostracods and dinoflagellates (Gernant et al. 1971; L. de Verteuil, personal communication, 1995).

pSM Channels and Cliff-Top Gravels

Lithofacies.—Channelized sedimentary bodies above the St. Marys Formation (post-St. Marys pSM series) are dominated by well-sorted medium to coarse sand with interbeds of laminated clay, clay intraclasts, and quartzose pebble conglomerates. Distinct burrows are more common than burrow motting, but all trace fossils are less common than in the St. Marys Formation and body fossils are rare to absent. Facies include: parallel-stratified and cross-stratified medium to coarse sands in large-scale tabular, wedge, and trough sets, generally arranged in upward-fining successions (facies 8); large (0.5–4 m thick) sigmoidal sets of clay-draped sand (inclined heterolithic stratification; facies 9); a unique lenticular body of carbonaceous clay rich in plant fossils (facies 10); and unfossiliferous medium to coarse sand and gravel (facies 11). Facies 6 and 7 are also present locally. The stratigraphically highest part of the Cliffs (cliff-top gravel unit) is only locally accessible, and appears to consist solely of facies 11.

Paleoenvironmental Interpretation.—Facies in the pSM interval indicate a mosaic of tide-dominated coastal environments, including intertidal sand and mud flats (facies 7), tidal-intertidal fills (channelized facies 8; cf. Kumar and Sanders 1974), and lateral-crecent deposits from tidally influenced rivers (channelized facies 9; cf. Thomas et al. 1987). The only exception is the carbonaceous clay body (facies 10) that interfingers laterally with unfossiliferous pebbly sands (facies 11) in one of the pSM channels; this is interpreted as an abandoned-channel fill from a fully nonmarine fluvial system. The gravely nature of facies 11 sands and the absence of overbank deposits in both the pSM interval and in the cliff-top gravels suggest a braided rather than meander-belt system.

Detailed Anatomy of the St. Marys and Younger Record

Disconformable Base of the St. Marys Formation (SM-0 Surface)

Features of the SM-0 Surface.—In the BGE area, the SM-0 surface truncates a minimum of 8 m from the Choptank Formation, cutting downsection in a basinward direction to the top of Zone 19 (Figs. 2, 4). The surface levels rather than irregularly incises gently deformed Choptank strata (“Zone 21” sand and then Zone 20 clay, as measured by Shattuck (1904) at BGE; loc. 222 in Figure 5), and erosion appears to have been checked by the lithified top of the Zone 19 shell bed (facies 5bc; Zones 19, 20, and “21” together constitute the CT-1 sequence of the Choptank Formation). In weathered outcrops, the thin sand that mantles the SM-0 surface usually produces either a notch or, where cemented, a vegetated ledge, but it does not always produce the most dramatic feature in a cliff face. In the cliffs just south of the BGE plant and north of Conoy landing, for example, the most prominent ledge is created by the remnant wedge of Zone 21 sand, which is lithified there because it (rather than the phosphate-rich sand mantling the SM-0 surface) rests immediately on the clays of Zone 20 and thus serves as the main conduit of water seeping from the cliff face (see figure 4 of Gernant 1970, which shows Zone 21 thinning to the south).

Primary features of the SM-0 surface also vary laterally. Where it cuts sandy facies 4 of the CT-1 sequence (“Zone 21”), the SM-0 surface is a bowed firmground dominated by Thalassinoideas and is mantled by a
<table>
<thead>
<tr>
<th>Facies</th>
<th>Lithology and Paleontology</th>
<th>Paleoenvironment and Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Homogeneous silty clay</td>
<td>Medium blue-gray slightly silty clay (88-94% mud); generally mimic laminated, locally structureless or burrow-mottled (subaerial), thin lenses of laminated silt, some with fine shell debris, rare to abundant bedded or laminated varieties (Marina, Yoldia, Corbicula) and Turrillina; whitish and slightly-varnished in weathered outcrops, massive parting</td>
<td>Mud-dominated, below normal storm wave base; intergrades with facies 2</td>
</tr>
<tr>
<td>2 Clay with silt or sand partings</td>
<td>Medium to dark brown slightly silty clay as in facies 1, but perhaps up to 30 cm silt is clay, ≤ 3 cm beds of burrow-disrupted laminated silty clay or very fine silt (subaerial); 1-3 cm beds of burrow-mottled laminated silty clay, some with fine shell debris, rare to abundant bedded or laminated varieties (Marina, Yoldia, Corbicula) and Turrillina; whitish and slightly-varnished in weathered outcrops, massive parting</td>
<td>Mud-dominated, above storm wave base, intergrades with facies 1 and 3</td>
</tr>
<tr>
<td>3 Finebedded clay & sandy silt</td>
<td>Medium blue-gray slightly clay-poor to clayey, ≤ 1 cm thick by 1-5 cm beds of laminated sandy silt (≤ 50% sand); clay is slightly laminated, burrow-mottled, or structureless with silt of local pelvis, locally abundant shells and pebbles, occasional molds of small bivalves, generally diversified unfossilized, but in the Little Cove Point area, clay beds contain occasional abraded bioclasts (Crassatella, Eucratana, Nucula, Corbicula) silts beds contain well-sorted fine sand and small and whole Turrillina (≤ 1 cm length) and sand beds contain abundant well-sorted Turrillina, often arranged in bimodal compass orientation indicating oscillatory currents; area Turrillina sand beds are laterally amalgamated series of lenses, sandy shell beds have subsidiary Navarrina, Mangelia, Lenticula, and Mercenaria; distinctly bedded appearance is weathered outcrops, rare secondary gyttja</td>
<td>Varially barnacle-weathered channel transition zone, above storm wave base, more offshore than similar facies 4, intergrades with facies 2 and 4</td>
</tr>
<tr>
<td>4 Silty fine sand</td>
<td>Dark gray slightly silty to silty very fine to fine sand (≤ 40-60% silt); motiled with sponges, sand-filled ≤ 1 cm-diameter burrows, and clay beds; clay beds typically have abundant silt (subaerial), ≤ 5 cm beds of burrow-mottled laminated silty clay, some with fine shell debris, rare to abundant bedded or laminated varieties (Marina, Yoldia, Corbicula) and Turrillina, plus less common relatively large species (Cerasusaria, Donax, Perna, Chamaeragnus) preserved in disarticulated cross-sections, quartz, fragments of foraminifera; pods of carbonate debris including benthic wood chips, massive with brown, rough weathered surface, slightly damp</td>
<td>Intensely barnacle-weathered channel transition zone, above storm wave base, intergrades with facies 3 and 2, common lithology mantling barnacle-weathered discontinuity surfaces</td>
</tr>
<tr>
<td>5 Mollicic clay</td>
<td>Dense-packed (shell-supported) shells with greyish-green clean fine sand matrix (≤ 15% mud), weathering white to deep grey; sedimentary structures vary, as do proportions of angulicol and calcitic shells and of whole, coarse-grained, and finely-grained carbonate; sparse non-molluscan macrofossils; general shape, size, and index of this facies also present in facies 2, which see.</td>
<td>Low-energy shellface, intergrades with facies 4 and with foresteine facies 5b & 6 and intergrades facies 7 at Little Cove Point</td>
</tr>
<tr>
<td>6 = Ophiomorpha</td>
<td>Does not apply.</td>
<td>Does not apply.</td>
</tr>
<tr>
<td>6w = wedge cross-sections of ophiomorpha</td>
<td>Large to very large (10-20 cm wide) tabular septa with north-directed low-angle forefosses of shell-supported sand, composed predominately of well-sorted small shells (≤ 1 cm Spisula valves and Turrillina, plus subsidiary small clams); large size shells (Ostrea, Mercenaria), generally parallel to foraminiferal foresets, with isolated lens-shaped intercalations of less silty sandy silts; ledge forms, commonly indurated</td>
<td>Flood-directed skeletal wackestones in tidal channel or shoreface; Little Cove Point area only, intergrades with facies 4</td>
</tr>
<tr>
<td>5w = wedge cross-sections of ophiomorpha</td>
<td>Fine-grained composition and arrangement very much like 5w, but in 20-50 cm thick wedge cross-sections, variously amalgamated, north-facing foresets; interbedding silty sand contains only sparse cross-lamination, by contrast, ledge forms, commonly indurated</td>
<td>Flood-directed skeletal wackestones in tidal channel or shoreface; Little Cove Point area only, intergrades with facies 4 and 5w</td>
</tr>
<tr>
<td>5 + 4 = interbedded coquina & silt sand</td>
<td>Large clasts disarticulated valves (Donax, Mercenaria, Macoma) support or nearly support the ophiomorpha, which has a matrix of generally packed sand, shell- and shell fragments (Spisula and Turrillina dominant), those 10-40 cm thick with rare to slightly amalgamated of subsidiary shell lenses with clean fine sand matrix (such as found embedded in facies 2 at Little Cove Point); coquina is interbedded with less limonitic ripple-laminated to burrow-mottled silty sand facies 4c; associated weathered surface, coquinas commonly indurated.</td>
<td>Upper transition zone; Little Cove Point area only, intergrades with facies 4c and 5c</td>
</tr>
<tr>
<td>5c = Boston Cliffs Mbr. of Chopin Fm. (Zone 5c)</td>
<td>Amalgamation of many subsidiary densely to loosely packed sandy shell beds. These subunits include fragmental shell hash resting on fossil CT-siliciclastics, with varied admixtures of large bivalves, sand with discrete pavements of mostly articulated broches, densely packed large disarticulated Inarticulated Bivalves and shell fragments, densely packed shoe-cleaved foresets with scallop shells (commonly indurated, red, or near the up of the Member); massive intervals with mixed calcite anhedral to phreatopelagic assemblage.</td>
<td>Beach and subtidal sands above fair-weather wave base</td>
</tr>
<tr>
<td>5d = Exsudill Mbr. of Chopin Fm. (Zone 7)</td>
<td>At facies 5c but with different set of diverse molluscan species, plus echinoids, corals, barnacles, bryozoa (not shown 1944 and Kidwell 1989 for species list).</td>
<td>Lower shoreface; intergrades with facies 5f and 5g</td>
</tr>
<tr>
<td>6 Clear fine sand</td>
<td>White clean fine to very fine sand (modes 2.5 to 4 phi); ≤ 5% mud; variable structures; no body fossils; loose weathering slope former, locally indurated lenses</td>
<td>Beach and subtidal sands above fair-weather wave base</td>
</tr>
<tr>
<td>6p = parallel laminated</td>
<td>≤ 5% mud; fine horizontal to low-angle very shallow (< 1 cm) and parallel bedding, with 2 cm clay beds; south施行 proceeds</td>
<td>Beach and subtidal sands above fair-weather wave base</td>
</tr>
<tr>
<td>6c = clay beds</td>
<td>Bedding absent or irregularly stratified, with abundant clay beds (up to 5 cm) and 4 cm-diameter limonite-lined burrows (subaerial); 5-10 cm sand, but less admixed silts, not-stained in weathered outcrops.</td>
<td>Beach and subtidal sands above fair-weather wave base</td>
</tr>
<tr>
<td>6s = trough cross-sections</td>
<td>Large scale (> 10 cm) low-angle trough cross-bedding</td>
<td>Beach and subtidal sands above fair-weather wave base</td>
</tr>
<tr>
<td>6p = sandy cross-sections</td>
<td>Large scale (> 10 cm) sandy cross-bedding</td>
<td>Beach and subtidal sands above fair-weather wave base</td>
</tr>
<tr>
<td>7 Flat to wavy bedded clay and fine sand</td>
<td>Light gray sticky clay, locally with 1 mm laminar of fine sand, interbedded with light gray to orange weather- rain-laminated very fine sand; thin to medium (1-5 cm) interbeds, flat to wavy to ripple bedded, rarely from to sublimaric bedded; varies from clay to sand-dominated on a m-scale, 30-80 cm deep channel incised locally, filled with laminated very fine sand; marineinclude Skolithus and Arenicolites ichnofaces, 2, locally 3, no body fossils found, but lithologic units of ophiomorpha found as flow at Little Cove Point are probably in this interval</td>
<td>Upper shoreface</td>
</tr>
<tr>
<td>8 Medium to coarse sand</td>
<td>Light gray to white clean medium to coarse sand (0.5-2.5 phi); < 6% mud; moderately sorted, with iron-stained cemented layers and subsidiary wavelike veins quartz and meteoritic rock pebbles; locally abundant clay pebbles to cobbles, but no micrite clay beds, variable sedimentary structures; body fossils present; present only in channel-form bodies, white to orange weathering</td>
<td>Upper shoreface</td>
</tr>
</tbody>
</table>

Table 1. Facies types in the Calvert Cliffs succession. Modal phi and %-sand content of sediments refers to noncarbonate fraction only; size sorting and packing of shell carbonates are described separately. Trace-fossil abundance scored using ichnofabric index of Droser and Bottjer (1986).
thin (≤ 10 cm) clayey very fine glauconitic sand (e.g., loc. 222 immediately north of BGE power plant; Fig. 5). This contains loosely packed flatly-
ly birefracting Isognomon (semi-infauna to epifaunal bivalves) and broken and worn bivalves, including nacreous debris (nacreous Isognomon and Atrina are both present in the underlying sand). Abundant fish otoliths and shell-gravel-dwelling benthos (epifaunal gastropod Amalthea, small ramose coral colonies, encrusting bryozoans, barnacles, and small scallops infested with boring sponges) are also present. These features persist updip to Western Shores, although there the SM-O surface has completely removed the “Zone 21” sand and lies within a few meters of Zone 19.

Where the SM-O surface closely approaches or intersects clayey facies 2 and 3 of the CT-1 sequence (Zone 20), the trace assemblage includes the coarsegrained burrowed Gyrolithes (e.g., loc. 245 south of BGE plant in Figure 7). The mantling silty fine sand is 30-100 cm thick, with sparse to loosely packed molds of infauna and epifaunal mollusks and one or more 10 cm layers rich in phosphatic pebbles, phosphated internal molds of bivalves (steinkerns), otoliths, sharks teeth, polished bone fragments, and sparse pebbles of quartz and gniss. Where the SM-O surface reaches the top of shelly Zone 19 in the Rocky Point area, a single surface can be difficult to discern within a 1-m thick sand unit that contains a series of alternating scoured and Thalassinoides-burrowed limonite-stained surfaces (e.g., loc. 230 in Figure 5), but in many sites the top of Zone 19 is scoured and mantled directly by a phosphatic lag. Farther downdip in the State Park area, the SM-O unconformity becomes a single, laterally continuous scoured surface in direct contact with the Zone 19 shellbed (loc. 240 in Figure 5). In such sections, the top of the shellbed is stained dark rust or black by iron oxides and may have a highly irregular and corroded-appearing topography, and mollusk shells are poorly preserved (aragonite and calcite in chalky condition, or molds only).

Paleoenvironmental Interpretation of the Disconformity.—The SM-O disconformity is clearly erosional, but unambiguous evidence for subaerial exposure is lacking. Root traces were not observed, and cementation and corrosion of the Zone 19 shellbed may reflect much younger diagenesis and weathering. Coarse material mantling the SM-O disconformity was derived mostly from eroded beds; the preservation state of vertebrate fossils and phosphatic steinkerns indicates exhumation of specimens that had already been buried and prefossilized by early diagenesis; exhumed specimens were then abraded and polished by physical reworking on the seafloor during subsequent transgression. Less durable marine bioclasts such as aragonitic fish otoliths and bivalve shells would have been added to the lag assemblage during this final hiatul period. The pebbly sand base thus records both erosional and nondepositional phases in the formation of the SM-O disconformity.

Alternative Stratigraphic Interpretations.—Previous workers have suggested that the Choptank-St. Marys transition includes one or more unconformities, but reached no consensus on their relative importance or precise stratigraphic positions (Fig. 3). Gernant (1970) identified an unconformity at the base of Zone 21 on the basis of northward thickening of this sand body in the BGE area, which he attributed to its filling a small basin created by structural warping of the underlying Choptank Formation. Elsewhere, Zone 22 lies directly on Zone 20. Ward (1984, 1992) also placed an unconformity at the base of Zone 21 at BGE, but believed that a more significant unconformity in that section lay at the Zone 19–20 contact, which was recommended as the formal boundary (Ward and Strickland 1985, following Blackwelder and Ward 1976; other reports cited in Figure 5).

The present study finds that several scoured and burrowed surfaces are present in the Zone 19–21 interval in the cliffs immediately north and south of the BGE plant (Fig. 4). The basal contact of Zone 21 is characterized by Thalassinoides burrows and sparse shell hash in a few sites (Fig. 4; loc. 222 and loc. 245 in Figure 5), suggesting a hiatus, but the contact is usually gradational.

The Zone 19–20 contact is similarly variable. Along the southern flank and crest of the antiline immediately south of Conoy landing and in the cliffs immediately north of the BGE plant, the upper contact of the Zone 19 shellbed is sharp and undulatory (~ 10 cm scale), suggesting local erosion (Fig. 4; loc. 222 in Figure 5). Where scoured, the Zone 19 shellbed is mantled by a thin (50-80 cm) silty fine sand with loosely packed, largely disarticulated and worn bivalve shells and steinkerns. The shallow-water assemblage resembles but is less diverse than that of Zone 19 (inhaunal venerid and crassatellid bivalves, Turritella, wood debris, large mussels, balanid barnacles, and the scallop Cheraxpecten), and is overlain sharply by Zone 20 clay. However, in intervening areas at BGE as well as elsewhere in the outercrop belt (Kidwell 1984), the Zone 19 shellbed grades into or is clearly interbedded with Zone 20 clays (Fig. 4; loc. 245 in Figure 5, facies 2 and 3). Clay interbeds, commonly with burrowed tops, pinch out landward as they intertongue with and overstep the underlying shellbed, indicating a transgressive relationship. A similar mosaic of scoured and interbedded contacts is present along the Zone 19–20 contact within the cliffs immediately south of Western Shores, about 6 km north of BGE (Fig. 2). The top of Zone 19 is consistently scoured only in areas where the SM-O disconformity has cut down to it, and in those sections is mantled with the distinctive SM-O phosphatic pebble lag (e.g., loc. 231a in Figure 5).

Erosion was thus localized rather than pervasive along both the Zone 19–20 and the Zone 20–21 contacts, and appears to have been a synsedimentary response to warping of the seafloor, which was especially pro-
nounced in the BGE area. Neither of these contacts exhibits the same lateral continuity in scouring as the SM-0 surface or cuts through as much section, and both are clearly part of the record that underwent folding before truncation by the SM-0 surface. For these reasons, the entire Zone 19-20-21 interval is considered part of the Choptank Formation (CT-1 sequence), and the SM-0 surface is recommended as the base of the St. Marys Formation (following Kidwell 1988).

Biostatigraphic Corroboration.—Independent biostatigraphic analyses corroborate the physical stratigraphic relationships in the cross sections (Table 2). At BGE, where the Choptank-St. Marys transition is well exposed and most thoroughly sampled, biozone boundaries coincide only with the CT-1 surface (base of Zone 19) and the SM-0 surface (top of Zone 21 sand at BGE), indicating that these disconformities signify the largest lacunae. The CT-1 surface marks the first appearance of diagnostic species for East Coast Diatom Zone 7 of Andrews (1988), dinoflagellate biozone DN7 of de Verteuil and Norris (1994), and mollusk biozone M11 of Ward (1992). The SM-0 surface marks the first certain appearance of diagnostic species for dinoflagellate biozone DN8 (Zone 21 at BGE unsampled; L. de Verteuil, personal communication, 1995) and mollusk biozone M10 (according to Ward 1992; Zone 21 contains morphologically transitional specimens with affinities to guide taxa of the older mollusk zone M11). No biozone boundaries coincide with either the Zone 19-20 or the Zone 20-21 contacts, notwithstanding their locally erosional natures.

Disconformity-Bounded Units within the St. Marys Formation

Basic Patterns.—Between the SM-0 surface, which cuts across deformed Choptank strata, and the highly irregular pSM surface, which marks the base of coarse-grained channelized bodies, lie ∼15 m of thinly bedded dark gray clays and silty fine sands. This interval contains a series of co-parallel burrowed firmgrounds of low relief; each is mantled by a thin mollusk-bearing sand and defines the base of a tabular unit 2–5 m thick. Each firmground is a standing surface, marking an abrupt basinward (regressive) offset in facies, so that shallower-water deposits rest on deeper deposits. Intervals between firmgrounds comprise transgressive facies tracts, in which downdip, basinward facies step up over updip, landward facies. Regressive facies tracts are not present, but each transgressive interval is shifted sufficiently basinward from the preceding interval that an overall regressive trend is produced through the St. Marys Formation (Fig. 2; Kidwell 1988). The extent of stratigraphic overlap between exposures north and south of Cove Point Beach is unclear, and so the two outcrop areas are described here separately.

Dip-Oriented Shoreline between BGE and Calvert Cliffs State Park.—Three firmgrounds can be traced continuously with confidence, and all mark significant regressive facies offsets; these surfaces are numbered SM-0, SM-1, and SM-2 (Fig. 4). Intervening burrowed surfaces with minor facies offset and only local or questionable lateral extent are labeled relative to the primary surfaces; these are the SM-0', SM-2', and SM-2" surfaces (Figs. 4, 5). Scour structures are preserved only along the SM-0 surface, and these are limited to areas where the SM-0 surface is in contact with the Zone 19 shellbed, as described above. The other SM surfaces are so thoroughly perforated by burrows that any small-scale scour features that might have existed originally have been obliterated. The most common burrow types are Thalassinoides, Gyrolithes (especially where the SM-1 and SM-2 surfaces cut across facies 1 clays), and small (1 cm diameter) nonbranching vertical burrows (SM-2 and its subsidiary surfaces). The SM-2 disconformity exhibits evidence of erosion at a broader scale, in that facies 1 of the underlying SM-1 interval terminates against it both landward and basinward (Fig. 4). Some degree of erosion is also necessary to exhume strata that are sufficiently stiff to permit colonization by a firmground assemblage of burrowers.
<table>
<thead>
<tr>
<th>Zones</th>
<th>Deposits</th>
<th>SM-3 fluviomarine channels</th>
<th>Hudson Cyn Allomembers</th>
<th>Pleistocene</th>
<th>cliff-top gravel (Qual.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Little Cove</td>
<td>1st pulse, XII **</td>
<td>1st pulse, XI</td>
<td>SE9</td>
<td>SM-0</td>
</tr>
<tr>
<td>20</td>
<td>Point Mbr</td>
<td>2nd pulse, X</td>
<td>Mey</td>
<td>SE10</td>
<td>SM-2</td>
</tr>
<tr>
<td>19</td>
<td>Boston Cliffs</td>
<td>TST</td>
<td>SE8</td>
<td>CT-1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>St. Leonard</td>
<td>1st pulse</td>
<td>SE7</td>
<td>CT-0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Drumcliff</td>
<td>4th pulse</td>
<td>HST</td>
<td>PP-3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Calvert Beach</td>
<td>(composed of 3 unspecified allomembers)</td>
<td>SE6</td>
<td>PP-2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PP-3</td>
<td>Beach Mbr</td>
<td>VII</td>
<td>SE5</td>
<td>PP-2</td>
</tr>
<tr>
<td>14</td>
<td>Drumcliff</td>
<td>Pulses 1 to 3</td>
<td>Phoenix, Zone 16</td>
<td>PP-1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PP-1</td>
<td>(= Plum Pt)</td>
<td>Plum Pt, Alloformation</td>
<td>SE3</td>
<td>PP-0</td>
</tr>
<tr>
<td>12</td>
<td>PP-2</td>
<td>undefined</td>
<td>VI</td>
<td>SE2</td>
<td>Fairhaven</td>
</tr>
<tr>
<td>11</td>
<td>Drumcliff</td>
<td>3 pulses</td>
<td>Berkeley Allo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fairhaven</td>
<td>2 pulses</td>
<td>Fairhaven</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The shell-bearing silty sands (facies 4) that mantle each firmground thin basinward (downdip), so that some firmgrounds are clay-on-clay contacts in their most basinward outcrops (e.g., SM-1 surface at locs. 213a and 240 in Figure 5). The SM-0 basal sand was described above; it and the subsidiary SM-0' firmground, which is restricted to the crest of the Conoy anticline, are the only SM surfaces marked by significant authigenic minerals, vertebrate fossils, or lithic pebbles. The SM-1 surface is mantled by a thin (10-90 cm) silty or clayey sand with sparse molds of small-bodied, soft-bottom-dwelling bivalves (Cardium, Solen, Corbula, Caracorbulida, Yoldia, Lucinoma, Spisula) and gastropods (Turritella), plus comminuted shell hash (see well-preserved fossils at loc. 222 in Figure 5). The SM-2 surface is mantled by a similar burrow-mottled silty sand 15-30 cm thick; molds indicate that mollusk shells were originally loosely packed and more diverse than along the SM-1 surface. Mantling silty sands on the subsidiary SM-2' and SM-2" surfaces are only 10-20 cm thick.

Across each SM firmground, facies shift abruptly to shallower-water deposits; indicating that these are stranding surfaces; within each interval, deeper-water (more basinward) facies step up and over shallower-water (more landward) facies, forming transgressive facies tracts (Fig. 4). In the SM-0 interval, which has a maximum thickness of 5 m, facies 1 clay dominates the most basinward (downdip) outcrops and steps upland over silty clays of facies 2, which in turn step over facies 3, which in turn steps over silty sands of facies 4, which continues to thicken landward (updip).

Upward fining can be observed within individual sections of the SM-0 interval (e.g., locs. 245, 213a, and 240 in Figure 5). The SM-1 surface marks a minor regressive offset, with facies 3 juxtaposed on facies 1 in basinward outcrops, and with facies 6 on facies 3 in landward outcrops. The SM-1 interval is 4 m thick and consists of facies 1, 3, 4, and 6 in transgressive array.

The basal SM-2 surface shows a major regressive offset, juxtaposing facies 4 on facies 1 in basinward sections and facies 6 and 7 on facies 3 in landward sections. Subsidiary SM-2' and SM-2" surfaces appear to have minor regressive offsets, however, and so the total family of transgressive SM-2 intervals yields a net transgressive trend up to the pSM surface. Thicknesses of the SM-2, SM-2', and SM-2" intervals are 4 m, 4 m, and 3 m, respectively. Stratigraphic relations within the SM-2 interval (between the SM-2 and SM-2' surfaces) suggest lateral shingling of at least two discrete transgressive tracts; each tract is floored on the low-relief SM-2 surface, and each track has an updip "leading edge" of facies 6 sand representing transgressive beach or upper shoreface environments (these sands appear to have convex bases, as sketched in Figure 4). Presumably the more updip tract, whose leading edge cuts into intertidal facies 7 at the BGE plant (loc. 241 in Figure 4), is older than the downdip tract (leading edge at loc. 214 in Figure 4). This basinward (regressive) stepping is geometrically analogous to stranded parasequences within forced regressive records and precedes the transgressive stepping of the SM-2' and SM-2" intervals. The overall SM-2 interval (up to the pSM) thus appears to be genetically much more complex than the other SM intervals.

Strike-Oriented Shoreline at Little Cove Point.—The St. Marys Formation in the Little Cove Point area contains a series of buried and locally scored discontinuity surfaces (Fig. 6). Each is a standing surface mantled by a thin fissiliferous silty sand (too thin to indicate in Figure 6); abrupt shallowing is most marked across the SM-B and SM-C surfaces (e.g., facies 4 or 5 on facies 2), and less so across the subsidiary SM-B' and SM-C' surfaces (strata at the base of the cliffs are assigned to a SM-A interval, but no SM-A basal disconformity is exposed). The intervals bounded by these surfaces are more variable in thickness and facies patterns than those exposed in the cliffs between BGE and Calvert Cliffs State Park, probably because of the strike orientation of the outcrops, and fossils are much better preserved. The overall trend is upward shallowing (subtidal clays in SM-A interval to intertidal-flat sediments at the top of the SM-C' interval; loc. 255 in Figure 5).

The SM-B surface is mantled by a thin (10-30 cm) silty sand with sparse worm fragments of thick-shelled, shallow-burrowing bivalves (Mercenaria, Eucratidula and heavily bored valves of the scallop Chesapeake and is paleoecologically and taphonomically distinct from the fauna of thin-shelled, deep-burrowing bivalves present in the underlying facies 2 clay (loc. 255 in Figure 5). This burrow-mottled shell sand is pipped into Thanassomides burrows that penetrate 1 m into underlying clays all along the SM-B contact. Within the SM-B interval, finer-grained lower-energy facies step up over coarser, higher-energy facies (e.g., at Little Cove Point proper, locs. 206 through 209), suggesting transgressive migration.
This upward fining continues through the SM-B’ interval, although clayey facies are much more fossiliferous. In facies 2, lenses of binodally oriented Turritella (figure 5 in McCarten et al. 1985), a high-spired gastropod, are probably storm-generated (sufficient energy to erode infralunal gastropods and establish oscillatory currents with strength to orient shells; rapid post-event burial to preserve these orientations); in facies 3, pavements of mostly broken Turritella are consistent with shallower water permitting greater post-storm reworking of shells. The SM-B’ surface itself is characterized by erosional gutters 15 cm deep and a few burrows, chiefly Thalassinoides. The mantling sand is 10–30 cm thick and densely packed with both fresh and worn whole and broken shells, including abundant Turritella and disarticulated cardiid, venerid, and Spisula bivalves. This coquina has a pinch-and-swell geometry created by the shingling of primarily northward-dipping lenses of shell gravel (10–25 cm thick, 0.3–1.0 m long) with rare clay drapes, and is truncated locally by swaly cross-sets of silty sand. This highly distinctive and broadly undulatory coquina persists throughout the Little Cove Point area, and makes this the visually most impressive of all SM stranding surfaces.

The SM-C surface is a locally scoured Thalassinoides-dominated firmground. It is overlain by a relatively thick (3 m) basal “sand”, which varies laterally between bedded to interbedded silty sand and coquina (facies 5+6), to wegeic and trough cross-bedded coquina (facies 5w and 5t), and parallel-laminated clean sand (facies 6p) (fig. 6). Facies 5 contains abundant Turritella along its base, perhaps reworked from the underlying SM-B’ interval, but the bulk of the coquina is a fine groundmass of ≤ 1 cm disarticulated Spisula bivalves. These are arranged in large cross-sets with only scattered whole disarticulated specimens of larger bivalves (Table 1; figure 2B in Kidwell and Holland 1991). This coquina grades laterally into Ophiomorpha-burrowed silty sand (facies 4o).

The SM-C’ surface is marked by a relative concentration of bone, wood, and molluscan debris, especially where it scours the top of the SM-C coquina (e.g., loc. 255 in Figure 5). The SM-C’ interval is an overall regressive 7-m-thick section of complexly interfingered Ophiomorpha-burrowed silty sand (facies 4o) and wavy-bedded sand and clay (facies 7). Throughout, facies could not be detected within this stratigraphic interval, perhaps because of deep weathering and slumping of facies 4o sands.

Paleoenvironmental Interpretation of the Surfaces.—None of the SM surfaces show root traces or other evidence of subaerial exposure, although each marks an abrupt shallowing in the record. With the exception of the SM-0 and SM-O’ surfaces described above, shell material in basal sands shows little evidence of having been exhumed from significantly older deposits. Both thin and robust shells are in generally good condition aside from being disarticulated or sharply broken (fragmentation is consistent with bioturbated sand matrix), truncated facies generally lack the appropriate taxa to have served as the source of bioclasts, and the paleoecology of taxa hosted by these basal sands is consistent with the matrix (facies 4 or 5). Shell material thus appears to have been derived entirely from benthic communities that migrated across the area during transgression; modification and concentration of shells reflect ordinary processes of matrix deposition and winnowing within either an upper transition or shoreline environment.

Firmground-mantling shellbeds in the SM-C surface are much thinner than their transgressive analogues in the Plum Point–Choptank interval (Zones 10, 14, 17, and 19; Kidwell 1989), and also have less complex accretionary histories that do not involve widespread environmental condensation. Even the comparatively thick and internally complex shell deposit in the SM-C interval is limited to a small area (facies 5 in Figure 6) and is genetically simple. It consists of a straightforward stack of wedge and trough cross-sets of disarticulated bivalves interspersed with swaly cross-bedded silty sand, indicating migrating dunes of mobile hardparts driven by strong currents, perhaps in a subtidal channel. The assemblage is overwhelmingly dominated by the infaunal bivalve Spisula and other small-bodied (< 1 cm) mollusks that would not have been indigenous to shell-gravel substrata of the channel, but that instead must have been
reworked and transported from adjacent muddy substrata. The SM-C shellbed thus reflects multiple short-term events of shell import, concentration, and reworking, but little evidence of the environmental condensation and prolonged time-averaging that produced the high-diversity, complexly amalgamated, and laterally extensive transgressive shell deposits in the Plum Point–Choptank interval.

Correlation of Outcrop Areas.— Provisional correlations of SM intervals between the BGE–State Park area and Little Cove Point can be made on the basis of physical stratigraphy alone. Comparing facies in the nearest outcrops north and south of Cove Point beach, the clayey SM-A interval (facies 2) might represent the basinward continuation of facies tracts in either the SM-1 or SM-2 intervals (facies 3 and 2, respectively, at downdip limit of outcrops at State Park; the SM-A interval is not a continuation of Zone 20 as that Zone is defined at BGE, contrary to correlations by previous workers). In contrast, the SM-B through SM-C′ intervals at the northern tip of Little Cove Point outcrops are all composed of much sandier facies than SM intervals at State Park, and may be entirely younger than any of the SM intervals exposed to the north. The provisional correlation preferred here is that the SM-B interval is the downdip continuation of the SM-2 forced regression, and that the combined SM-C/C′ interval is younger than the SM-2′ and SM-2′′ intervals and is stranded downdip of them (Fig. 2, and see later discussion).

Independent analysis of the physical stratigraphy described in this paper by a new, high-resolution biozonation based on dinoflagellates indicates that the SM-A interval at Little Cove Point contains the same diagnostic taxa as the SM-0 and SM-1 intervals (very early DN8 time, below the lowest occurrence of *Achomosphaera andaloussiensis*; de Verteuil and Norris 1996; Table 2). De Verteuil and Norris (1996) thus conclude that the SM-A interval correlates with the SM-1 interval. Strata from the SM-B surface up to the pSM surface at Little Cove Point contain the same diagnostic taxa as the SM-2′ interval (later DN8 time, above LO of *A. andaloussiensis*). The range of *A. andaloussiensis* within DN8 is so prolonged (~ 2 my; de Verteuil and Norris 1996), however, that strata of this bizonc at Little Cove Point may still be chronologically and genetically distinct from “same age” strata in updip outcrops, thus permitting the provisional correlations of the present paper.

Incised Channels Capping the St. Marys Formation (pSM Interval)

The tabular, fine-grained SM intervals are truncated by a series of crosscutting channels, designated the pSM interval for post-St. Marys. Individual channels show as much as 12 m of erosional relief and are named informally for geographic features (Figs. 4, 6); the master erosion surface that defines the lower boundary of the entire array is called the pSM surface (equivalent to SM-3 surface in Kidwell 1988). The change in sedimentary geometry across the pSM surface is accompanied by coarser sand modes, less mud overall, greater segregation of sand and mud into distinct beds, and far less burrowing and bioturbation.

Lower State Park Channel.— Crosscutting relations indicate that the oldest pSM deposits are in the lower of two channel-form bodies whose maximum exposed thickness is at Calvert Cliffs State Park (Fig. 4). The base of this lower channel, marked by a lag of limonite-stained coarse to pebbly sand (facies 11), cuts down ~ 3 m from the top of the SM-2′ interval in the Rocky point area (Fig. 7) to the SM-2′ interval in the main stretch of cliffs on Park property (loc. 240 in Figure 5), where it is overlain by fine sand and highly carbonaceous clay with variable sand partings, root casts, and layers of well-preserved leaf-compression fossils and seeds (facies 10). The carbonaceous clay is ~ 5 m thick and broadly lenticular, and interfingers laterally with coarse flaking sands (Fig. 4). Limonitic crusts mark several sand/clay contacts in the upper part of the SM-2′′ interval and just above the pSM surface, making this important contact quite subtle in individual sections, despite the broad erosional geometry of the pSM unit. These deposits are interpreted as an abandoned-channel fill from a fully nonmarine fluvial system. The coarseness of the sands and the absence of overbank deposits suggests a braidplain rather than meander-belt system. This unit represents the oldest unambiguous evidence for subaerial exposure in the Calvert Cliffs succession.

Other pSM Channels.—All other individual channels within the pSM interval contain a quite different suite of tide-dominated facies (facies 7, 8, and 9), marking the return of marine influence on sedimentation. The upper channel at State Park is scoured into the carbonaceous clay of the lower channel and filled with ~ 5 m of upward-coarsening medium to coarse pebbly sand (loc. 240 in Figure 5). Tabular or wedge cross-sets
at the base are succeeded by large-scale low-angle trough sets, wedge sets with strongly graded laminae, and gently inclined parallel lamination (south-dipping).

The Rocky Point channel cuts through at least 12 m of clayey SM-2 strata, and has a basal contact marked by abundant rounded clay clasts in large low-angle cross-sets of coarse sand (Figs. 4, 7; loc. 213a in Figure 5). The fill is divisible into at least three stories, each dipping down toward the axis of the channel from the south flank. The lowest story consists of ~5 m of fining-up trough cross-bedded coarse and medium sands with clay clasts, and the upper two stories are each ~6-m-thick sets of laterally accreted inclined heterolithic strata (facies 9) with clay drapes and thin beds of clay chips. The channel is capped by an additional ~6-m-thick multistoried interval of facies 9, which laps beyond the edges of the preserved channel (northern edge of this body of facies 9 appears in Figure 8).

The Conoy channel was impossible to reach except at one peripheral locality at the north edge of Rocky Point (loc. 230 in Figures 4 and 5). It is not clear whether it cuts across or is cut by the Rocky Point channel, but it incises at least 4 m down into clays and sands of the SM-2 interval in the cliffs north of Rocky Point and is filled with an upward-finining succession of interbedded clay and pebbly sand, flat-beded coarse sand, and wedge and trough cross-sets of coarse to medium sand with clay drapes (facies 11 and 8). It is capped by an additional 2.5 m of low-angle laminated fine sand and inclined heterolithic strata (facies 6 and facies 9). The rest of the Conoy channel, which is well exposed but inaccessible in the cliffs south of Conoy landing, appears from a distance to be filled and capped entirely with facies 9 (Fig. 8; see also figure 29 of Hack 1955).

A series of low-relief channels is present in the Little Cove Point area (Fig. 6; illustrated as a single channel in Kidwell 1988, 1989). Postdepositional warping has accentuated the convexity of the channel bases, but their erosional origin is still evident from the truncation of underlying beds. The main channel has a basal interval of trough cross-bedded medium to pebbly sand with clay clasts, but the dominant fill is heterolithic lateral-accretion deposits (facies 9; loc. 255 in Figure 5). The southern set of channels are smaller and have more complex internal stratigraphy. At locality 261 (Fig. 6), the basal 4-5 m consists of high- to low-angle trough cross-sets of medium sand with clay clasts and some clay laminae; Arenicollites, Skolithos, and ghost crab burrows are present along some bed
EXTREMELY THIN MARINE SEQUENCES LANDWARD OF A PASSIVE-MARGIN HINGE ZONE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>"Pleistocene"</td>
<td>top gravel</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>pSM</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>22 and 23</td>
<td>SM C & C</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>SM-2 & 2</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>SM-2B</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>SM-3A</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>SM-0</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>21</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>19</td>
<td>CT-1</td>
<td>ECDZ7 = M</td>
<td>D. petersoni</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>18</td>
<td>CT-0</td>
<td>VI = M</td>
<td>ECDZ6 = M</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>17</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>16</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>15</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>14</td>
<td>PF-3</td>
<td>V = M</td>
<td>ECDZ5 = M</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>13</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>12</td>
<td>PF-2</td>
<td>N9 = M</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>11</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>10</td>
<td>PF-1</td>
<td>E1 = M</td>
<td>ECDZ3-4 = M</td>
<td>N9 = M</td>
<td>N8 = M</td>
<td>N7 = E</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>4-9</td>
<td>PF-0</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>3</td>
<td>Fairhaven</td>
<td>II = M</td>
<td>ECDZ2 = L/M</td>
<td>D. obtusum</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

CT-0 sequence includes incised-channel deposits at Governor Run. * Detailed data on distribution relative to discontinuities is in Kadwell (1984).

* Indicates no data (bed not sampled or barren). E = Early Miocene, M = Middle Miocene, L = Late Miocene.

contacts in this interval (variants of facies 8). This is succeeded by an ~8-m-thick upward-fining interval of flat-laminated coarse sand, gently dipping laminated coarse to medium sand with siltstone (variants of facies 8), and undulatory beds and climbing ripples of medium to fine sand with clay laminae and clay-lined burrows (facies 6 and 7).

The sandy, upward-fining successions (facies 8) in these channels match almost perfectly the tidal-inlet sequences described by Kumar and Sanders (1974). From a basal lag of quartz gravel and clay rip-ups, pSM channel fills fine upward into relatively large trough, wedge, or tabular cross-sets of coarse to pebbly sand, medium-grained bidirectional cross-sets, and foreshore-laminated medium or fine sand, sometimes with Ophiomorpha burrows. Restriction of these successions to incised channels further supports this interpretation. Some of the pSM channels were capped by tidal-creek point bars, interfingering with the intertidal flat sediments (facies 7) that cap facies 8 locally (cf. Barwis 1978). Well-sorted sands of facies 8 commonly include thin beds of clay rip-ups, further suggesting the proximity of contemporaneous mud flats. The large-scale inclined heterolithic stratification (facies 9) that dominates and/or caps these channels is interpreted as lateral-accretion deposits from tidally influenced rivers (cf. Thomas et al. 1987).

With the exception of the fluvial lower State Park channel, the overall pSM paleogeography was thus a tide-dominated shoreline complex of tidal inlets, intertidal flats, and tidally influenced rivers (small true estuaries). The 5-6 m sets of facies 8 and 9 indicate a minimum paleogeographic relief of that scale in the channels at any given time, and the crosscutting nature of the pSM channels and inclusion of clay cobbles that could have been ripped from their walls suggest that the channels were modified by erosion during infilling, even if their basic topographic form was inherited from the preceding period of subaerial exposure.

![Fig. 6.—Strike-oriented (NE-SW) cross section of the Calvert Cliffs in the Little Cove Point area. Conventions as in Figure 4.](image-url)
Cliff-Top Gravels

A broadly tabular unit of unfossiliferous bedded sands and gravels truncates pSM and St. Marys strata at a low angle 20–30 m above mean sea level (facies 11; Figs. 2, 4, 6). The base of these capping gravels could be reached at several points, but the entire interval could be examined at only one locality (BGE, loc. 222 in Figure 5). This limited access, combined with very limited preservation of strata at this elevation, makes it impossible to characterize these strata in any detail. They do include, however, some high-angle trough cross-sections (1 m scale) and minor plane beds, in some instances inclined in such a way as to suggest small channels. These channels appear to be much smaller, or at least less steep-sided, than those of the pSM interval.

This interval marks the return of nonmarine fluvial, possibly braidedplain, conditions in the Calvert Cliffs succession. This terrace-like unit is considered a distinct disconformity-bounded interval because of the erosional nature of its lower contact and its discordance with older strata, which by contrast have detectable dips (Fig. 2).

Other Interpretations of Uppermost Strata in the Calvert Cliffs

The distinct cycle of subaerial exposure and incision, fluvial aggradation, and estuarine transgression inferred for the pSM interval in the present paper contrasts with the interpretation of McCartan et al. (1985), the only previous study of the pSM interval in the Calvert Cliffs. They considered the coarse sands at Little Cove Point to be a conformable set of beach deposits recording the final phase of Miocene marine regression (correlative with shallow marine facies of Zone 24 of the St. Marys Formation exposed 20 km south in St. Marys County, Maryland; and see Newell and Rader 1982, Vogt and Eschelman 1987; Fig. 3). In contrast, Hack (1955), Schlee (1957), and Glaser (1968) considered all coarse-grained, high-elevation deposits in southern Maryland to be part of a single unconformable and exclusively fluvial Plio-Pleistocene unit. Shattuck (1906) also grouped all coarse deposits as a single, unconformable Pleistocene unit, but argued for a complex fluvial-estuarine-marine origin on the basis of mapping patterns. The interpretation in the present paper is most consistent with that of Stephenson and MacNeil (1954), who, in a largely overlooked paper that briefly described the Calvert Cliffs, recognized the pSM interval as an unconformable nearshore sand body (transgressive facies of Pliocene Yorktown Formation) distinct from the St. Marys Formation below and from unconformable nonmarine terrace gravels above.

The present enlarged set of observations indicates that the complexity of this interval has been underestimated by recent workers. Given the quality of exposures and the association with well-dated marine units, the fluvio-estuarine pSM interval and fluvial cliff-top gravels in the Calvert Cliffs should be reexamined carefully for integration into the detailed chronofacies of late Cenozoic nonmarine deposits that is evolving for the coastal plain (e.g., Pazzaglia 1993). Judging by its downcutting of the Choptank and St. Marys formations, the pSM interval is probably a distal, marine-influenced toe of Pazzaglia's (1993) fluvial Bryn Mawr phase 3, which correlated with the upper Miocene Eastover Formation of Virginia (synonymous with the lower Yorktown Formation of Stephenson and MacNeil 1954). The cliff-top gravel appears to be a distinct terrace deposit; its attitude is so different from underlying strata that a Pleistocene age is probable.

SEQUENCE ANALYSIS

Comparison with Sequence and Parasequence Models

St. Marys Formation: Shaved Sequences.—The St. Marys Formation consists of thin (2–7 m), tabular units bounded by stranding surfaces of abrupt shallowing. Strata between successive surfaces consist of a transgressive tract, normally deepening upward, in which downdip facies step
EXTREMELY THIN MARINE SEQUENCES LANDWARD OF A PASSIVE-MARGIN HINGE ZONE

Fig. 8.—View of cliffs south of Conoy landing (~ 35 m high), showing tabular disconformity-bounded units of the shallow-marine Cheopek Formation (Zones 19–20) and St. Marys Formation (SM units), and large estuarine channels of the post-St. Marys (pSM) interval. Zone 19 is the rough, shadow-casting ledge at the base of the exposure (partially obscured by slumps); the three bands of relatively smooth-weathering clay above Zone 19, each slightly thicker and darker colored than the one below, are Zone 20, the SM-0 interval, and the SM-1 interval (top of SM-1 interval is 15 m amsl, almost half-way up the cliff); the base of the pSM Conoy channel is coterminal with the top of the SM-1 interval in the north (right) edge of the cliff. Zone 20 thins measurably (from 2.5 m to 1.6 m) from north to south across this outcrop because of truncation by the SM-0 disconformity. The distinctive phosphatic pebble lag mantling this disconformity is evident on close examination but does not form an impressive notch or ledge.

up over updip facies; regressive facies tracts are lacking, either because regression was nondepositional or because regressive deposits were eroded during the final phase of regression and/or during the next transgression (Fig. 9A). The anatomy of SM units is thus opposite to parasequences, which by convention are sets of genetically related beds bounded by marine-flooding surfaces of abrupt deepening (Fig. 9A; Van Wagoner et al. 1988; Van Wagoner et al. 1990). In siliciclastic systems, each parasequence consists of a regressive facies tract that shallows upward; transgressive deposits are negligible or entirely absent. Flooding surfaces are commonly accompanied by minor submarine erosion and nondeposition, but not by subaerial erosion or by a basinward shift in facies.

Stranding surfaces are so fundamentally different from flooding surfaces that it seems counterproductive to equate the SM units with parasequences or to modify the parasequence definition to accommodate them. Instead, SM units are most readily classified as shaved sequences, in which any regressive "highstand" deposits (HST) have been removed entirely by erosion, leaving only transgressive deposits (TST) to represent the baselevel cycle.

Notwithstanding anatomical differences from parasequences, the isolated transgressive tracts of the SM sequences can be stacked into analogous larger-scale transgressive (backstepping) and regressive (progradational) sets (Fig. 9B; cf. Van Wagoner et al. 1988). The magnitude of facies offset across individual stranding surfaces is greater within regressive tracts than within transgressive tracts, for the same geometric reasons that facies offsets across individual flooding surfaces are greater within transgressive stacks than within regressive stacks (Fig. 9B). SM intervals can also be shingled into basinward-stepping sets in a pattern analogous to the stranded parasequences of forced regression (Figs. 9C, 10; cf. Posamentier et al. 1992).

Shideler (1994) interpreted the SM-0, SM-1, and SM-2 units of Kidwell (1988) as parasequences, on the basis of grain-size analysis of the BGE section. However, the only way to transform the transgressive arrangement of facies within SM units into the regressive arrangement that typifies parasequences would be to reverse regional dip (to the northwest), and this is contrary to regional isopach and paleogeographic patterns for the Salisbury Embayment (e.g., Puag and Ward 1993; de Verneuil and Norris 1996).

pSM Interval: Incised-Valley Deposits.—This interval is not divisible into hemicyclic units of either parasequence or "anti-parasequence" anatomy, but instead consists of a set of incised channels with single- and multiple-story fills 7–15 m thick. The aggradational nature of fluvial fill within the lower State Park channel suggests a remnant incised-valley fill (a second deposit of this type was reported by Shattuck 1906 ~ 40 km north, near Owings, Maryland). Aggradational tidal inlet and estuarine channels in the pSM interval are the leading depositional edge of marine transgression, and are readily classified as incised-valley fills (IVF). Other transgressive deposits are lacking, as are any regressive deposits, and so this interval too is the remnant of a severely shaved sequence, albeit dominated by a different part of the transgressive system tract (IVF). Given that the upper bounding unconformity is overlain by
fluvial deposits (cliff-top gravels), truncation of the pSM interval records a subsequent lowstand.

Plum Point–Choptank Interval: Thin but Complete Sequences with Condensed Transgressive Tracts.—Disconformity-bounded units in this oldest part of the Calvert Cliffs succession are roughly tabular units, 6–10 m thick, that thicken slightly downdip (Fig. 2); intervals are labeled successively through the Plum Point Member (PP) and the Choptank Formation (CT); all description and interpretations below are from Kidwell 1984, 1989). In individual sections, disconformities are heavily burrowed firmgrounds dominated by Thalassinoideas; on a larger scale, the disconformities are demonstrably laterally continuous surfaces that locally incise and broadly overlie underlying strata. Incised channels are filled with intertidal and/or very shallow subtidal facies (e.g., in the Scientists Cliffs area along the CT-0 basal disconformity, and in the Scientists Cliffs to Matoaka area and in the Conoy area along the CT-1 basal disconformity). Broad erosional breccia preferentially thinned the updip reaches of each unit (Fig. 2) and also thinned sequences over folds, which apparently were syndepositional (e.g., thinning of PP-0 interval south of Naval Lab; thinning of PP-2 interval in Parker Creek area; thinning of PP-3 interval south of Governor Run; thinning of CT-0 interval south of Matoaka; thinning of CT-1 interval south of BGE).

Plum Point and Choptank sequences are composed of the same range of lithofacies as the St. Marys Formation but have a qualitatively different anatomy, comprising a condensed record of transgression and more normal record of regression. Transgressive tracts are dominated by environmentally condensed bioclastic facies that are rich in both macrobenthic and marine vertebrate material. These bioclastic facies have a laterally and vertically complex stratigraphy that onlaps the basal disconformity, and consist of condensed and entirely shell-supported clean sands in updip and paleohigh areas (facies 5; dynamic bypassing and starvation), and thicker intervals of interbedded shell-rich sand and shell-poor silt sand or clay in updip and other paleohigh areas, including incised valleys (facies 5 and 4). In contrast, regressive tracts are lateral arrays of rather normal-looking siliciclastic facies (facies 1, 2, 3, 4), and are as thick as or thicker than the transgressive tract they cap. Neither tract can be subdivided readily into subsidiary parasequences or other cyclic or hemicyclic units, although the contact of the regressive tract on the transgressive tract may be a slight flooding surface in some instances (locally burrowed or scoured; typically facies 2 or 3 superposed on facies 5).

Lowstand deposits and nonmarine facies are entirely lacking, and the
disconformities show no direct evidence of subaerial exposure, although in some instances intertidal or extremely shallow subtidal deposits immediately underlie or overlie the erosion surface, suggesting that subaerial exposure was highly likely. Each nonetheless marks a significant basinward offset in facies (Fig. 2), and biostratigraphic zone boundaries coincide with these disconformities (Table 2), providing independent corroboration for hiatuses. The PP and CT disconformities thus meet most criteria for sequence-bounding unconformities (Van Wagoner et al. 1988; Mitchum and Van Wagoner 1991), namely that they indicate a significant hiatus (i.e., more erosion than from point-bar or channel migration), are overlain by overlying strata, are traceable over a significant region and into deep-water environments (see Kidwell 1984), and show either a basinward shift in facies (Type 1 unconformity) or a vertical change in stacking patterns (Type 2 unconformity).

These units are thus anatomically fairly complete, albeit very thin, sequences. This diminutivation, which is accompanied by condensation within the transgressive facies tract, contrasts with SM sequences that are thin because of severe erosional truncation at the end of the baselevel cycle. The major anatomical differences between PP-CT sequences and model sequences from settings of moderate subsidence are (1) the absence of lowstand deposits, so that sequence boundaries are also transgressive surfaces, and (2) the absence of well-developed subsidiary parasequences within transgressive and regressive tracts (but see Van Wagoner et al. 1990 and Shideler 1994, who interpreted PP and CT units themselves as parasequences).

The only exceptions to this pattern concern the PP-2 and PP-0 intervals. The PP-2 rim zone contains only sparse Thalassinoides and lacks clear evidence for erosion, although the underlying PP-1 interval thins dramatically updip within the Calvert Cliffs (Fig. 2). Moreover, the 0.6-m-thick bone-rich but shell-poor sand that immediately overlies the PP-2 discontinuity is uniquely rich among all units in the Calvert Cliffs succession in glauconitic sandstone, molluscan and gastropod-rich marine mammal, and planktonic microfossil species, and splay into a series of thinner discrete sand beds in an updip rather than downdip direction. In downdip areas and throughout the rest of its outcrop area in Maryland and Virginia, this bone sand is remarkable among all mantling skeletal sands for its uniformity in thickness and composition. For these reasons, the PP-2 surface and bone bed have been interpreted as recording maximum transgression, marked by conditions of siliciclastic starvation on the relatively distal shelf, and the PP-2 interval has been grouped with the underlying PP-1 interval into a single depositional sequence (Kidwell 1984, 1988, 1989). The presence of sand and a limited degree of erosion along the PP-2 surface would not be inconsistent with this interpretation, given the potential for small-scale storm winnowing of fines even on relatively deep seafloors given enough time (e.g., description of palimpsest sands by Galloway 1989). The coincidence of biozone boundaries with the PP-2 surface (Table 2) is as consistent with a non-depositional hiatus as with an erosional hiatus.

The PP-0 interval, which is preserved only locally within the Calvert Cliffs and onlaps the demonstrably erosional PP-0 discontinuity, may be best regarded as an incised-valley fill. The thin sand that mantles the PP-0 discontinuity contains abundant worn vertebrate material and phosphatic pebbles consistent with erosional reworking of older marine deposits, and in taphonomy resembles the SM-0 lag more than any other discontinuity in the Calvert Cliffs succession.

Sequence Ranks and Stacking Patterns

Biostratigraphic analyses of diverse taxonomic groups concur that the PP and CT sequences record evolutionally distinct time increments (Table 2). Absolute calibration of the dinoflagellate zonation by de Verteuil and Norris (1996) indicates that the PP and CT disconformities have frequencies of 0.5–1.5 my (avg. 1.05 my; Fig. 11). These sequences would thus be classed as third order in the ranking scheme of Mitchum and Van Wagoner (1991; if PP-1 and PP-2 intervals are combined into a single sequence, its duration would be 2.0 my, still third order). In contrast, calibrated dinoflagellate evidence (de Verteuil and Norris 1996) indicates that SM disconformities have frequencies of ~ 300–450 ky at most (2 units within the 0.7-ky-duration very early part of DN8; 5 to 7 units within the remaining 2.3 my of DN8 time, depending on how units within the SM-2 forced regression set are counted). Individual SM sequences would thus be classed as fourth-order units (Fig. 11).

Unit geometries and stacking patterns in cross section (Fig. 2) suggest that the third-order PP and CT sequences constitute the transgressive and early highstand tracts of a second-order composite sequence (Fig. 11). The PP-2 discontinuity is the surface of maximum transgression within this second-order cycle, and successive PP and CT sequences exhibit progressively greater low-angle erosional beveling of regressive facies tracts, more channel-form incision along disconformities, and an increasingly shallow-water part of the bathymetric spectrum. In the absence of detailed physical stratigraphic information for older (Fairhaven) strata, the PP-0 discontinuity is provisionally interpreted as the basal second-order sequence boundary. The PP-1 discontinuity merges with this surface in updip areas away from the Calvert Cliffs (Kidwell 1984), and so the intervening PP-0 interval may be either incised-valley-fill deposits related to the PP-1 sequence or, alternatively, the remnant of a genetically distinct but largely truncated third-order sequence. These interpretations do not differ substantively from those of Kidwell (1984, 1989), although they are updated to current sequence stratigraphic terminology (but see de Verteuil and Norris 1996, who interpret the PP-0 discontinuity to be the master downlap surface of the Miocene second-order cycle; Fig. 11).

The part of the St. Marys Formation preserved within the Calvert Cliffs is a complex set of fourth-order shaven sequences that rests erosionally and with slight structural discordance upon older strata. The overall aggradational to weakly progradational appearance of SM units includes one or possibly two forced regressions, which are indicated by downdip shingling of fourth-order sequences (within the SM-2B interval, and possibly the SM-CC' sequence relative to the SM-2/2' interval; Fig. 10). These forced regressive sets can be used as a basis for grouping fourth-order sequences into two third-order units (Fig. 11). The simplest and preferred interpretation is that the entire set of SM units constitutes the late highstand record of the preceding PP-CT second-order composite sequence, continuing the up-section trend of progradation and increasingly severe erosional beveling of highstand deposits in each subsidiary third-order sequence; the appearance of forced regression sets within the St. Marys Formation is consistent with this overall up-section trend (Fig. 11). An alternative interpretation that places greater significance on qualitative changes at the SM-0 discontinuity—e.g., the structural discordance, the paleogeographic change implicit in the shift from condensed to noncondensed transgressive deposits (Kidwell 1988), and the coincidence with the middle/lower Miocene boundary—is that the St. Marys Formation constitutes the initial shelf/margin systems tract of a second-order (upper Miocene) cycle distinct from the lower and middle Miocene cycle that includes Plum Point and Choptank strata.

The pSM interval is fairly readily interpreted as transgressive incised-valley deposits from a second-order cycle of deposition distinct from the St. Marys Formation. The clift-top gravels represent lowstand deposits of an even younger second-order cycle (Fig. 11).

Comparison with Offshore Records

Third-order PP, CT, and SM units (as defined in this paper; Fig. 11) have been correlated throughout the outcrop and subsurface record of the Salisbury Embayment (Fig. 1; Kidwell 1984; Ward and Powars 1989; Ward 1992; Miller and Sugarman 1995; de Verteuil and Norris 1996). Some authors have erected allostratigraphic labeling schemes for PP, CT, and SM units in order to avoid sequence stratigraphic interpretations; Figure 3.)
Table: Sequence Stratigraphic Interpretations

<table>
<thead>
<tr>
<th>Shattuck 1904 Zones</th>
<th>this paper (Calvert Cliffs)</th>
<th>de Verteuil & Norris 1996</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>disconformity bounded unit</td>
<td>sequence stratigraphic interpretation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleist.</td>
<td>cliff-top gravels</td>
<td>Pliocene terrace</td>
</tr>
<tr>
<td>23</td>
<td>pSM</td>
<td>IVF</td>
</tr>
<tr>
<td>&</td>
<td>SM-C + C'</td>
<td>stranded sequence</td>
</tr>
<tr>
<td>22</td>
<td>SM-2"</td>
<td>TST</td>
</tr>
<tr>
<td></td>
<td>SM-1 + A?</td>
<td>TST</td>
</tr>
<tr>
<td></td>
<td>SM-0 + A?</td>
<td>TST</td>
</tr>
<tr>
<td></td>
<td>4-9</td>
<td>PP-0, onlap of PP-0 surface</td>
</tr>
<tr>
<td>3b</td>
<td>Fairhaven Member</td>
<td>not studied</td>
</tr>
</tbody>
</table>

Fig. 11—Summary of sequence stratigraphic interpretations for the entire Calvert Cliffs succession, showing naming of simple sequences (PP, CT) and shored sequences (SM) within larger composite sequences. Designation of sequences as fourth-, third-, or second-order in the present paper applies the general definitions of Mitchum and Van Wagoner (1991). Ages of disconformities are based on independent biostratigraphic data of de Verteuil and Norris (1996: calibrated to Berggren et al. 1995), whose sequence stratigraphic interpretation diverges slightly. Double lines are disconformities.

More tentatively, these cyclic units have been correlated into the adjacent Baltimore Canyon Trough seaward of the structural hinge zone (Poag and Ward 1987; de Verteuil and Norris 1992; Poag and Commeau 1995; and see Poag and Ward 1993, who group all PP and CT units into one allformation, and all SM units into a second allformation). All of these broader regional studies indicate that third-order sequences thicken seaward across the Embayment and particularly into the Trough, where each is ~130-300 m thick (Greenlee et al. 1992), and are part of the HST of a second-order Miocene depositional cycle in the Atlantic continental margin.

Seismic reflection data indicate that the internal anatomy of third-order sequences also changes substantially across the hinge zone. Greenlee et al. (1992) found that, although a one-to-one correlation of third-order sequences between the Calvert Cliffs and the Trough is not possible because of limits to biostratigraphic resolution, there are six roughly coeval middle Miocene sequences of ~1 m duration in the Trough and two younger sequences of less certain age. Each of these is a strongly progradational clinoformal body that contains both lowstand and highstand systems tracts but negligible or no transgressive tracts; the sequence boundaries indicate extensive erosion of the shelf (i.e., all are Type 1 unconformities; Greenlee et al. 1992).

The erosional nature of Miocene sequence boundaries in these offshore records strengthens the erosional interpretation of PP, CT, and SM disconformities within the Calvert Cliffs (Kidwell 1984, 1988). In addition, the anatomical asymmetry of the offshore Miocene sequences complements that of the PP, CT, and SM sequences onshore of the hinge zone, where (1) transgressive records are present, albeit highly condensed in some instances, (2) highstand tracts are not condensed but are as thin as transgressive tracts or, in the case of the St. Marys Formation, are completely missing, and (3) lowstand deposits are absent (Fig. 11). Poag and Commeau (1995) reported a dominance of transgressive and highstand deposits and a lack of lowstand deposits throughout the Paleocene to middle Miocene subsurface record of the Salisbury Embayment, and so this appears to be a general pattern landward of the hinge zone.

All of these differences can be attributed to the limited accommodation available landward of a passive-margin hinge zone. Preservation of an onshore record of each baselvel cycle was, however, no doubt favored by the large amplitude and rapidity of eustatic fluctuations in sealevel during the Miocene, ensuring repeated lapping well up onto the continental margin and relatively little time during lowstand for erosion of the preceding depositional sequence. The low relief of the PP, CT, and SM disconformities suggests transgressive plating as the dominant timing and process of erosion, rather than fluvial incision during lowstand. The relative thinness of each highstand tract may additionally reflect considerable omission by dynamic bypassing during regressive phases, both passive and forced. The deeply crosscutting incised-valley deposits of the pSM interval are also consistent with an accommodation-limited setting, resulting in removal or cannibalization during transgression of any lowstand deposits that might have accumulated.

CONCLUSIONS

The anatomy of Neogene strata in the Calvert Cliffs, Maryland, reveals the complexity of the surviving record of siliciclastic sequences at the landward edge of a major depositional basin, and in particular the relative...
importance and diverse styles of erosion and omission in low-accommodation settings. Landward thinning was not accomplished by omission or erosional removal of entire cycles of deposition: the onshore record contains the same number of third-order units as present offshore (Peag and Commeau 1995; de Verteuil and Norris 1992, 1996). Instead, thinning was achieved by elimination of some elements and attenuation of surviving elements within individual sequences. For example, each third-order unit consists of a few rather than many resolvable fourth-order units, lowstand tracts are missing entirely, and highstand deposits are not significantly thicker than transgressive tracts, in contrast to their highly disproportionate thickness offshore, and are entirely missing in some fourth-order units. Transgressive surfaces thus coincide with sequence boundaries despite probable subaerial exposure, producing the relatively subtle marine-on-marine contacts observed at sequence boundaries in this study and heightening the likelihood of stratigraphic disordering of microfossils and diagenetic blurring of chemical signals between successive sequences (cf. Miller and Sugarman 1995; Peag and Commeau 1995).

Thinning of the record also involved qualitative shifts in anatomy and composition among surviving elements. For example, fourth-order cyclic units in the St. Marys Formation do not have the anatomy of model parasequences, but instead are skewed sequences bounded by stranding rather than flooding surfaces and consist entirely of transgressively arranged facies. Another example of qualitative change is the highly condensed and richly bioclastic nature of transgressive deposits in PP and CT sequences, in which densely packed macroinvertebrate assemblages record an upward-deepening series of shelfface and transition-zone environments over only a few meters of total stratigraphic thickness. The lack of such condensation within transgressive tracts of the St. Marys Formation has been attributed to their accumulation in an area more proximal to siliciclastic input, so that it was a sink for sediment rather than being sediment-starved during baselevel rise (not an estuary in the sense of a flooded river valley, but a freshwater-influenced embayment of the open shelf; Kidwell 1988, 1989). This up-section change in the paleogeography of the Calvert Cliffs area may be coincidental, but it is also consistent with progressive progradation through the local Miocene sequence.

The Calvert Cliffs succession demonstrates that, despite the thinness of surviving deposits, biostatigraphically complete records can be preserved in settings of very low accommodation by miniaturization and shaving of subsidiary sedimentary cycles, leaving a record that is rich in marine deposits and transgressive facies tracts even in the latest phase of stratigraphic offset. Such records can contain a coherent set of throughgoing discontinuities useful in genetic subdivision and correlation, and are interpretable in terms of standard depositional sequence models, although not all elements of sequences are present and surviving elements may be one or two orders of magnitude thinner than their offshore counterparts.

ACKNOWLEDGMENTS

This research would not have been possible without the generous cooperation of many private landowners, particularly Connie and Larry Smith, Mrs. Margaret Moran, and the Chesapeake Ranch Club Estates, and parkland administrators from the State of Maryland. I am also grateful to Jon A. Moore for field assistance; Laurence de Verteuil for sharing his biostatigraphic results before publication and coaxing this manuscript into existence; Gordon Bowie for photographic work; N. Christie-Blick, D. Jablonski, R.R. Rodgers, C.L. Summa, and L. de Verteuil for helpful reviews; and the Donors of The Petroleum Research Fund, administered by the American Chemical Society, for support of the field research (14340-G2-1983).

REFERENCES

Peag, C.W. and Commeau, J.P. 1995, Paleocene to middle Mocene planktic Foraminifera of...

Wright, L.W., 1992, Molluscan biostratigraphy of the Miocene, Middle Atlantic Coastal Plain of North America: Virginia Museum of Natural History, Memoir 2, 159 p.

Received 23 January 1995; accepted 25 August 1996.