Fig. 3. Packing diagram for the same compound viewed approximately along the c axis (tosylate anions have been removed for clarity).

cent rows of cationic chromophores in a parallel manner (Figs. 2 and 3). The perpendicular distance between chromophores within a stack is about 3.4 Å, suggesting that the excellent alignment of the chromophores within a given row may be assisted by π-stacking. The only deviation from a completely aligned system is the 20° angle between the long axis of the molecules and the polar a axis of the crystal. In space group Cc the optimal angle for phase matching (20) is 35.3° between the charge-transfer axis of the nonlinear chromophore and the b axis of the crystal and, as such, the observed orientation is not well optimized for SHG, yet the powder efficiencies are large. In any case, given this excellent alignment in the crystal, extremely large electro-optic coefficients are expected (if the β eff is along the charge-transfer axis, then 83% of β eff is maintained along the polar a axis).

Our results demonstrate that the organic "salt methodology" can be used to obtain materials with very large y^2. Further, it has been shown that nonconventional donors such as Br^- and the pyryl moiety can be incorporated into molecules that, in the correct crystallographic environment, exhibit substantial bulk susceptibilities. We believe that this study represents an important step in decoupling the design of desirable molecular properties (large molecular nonlinearity and transparency) from the dipolar orientation requirements of y^2 materials. If the counterion is covalently linked to the ionic chromophore, then many of the desirable features of the "salt methodology" (large β and large dipoles) can be used productively in an oriented polymer form.

REFERENCES AND NOTES
16. The CI salts are hypersonic, which is evidenced by elemental analysis, differential scanning calorimetry, and thermogravimetric analysis. We have not obtained satisfactory analysis for the CI salt, although the agreement improves when calculated in some form of hydrate. Despite this, we can obtain reproducible SHG efficiencies, which are dependent on the degree of hydration.
17. CaMg(N03)$_3$; molecular weight, 410.54; monoclinic, C2(4), a = 10.365 (3) Å, b = 11.322 (4) Å, c = 17.894 (4) Å, β = 92.24 (2)°; V = 3099 (2) Å3.

Scandinavian, Siberian, and Arctic Ocean Glaciation: Effect of Holocene Atmospheric CO$_2$ Variations

D. R. LINDSTROM AND D. R. MACAYEAL

A computer model of coupled ice sheet--ice shelf behavior was used to evaluate whether observed changes in atmospheric CO$_2$ concentration could have caused the advance and retreat of Pleistocene ice sheets in the Eurasian Arctic. For CO$_2$ concentrations below a threshold of approximately 250 parts per million, an extensive marine-based ice sheet covering Scandinavia, the Barents, Kara, and East Siberian seas, and parts of the Arctic Ocean developed in the model simulations. In the simulations, climatic warming associated with the Holocene rise of atmospheric CO$_2$ was sufficient to collapse this widespread glaciation and restore present-day ice conditions.

ICE CORE RECORDS SUGGEST THAT Pleistocene glacial episodes are associated with significant depletion of CO$_2$ in the atmosphere (1). The effect of this depletion on atmospheric temperature and water transport may account for the intensity and global synchronization of the glacial response to orbital variations (2, 3). In an effort to test this hypothesis, we conducted computer simulations of ice-sheet behavior in the Eurasian Arctic under specific climatic conditions (4). We focused our study on the Eurasian Arctic because the grounding of ice on its broad continental shelves and the development of thick floating ice shelves offshore may have reorganized Arctic Ocean thermohaline circulation (5). Under present conditions, ice-ice formation in the shallow seas of the Eurasian Arcic produces brine-concentrated waters that drain into the deep and intermediate levels of the Arctic Ocean. Grounded ice-sheet expansion across these seas under glacial conditions would thus alter the thermohaline circulation and density stratification of the Arctic Ocean and the Norwegian and Greenland seas. These oceanographic consequences of Eurasian glaciation could account for decreased North Atlantic deep water production rates during the last glacial maximum (LGM) (6).

Our model predicts the two-dimensional horizontal flow, mass balance, and three-dimensional temperature distribution of an ice sheet in response to specified atmospheric boundary conditions (7).
tion or ablation rate and surface temperature). The primary difference between our model and those used in earlier studies of Antarctic or Laurentide glaciation (7) is rigorous treatment of floating ice shelves that extend into the Arctic Ocean (8). This treatment is essential because ice shelves may have played a significant role in both the growth and rapid collapse of marine-based ice sheets in the Barents and Kara seas (9, 10). Ice thickness is predicted as a function of time by solution of the mass continuity equation subject to atmospheric forcing described below and specified boundary conditions at the edges of the ice sheet (11). Ice velocity is predicted as a function of the instantaneous ice thickness distribution by the use of the time-independent stress-equilibrium equations (12) for a non-Newtonian ice rheology that depends on ice temperature and deformation rate (13). Temperature of the ice and underlying bedrock is calculated with a vertical conduction-advection equation in order to determine the temperature-dependent rheological parameters, the locations where the bed may have melted, and the subglacial permeability depth (if the bed is frozen). Crustal motion induced by the changing ice and sea-water surface load is assumed to vary in proportion to the isostatic disequilibrium with a time scale of 5000 years (14).

In the ice-sheet model, ice-sheet growth and decay is a function of three atmospheric variables: surface accumulation rate, A (in meters of ice per year per square meter), annual average surface temperature, T (°C), and summer average surface temperature, T_s (°C). By running the model until equilibrium ice-sheet conditions are achieved, we can determine whether a given distribution of these variables is sufficient to support glaciation. Our task is thus to estimate the distributions of T, T_s, and A that result from natural CO_2 variations and from variations in ice-sheet coverage and topography. We expanded T and T_s in a Taylor series about the observed, present-day distributions (T* and T_s*) using CO_2 sensitivities derived from general circulation model (GCM) experiments of the atmosphere and ocean, and temperature lapse rates for the standard atmosphere (15):

$$T_s(t, x_s, \phi, \lambda) = T_s^o + \Delta T_s^o + \Delta x_s^o \Delta T/\Delta x_s$$

$$T(t, x, \phi, \lambda) = T^o + \Delta T^o + \Delta x^o \Delta T/\Delta x$$

where ΔT/Δx is the atmospheric CO_2 concentration in parts per million, x_s(t, φ, λ) is the surface elevation of the ice, land, or sea surface, t is time, φ is latitude, λ is longitude, Δx = [x(t) - x_s^o], and x_s^o is the observed present-day value of x_s. For the ice accumulation rate, precipitation changes due to CO_2 concentration and ice-sheet surface elevation are too large to allow use of a Taylor-series expansion about present-day distribution of net, annual average precipitation (16, 17). We thus assumed that A is proportional to its present, observed distribution, A^o, with the factor of proportionality depending on CO_2 concentration:

$$A^o(t, x, \phi, \lambda) = (1 - \Delta A^o) A^o(\phi, \lambda) + \Delta A^o (\partial A^o/\partial x_s^o) - M$$

where A is the CO_2 sensitivity coefficient, which is assumed to be a function of latitude, and the ice ablation rate M (in meters per year per square meter) is (18)

$$M = 0.028(12 + T)^2 \text{ if } T_s > 0°C$$
$$0 \text{ if } T_s < 0°C$$

To avoid circumstances where ice dome summits would become so high that A becomes negative, we imposed a lower bound of 0.005 m per year wherever T_s < 0°C. Values of ΔA were used in our simulations of the LGM and the Holocene were taken from the Vostok ice core record. Variation of Δx_s is predicted directly by the model. The CO_2 sensitivities that we used in our simulations for temperature and ice accumulation (Table 1) were derived from several atmospheric general circulation model (GCM) simulations designed to evaluate the effects of reduced CO_2 on climate (19). Our reliance on GCM results may seem to introduce a pivotal uncertainty. Inasmuch as our model determines a relation between model input variables and simulated ice-sheets size, our simulations provide an independent estimate of climatic conditions necessary to support extensive glaciation. The estimated temperature and accumulation rate sensitivities necessary to support glaciation (Table 1) fall within the range of sensitivities predicted by the GCM studies (20). An additional check on our estimate of temperature sensitivity to CO_2 concentration is provided by the Vostok ice core deuterium record, which suggests that the reductions in temperature at the Vostok site during the LGM (about 9°C) were comparable to those required for ice-sheet growth in our model (21). The sensitivities of temperature and accumulation to ice-sheet surface elevation (\(\partial T/\partial x_s\), \(\partial T/\partial x_s\), and A/\(\partial x_s\)) were determined from present-day observations and were assumed not to change as a result of changes in atmospheric CO_2 concentration. The lapse rate for surface temperatures (\(\partial T/\partial x_s\)) and \(\partial T/\partial x_s\) was 6.5°C km^{-1}, the tropospheric lapse rate for the U.S. standard atmosphere. This lapse rate is the lower limit of that expected and thus tends to bias forcing in our model toward conditions less favorable to the initiation and/or maintenance of ice sheets (22). A value for \(\partial A/\partial x_s\) was derived from a regression analysis of data for ice-sheet accumulation and surface elevation from Antarctica and is \(-2.5 \times 10^{-3}\) per year (23).

To evaluate whether CO_2-induced climate changes could have produced the LGM ice-sheet configuration and then restored nearly ice-free interglacial conditions, we ran two numerical experiments. In the first experiment, we fixed model input variables (temperatures and ice accumulation rates) at values associated with the LGM CO_2 concentration until an equilibrium ice distribution was achieved (Fig. 1). The model was integrated through 30,000 years from an arbitrary, ice-free initial condition to achieve this equilibrium. In the second experiment, we allowed model input temperatures and ice accumulation to vary according to the CO_2 concentration time series (Fig. 2) derived from the Vostok ice core record. The initial condition was the equilibrium ice configuration derived from the simulation of LGM conditions. Model integration then

Table 1. Mean annual surface temperature changes and accumulation rate amplification factors associated with the 1950 ppm atmospheric CO_2 concentration of the LGM (ΔT = 100 ppm) (19). Also shown are minimum changes required by our model to support extensive glaciation (equivalent to ΔT = 50 ppm). Changes in T_s were assumed to be the same as in T.

<table>
<thead>
<tr>
<th>Latitude (°N)</th>
<th>Changes induced by LGM CO_2 concentrations</th>
<th>Minimum changes needed to support glaciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔT (°C)</td>
<td>(1 - ΔA_n)</td>
<td>ΔT_s (°C)</td>
</tr>
<tr>
<td>90</td>
<td>18</td>
<td>-8</td>
</tr>
<tr>
<td>85</td>
<td>16</td>
<td>-8</td>
</tr>
<tr>
<td>80</td>
<td>18</td>
<td>-8</td>
</tr>
<tr>
<td>75</td>
<td>17</td>
<td>-8</td>
</tr>
<tr>
<td>70</td>
<td>13</td>
<td>-6</td>
</tr>
<tr>
<td>65</td>
<td>-9</td>
<td>-4</td>
</tr>
<tr>
<td>60</td>
<td>-9</td>
<td>-4</td>
</tr>
<tr>
<td>55</td>
<td>-8</td>
<td>-4</td>
</tr>
</tbody>
</table>
The simulated LGM ice-sheet distribution is similar to that reconstructed from geological evidence. Grounded ice covers the Scandinavian region as well as the shallow continental shelves of the European and Siberian Arctic. Various independent evidence suggests that there was a marine-based ice sheet in the Barents and Kara seas (24). For the Laptev and East Siberian seas, the LGM distribution produced by our model compares well with reconstructions based on sediment features observed near Novosibirski Ostrova (25). The simulated LGM ice-sheet distribution differs from that reconstructed from geological evidence in two ways. First, the North Sea and Great Britain were ice-free in our simulations. Second, the simulated ice sheet extended too far south across eastern Europe. These discrepancies resulted primarily from our estimate of LGM climate conditions. In particular, we did not account for climatic effects associated with the diversion of the North Atlantic Current from the Arctic during glacial periods (26). As a result, the specified temperatures over the North Sea and Great Britain were too warm to allow ice-sheet development in our simulation.

The rapid collapse of the simulated LGM ice distribution with rising CO₂ concentration was initiated when the CO₂ concentration reached 250 ppm at 14,000 years ago (6,000 years after the LGM in Fig. 2). This CO₂ concentration corresponds to the temperature threshold required by our model to support widespread glaciation (Table 1). If the GCM-derived estimate of temperature sensitivity to CO₂ concentration is correct, we believe that the 250-ppm value represents an upper bound for the depression in CO₂ concentration necessary to support glacial maximum ice conditions. The simulated ice-sheet collapse depended strongly on two aspects of ice-sheet physics. First, extensive crustal depression caused by ice loads (Fig. 1) allowed thick portions of the ice sheets to unground and flow rapidly toward ablation areas on the southern ice margin and in the Norwegian and Greenland seas. Second, surface warming associated with falling ice-sheet surface elevations and the atmospheric lapse rate amplified the CO₂ warming effect. The difference of grounded ice volume between our simulations of LGM and present-day conditions is 3.2 × 10⁶ km³ (Fig. 2), and this corresponds to approximately 74 m of eustatic sea-level change (27). If the average oxygen isotope ratio of simulated ice is −35 parts per thousand, our results suggest that the glacial oxygen isotope ratio increased by 0.86 part per thousand as a result of Eurasian ice alone.

Our ice-sheet model experiments suggest that natural variations of atmospheric CO₂, as evident in the ice core records, can substantially reorganize the Arctic Ocean and can cause the expansion and retreat of the Eurasian ice sheets. Our results do not rule out other causes of Eurasian ice age glaciation, and our simulated ice-sheet coverage does not display perfect fidelity to geologic reconstructions. It is thus premature to conclude that our model results can be taken as evidence that atmospheric CO₂ variations drove the Pleistocene ice ages. The critical uncertainty which restrains this conclusion is how the atmospheric CO₂ effects surface temperature and snow accumulation on the ice sheets. The GCM studies we examined, however, suggest that climate sensitivity to reduced CO₂ concentration is about twice that needed by our model to support the glacial cycles of the Eurasian Arctic.
Neural Cadherin: Role in Selective Cell-Cell Adhesion

Chi-Mei Miyatani, Kenti Shimamura, Masayuki Hatta, Akira Nagafuchi, Akinao Nose, Mayumi Matsunaga, Kohei Hatta, Masatoshi Takeichi

Cadherins are a family of Ca²⁺-dependent intercellular adhesion molecules. Complementary DNAs encoding mouse neural cadherin (N-cadherin) were cloned, and the cell binding specificity of this molecule was examined. Mouse N-cadherin shows 92 percent similarity in amino acid sequence to the chicken homolog, while it shows 49 percent and 43 percent similarity to epithelial cadherin and to placental cadherin of the same species, respectively. In cell binding assays, mouse N-cadherin did not cross-react with other mouse cadherins, but it did cross-react with chicken N-cadherin. The results indicate that each cadherin type confers distinct adhesive specificities on different cells, and also that the specificity of N-cadherin is conserved between mammalian and avian cells.

The adhesive specificity of cell-cell adhesion molecules is thought to be crucial for controlling the association or movement of cells involved in embryonic morphogenesis. Cadherins are a family of intercellular adhesion receptors that may play a role in selective cell adhesion. Two members of this family, epithelial cadherin (E-cadherin), which is also called uvomorulin or cell CAM120/80 (3, 4), and placental cadherin (P-cadherin) (5), were characterized molecularly in the mouse. Two other members, liver cell adhesion molecule (L-CAM) (6) and neural cadherin (N-cadherin) (7), were identified in the chicken. The different cadherin types exhibit distinct tissue distribution patterns (8). Both E-cadherin and L-CAM are thought to be the interspecies homologs since they show a similar pattern of tissue distribution in the respective species (6).

Transferring cadherin cDNAs into heterologous cells allowed us to examine the role of cadherins in cell adhesion (3, 7, 9). We found that L cells transfected with E-cadherin cDNA sorted out from those transfected with P-cadherin cDNA when mixed (10), indicating that these cadherins have binding specificities. Moreover, when the E-cadherin–transfected L cells were added to a suspension of embryonic lung cells, they preferentially attached to the epithelial cells of this tissue, which also express E-cadherin (10). These results suggest that cadherins participate in cell sorting in embryonic tissues.

N-cadherin is expressed in various neural tissues (11, 12) and has been implicated in the attachment of axons to other cells (13), raising the possibility that this molecule is involved in neuronal recognition mechanisms. To determine whether this cadherin

Department of Biophysics, Faculty of Science, Kyoto University, Katsura-ku, Kyoto 606, Japan.

*To whom correspondence should be addressed.

17 August 1989

REPORTS 635