|
|
David Archer reprint server
- Millennial Atmospheric Lifetime of Fossil Fuel CO2, D. Archer and V. Brovkin, Climatic Change 90:283-297, 2008.
- Methane hydrate stability and anthropogenic climate change, D. Archer, Biogeosciences 4: 521-544, 2007.
- Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and maring biogeochemistry. V. Brovkin, A. Ganopolski, D. Archer, and S. Rahmstorf. Paleoceanography 22: PA4202, doi:10.1029/2006PA001380, 2007.
- Long term fate of anthropogenic carbon. A. Montenegro, V. Brovkin, M. Eby, D. Archer, and A.J. Weaver. Geophys. Res. Lett. 34: L19707, doi:10.1029/2007GL030905, 2007
- Subsurface ocean argon disequilibrium reveals the equatorial Pacific shadow zone, Gehrie, E., D. Archer, S. Emerson, C. Stump, C. Henning, Geophys. Res. Lett. 33, L18608, doi:10.1029/2006GL026935, 2006.
- The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric CO2. P. Clark, D. Archer, D. Pollard, J.D. Blum, J.A. Rial, V. Brovkin, A.C. Mix, N.G. Pisias, M. Roy. Quat. Sci. Rev. 25: 3150-3184, 2006
- Argon as a tracer of cross-isopycnal mixing in the thermocline, Henning, C., D. Archer, and I. Fung, Journal of Physical Oceanography 36, 2090-2105, 2006.
- A movable trigger: Fossil fuel CO2 and the onset of the next glaciation, D. Archer and A. Ganopolski, Geochem., Geophys., Geosystems, 6: Q05002,doi:10.1029/2005GL022449, 2005
- Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing. D. Archer and B. Buffett, Geochem., Geophys., Geosys., 6(3) doi:10.1029/2004GC000854, 2005
- Fate of fossil fuel CO2 in geologic time J. Geophys. Res. doi:10.1029/2004JC002625, 2005
- Global inventory of methane clathrate: Sensitivity to changes in the deep ocean. B. Buffett and D. Archer. EPSL, 227: 185-199, 2004.
- The importance of ocean temperature to
global biogeochemistry Archer, D.E. P. Martin, B. Buffett, V. Brovkin, S. Rahmstorf, A. Ganopolski. EPSL 222: 333-348, 2004.
- Model sensitivity in the effect of Antarctic sea ice
and stratification on atmospheric pCO2 Archer, D.E., P.A. Martin, J. Milovich, V. Brovkin, G.-K. Plattner, and C. Ashendel. Paleoceanography 18 (1) 1012, doi:10.1029/2002PA000760, 2003.
- Biological fluxes in the ocean and atmospheric pCO2. In Treatise on Geochemistry, Volume 6, The Oceans and Marine Geochemistry, edited by H. Elderfield, 2003
- Glacial-interglacial stability of ocean pH inferred from foranifer dissolution rates D. Anderson and D. Archer. Nature 416: 70-73, 2002.
- A model of suboxic sedimentary diagenesis suitable
for automatic tuning and gridded global domains. D. Archer,
J.L. Morford, and S. Emerson, Global Biogeochemical Cycles 16: 10.1029/2000BG001288, 2002. (Run the model on-line)
- Association of sinking organic
matter with various types of mineral ballast in the deep sea:
Implications for the rain ratio. C. Klaas and D. Archer. Global
Biogeochemical Cycles, 2002.
- Organic carbon flux and the organic carbon to calcite flux ratio recorded in the deep sea carbonate record: Demonstration and a new proxy. F. Mekik, P. Loubere, and D. Archer. Global Biogeochemical Cycles 16: 10.1029/2001GB001634, 2002.
- Influence of bacterial uptake on deep-sea dissolved organic carbon. J. Bendtsen, C. Lundsgaard, M. Middelboe, and D. Archer. Global Biogeochemical Cycles 16: doi:10.1029/2002GB001947, 2002.
- Modeling the response of the oceanic Si inventory to perturbation and consequences for atmospheric CO2. A. Ridgwell, A. Watson, and D. Archer. Global Biogeochemical Cycles 16: doi:10.1029/2002GB001877, 2002.
- What caused the glacial / interglacial pCO2
cycles? Archer, D., A. Winguth, D. Lea, and N. Mahowald. Reviews
of Geophysics 38: 159-189, 2000.
- Atmospheric CO2 sensitivity to the biological
pump in the ocean D. Archer, G. Eshel, A. Winguth, and
W. Broecker. Global Biogeochemical Cycles 14: 1219-1230, 2000.
- A model of the iron cycle in the ocean
D. Archer and K. Johnson, Global Biogeochemical Cycles 14: 269-279,
2000.
-
Paleonutrient data analysis of the glacial Atlantic
using an adjoint ocean general circulation model,
A. Winguth, D. Archer,E. Maier-Reimer,
U. Mikolajewicz.
in Inverse Methods
in Global Biogeochemical Cycles, AGO Geophsical monograph Series,
edited by P. Kasibhatla, M. Heimann, D. Harley, N. Mahowald.,
R. Prinn, and P Rayner, 2000
- The impact of fronts and
mesoscale circulation on the nutrient supply and biogeochemistry of
the upper ocean. Mahadevan, A., and D. Archer,
J. Geophys. Res. 105: 1209-1225, 2000.
- Geochemical consequences of increased
atmospheric CO2 on coral reefs.
Kleypas, J., R.W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and
B. Opdyke, Science 284: 118-120, 1999.
- Modeling CO2 in the ocean: A review
D. Archer, in Scaling of Trace Gas Fluxes between Terrestrial and
Aquatic Ecosystems and the Atmosphere, edited by A.F. Bouwman,
Elsevier, 1999.
-
Sensitivity of paleonutrient
tracer distributions and deep sea circulation to glacial boundary
conditions.
A. Winguth, D. Archer,E. Maier-Reimer,
U. Mikolajewicz, and J.-C. Duplessey.
Paleoceanography 14: 304-323, 1999.
- Dynamics of fossil fuel neutralization by Marine
CaCO3, Archer, D., Kheshgi, H., and Maier-Reimer, E., Global
Biogeochemical Cycles 12: 259-276, 1998
- Modeling a limited region of
the ocean Mahadevan, A., and D. Archer, J. Computational Physics
145: 555-574, 1998.
- Multiple timescales for
neutralization of fossil fuel CO2, Archer, D., Kheshgi,
H., and Maier-Reimer, E., Geophysical Research Letters 24(4):
405-408, 1997
- A timescale for dissolved organic
carbon production in equatorial Pacific surface waters. D. Archer,
E. Peltzer, and D. Kirchman, Global Biogeochemical Cycles 11:
435-452, 1997.
- A Meeting Place of Great Ocean
Currents: Shipboard Observations of a Convergent Front at
2o N in the Pacific. D. Archer and others, Deep-Sea
Res II 44: 1827-1850, 1997.
- A data-driven model of the
calcite lysocline. Archer, Global Biogeochemical Cycles 10:
511-526, 1996.
- An atlas of the distribution of calcium
carbonate in sediments of the deep sea. D. Archer, Global
Biogeochemical Cycles 10(1): 159-174, 1996.
- Daily, seasonal, and interannual
variability of sea surface carbon and nutrient concentration in the
equatorial Pacific Ocean. Archer, T. Takahashi, S. Sutherland,
J. Goddard, D. Chipman, K. Rodgers, and H. Ogura, Deep-Sea Res.,
43, 779-808, 1996.
- Upper Ocean Physics as
Relevant to Ecosystem Dynamics: a Tutorial. D. Archer, Ecosystem
Applications, 5(3): 724-739, 1995
- Effect of deep-sea sedimentary calcite
preservation on atmospheric CO2 concentration, D. Archer and
E. Maier-Reimer, Nature, 367: 260-264, 1994
- What Controls Opal Preservation in
Tropical Deep Sea Sediments? Paleoceanography, 8, 7-21, 1993
- Numerical Hindcasting of Sea
Surface pCO2 at Weathership Station Papa, Archer, Progress in
Oceanography, 32, 319-351, 1993
- Equatorial Pacific calcite preservation
cycles: Production or dissolution?, Archer, Paleoceanography, 6, 561-572,
1991.
- Modeling the Calcite Lysocline. Archer, J. Geophys Res, 96,
17,037-17,050, 1991.
- Derivation of the Relaxation Method Algorithm
used in my CaCO3 diagenesis models (Appendix 1B from my thesis)