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Abstract–For fayalite formation times of several thousand years, and systems enriched in
water by a factor of ten relative to solar composition, 1 lm radius olivine grains could reach
2 mole% fayalite and 0.1 lm grains 5 mole% by nebular condensation, well short of the
values appropriate for precursors of most chondrules and the values found in the matrices of
unequilibrated ordinary chondrites. Even 10 lm olivine crystals could reach 30 mole%
fayalite above 1100 K in solar gas if condensation of metallic nickel-iron were delayed
sufficiently by supersaturation. Consideration of the surface tensions of several phases with
equilibrium condensation temperatures above that of metallic iron shows that, even if they
were supersaturated, they would still nucleate homogeneously above the equilibrium
condensation temperature of metallic iron. This phenomenon would have provided nuclei for
heterogeneous nucleation of metallic nickel-iron, thus preventing the latter from
supersaturating significantly and preventing olivine from becoming fayalitic. Unless a way is
found to make nebular regions far more oxidizing than in existing models, it is unlikely that
chondrule precursors or the matrix olivine grains of unequilibrated ordinary chondrites
obtained their fayalite contents by condensation processes. Perhaps stabilization of FeO
occurred after condensation of water ice and accretion of icy planetesimals, during heating of
the planetesimals and ⁄or in hot, dense, water-rich vapor plumes generated by impacts on
them. This would imply that FeO is a relatively young feature of nebular materials.

INTRODUCTION

Oxidized iron is an abundant constituent of both
chondrules and matrices of primitive chondrites. Olivine
grains in the matrices of the least equilibrated ordinary
chondrites have a wide range of FeO contents (e.g.,
Klöck et al. 1989; Brearley and Jones 1998) but may be
extremely FeO-rich, with mean fayalite contents from 25
to 50 mole%, as shown by the data from Huss et al.
(2006) in Fig. 1. Fedkin et al. (2012) obtained olivine
composition histograms by conducting random
analytical traverses across individual chondrules. In type
I chondrules in primitive chondrites (Fig. 2), the mean
fayalite contents are 1 to 4 mole%. In type II chondrules
from Semarkona (Fig. 3), the mean fayalite contents are
12 to 20 mole%.

Despite the fact that chondrites are so ancient that
they contain inclusions of solar nebular condensate
assemblages, no nebular environment has yet been found

where the high FeO contents of chondrites can be
accounted for by condensation processes. This paper
reviews and updates efforts to do so, and suggests
alternatives to how and when the first solid form of FeO
appeared in the solar system.

HIGH-TEMPERATURE CONDENSATION OF

FEO-BEARING LIQUIDS

Ebel and Grossman (2000) showed that a stable
condensate assemblage of olivine plus silicate liquid
appears at high temperature in a gas of solar composition
at extremely high nebular total pressures. In the present
work, the same computer program and input data were
used as in that effort, a total pressure of 10)1 bar was
assumed, and sufficient water was added to solar gas
composition to stabilize significant amounts of FeO in the
condensate at high temperature. The result is shown in
Fig. 4. Note that the necessary water enrichments are very
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substantial, amounting to several hundred times the water
content of a high-temperature gas of solar composition.
These water enrichments yield gases with fo2 between
IW-1 and IW-2, i.e., oxygen fugacities between 1 and 2 log
units below the iron-wüstite buffer, where metallic iron is
in equilibrium with pure FeO. The difference in water
enrichment needed, however, to stabilize the fayalite
content of olivine typical of a type I chondrule versus that
of a type II is quite small. For example, at 1600 K, the
equilibrium fayalite mole fraction for 240· water
enrichment is 0.07, a type I value, but for 470·, only a
factor of two more, the fayalite mole fraction is 0.16, a
type II value. Note also that, for a constant water
enrichment of 470·, the equilibrium fayalite content
varies from type I values at temperatures above �1675 K
to type II values below this temperature.

THE FAYALITE CONTENT OF CONDENSATE

OLIVINE CRYSTALS

Previous Work

Shown in Fig. 5 is a plot of fo2 versus temperature
for solar system objects. The iron-wüstite curve, labeled
IW, is near the top of the diagram. Had chondrules

equilibrated with a gas that was solar in composition
except for enrichment in water, their FeO contents imply
that the oxygen fugacity was only one or two log units
below IW. The maximum difference in oxygen fugacity
implied by the different fayalite contents of olivine in
types I and II chondrules is only one log unit which, on
this scale, is very small. A much more serious problem is
that a gas of solar composition, marked by the dark
shaded band in Fig. 5, lies five log units lower in oxygen
fugacity than this. The fact that melilite-, spinel-bearing,
calcium-, aluminum-rich inclusions (CAIs) whose
fassaitic clinopyroxene has Ti3+ ⁄ (Ti3++Ti4+) ratios of
about 0.5 formed at this oxygen fugacity is proof that
some components of chondrites formed in a gas of solar
composition (Grossman et al. 2008). In such a gas,
nearly all magnesium and silicon condense as forsterite
and enstatite, and iron condenses virtually totally as the
metal phase, all at temperatures just below the
condensation temperatures of the minerals of CAIs,
according to equilibrium thermodynamic calculations
(Grossman 2010). High abundances of hydrogen and
carbon relative to oxygen make solar gas very reducing
at high temperature, and this causes the olivine and
pyroxene to contain only vanishingly small amounts of
FeO. The reason why so much water has to be added to
solar gas to account for the fayalite contents of
chondrule olivine is to make up the huge difference in
oxygen fugacity between the solar gas curve and the
chondrule field in Fig. 5.

As seen in Fig. 6a, even solar gas becomes slightly
more oxidizing below 800 K, and this stabilizes some
FeO at the expense of metallic iron, allowing the
equilibrium fayalite content of olivine to become
significant (Fig. 6b). Because all the Mg and Si already
condensed at a much higher temperature, however, this
would have had to take place by diffusion of Fe2+ into
the pre-existing forsterite grains. The problem with this is
that the Fe-Mg interdiffusion rate in olivine is very low
at these temperatures, so the equilibrium fayalite
contents shown in Fig. 6b cannot be achieved. A way
has to be found to stabilize FeO by increasing the fo2 at
a higher temperature, where the diffusion coefficient is
higher. One way of doing this is by increasing the
amount of oxygen in the system relative to hydrogen and
carbon by enriching a region of the nebula in silicate
dust. As reviewed by Fedkin and Grossman (2006),
however, this is an intrinsically inefficient way of
increasing the fayalite content of the olivine because
almost all of the free oxygen added to the gas by
vaporization of the extra dust is recondensed into the
same silicate minerals at temperatures above those where
the fayalite content would otherwise become significant.
A better way of increasing the fo2 was proposed by
Ciesla and Cuzzi (2006), who suggested transport of
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water ice-bearing planetesimals from cold, outer regions
of the solar nebula to the inner, hot parts where silicates
were condensing and chondrules were forming. In this

model, however, the maximum water enrichment of the
inner solar nebula is only a factor of ten. As seen by the
curves for a water enrichment of a factor of ten in Fig. 6,
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the oxygen fugacity becomes 2 or 3 log units higher this
way, and the equilibrium fayalite content of condensate
olivine crystals begins to rise at �900 K, a somewhat
higher temperature than in solar gas.

Grossman et al. (2008) investigated how high the
fayalite content could become in 0.1 lm-radius
condensate olivine crystals immersed in a gas that is
enriched in water by a factor of ten but is otherwise solar
in composition, and the result is shown in Fig. 7. The
Fe-Mg interdiffusion coefficients used in this calculation
were those measured by Chakraborty (1997) as a
function of temperature and fayalite mole fraction, but
were modified to include the 1 ⁄6 fo2-dependence seen by
other workers, e.g., Buening and Buseck (1973). A
nebular cooling time of 106 yr was assumed. A finite-
difference technique was used in which the grain was
divided into thin shells. At each temperature, the surface
shell was assumed to have the fayalite content that was
in equilibrium with the fo2 of the gas. The diffusion
coefficient in each shell was determined by its fayalite
content, the temperature, and the fo2. By 715 K, where
diffusion stops, the mean fayalite content of the grain
still reaches only 1.9 mole%. Thus, even for an extremely
long, 1 Myr, nebular cooling time, the maximum water
enrichment from theoretical models and very tiny grains,
the fayalite content is trivial. The question is how so
much chondritic olivine became so fayalitic, or put

another way, how the first oxidized iron formed in the
solar system.

New Diffusion Coefficients

A newer study of the variation of Fe-Mg
interdiffusion coefficients in olivine with T, fayalite
content, and fo2 was presented by Dohmen et al. (2007)
and Dohmen and Chakraborty (2007). They found that
the known oxygen fugacity-dependence to the diffusion
coefficients exists only for values of fo2 greater than a
threshold value; there is no such dependence when the
oxygen fugacity is less than this. The threshold was
estimated to be �10)15 bar for mantle olivine with
10 mole% fayalite but may vary slightly with olivine
composition. Nevertheless, because the fo2 of solar gas,
with or without water enrichment, is always many log
units below this value in the temperature range of interest,
the fo2-dependence was dropped in the present work.
Figure 8 was constructed from various workers’
measurements of the dependence of the diffusion
coefficient on T, fayalite content, and fo2. In it, the
diffusion coefficient plotted at each temperature is the one
corresponding to the fo2 and equilibrium fayalite content
for that temperature in a solar gas enriched in water by a
factor of ten, i.e., the diffusion coefficient that would
actually be used for the surface shell in the finite-difference
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�7 log units below the iron-wüstite buffer, IW, at a Ptot of
10)1 atm. The point for Allende inclusions is based on
experimental calibration of redox equilibria involving Ti3+-
bearing fassaite at the equilibrium solidus temperature of CAIs
(see Grossman et al. 2008). The ‘‘Chondrules’’ field, taken from
Fig. 4, lies �5 log units higher in oxygen fugacity.

1400 1500 1600 1700 1800 1900
0

5

10

15

20

25

30

35

 metallic FeNi
         also stable

logfO2
=IW-1.0

IW-1.5

0.10 0.08 0.07
0.04

0.23

0.19

0.16

0.08

0.39

0.33

0.24

0.11470x

240x

820xSolar

W
t %

 F
eO

 in
 s

ili
ca

te
 li

qu
id

Temperature, K

Stable olivine + liquid
condensates
Ptot=10-1 bar

Water
enrichment:

0.02

XFa

IW-2.1

Fig. 4. Equilibrium condensation at high nebular total
pressure, Ptot, in water-enriched systems that are otherwise
solar in composition yields FeO-bearing olivine + silicate
liquid. When the water enrichment is several hundred times
that of a high-temperature solar gas, the equilibrium fayalite
content of olivine varies from type I values to type II values
with falling temperature at constant oxygen fugacity, and with
an increase in oxygen fugacity of only 0.5 log units at constant
temperature.

Formation of the first oxidized iron in the solar system 2163



computation. It is seen that the diffusion coefficients based
on the Dohmen and Chakraborty (2007) data are
considerably larger than those based on the data of
Chakraborty (1997) that had been modified for fo2-
dependence by Grossman et al. (2008).

The calculation of the fayalite content that can be
reached by an olivine grain in a solar gas enriched by a
factor of ten in water was repeated using the diffusion
coefficients of Dohmen and Chakraborty (2007),
assuming nebular cooling times of 104, 105, and 106 yrs,
the cooling curves for which are shown in Fig. 9. Also
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shown is the temperature interval over which the
equilibrium fayalite content becomes significant in a gas
of this composition, and the time periods required to
cool through that interval for each of the nebular cooling
times. These range from 1.3 · 103 to 1.3 · 105 yrs.

Results are shown in Fig. 10. For the most
reasonable fayalite formation interval, between 1.3 · 103

and 1.3 · 104 yrs, it is seen that a 0.1 lm olivine grain
could reach a mean fayalite content of 4 mole%, while a
1 lm grain could reach only 2 mole%. Thus, even at the
maximum water enrichment, the achievable fayalite
contents are still well below the typical values found in
olivine grains in the matrices of primitive chondrites and
that would be needed for the precursors of many
chondrules. Diopside and enstatite are other nebular
condensates that are potential hosts for FeO but Fe-Mg
interdiffusion coefficients for these phases (Cherniak and
Dimanov 2010) are 1.5 to 3 log units lower than those
for olivine at the same temperature, FeO content, and
oxygen fugacity. Consequently, pyroxenes formed during
nebular condensation are expected to have even lower
FeO ⁄ (FeO + MgO) ratios than olivine.

SUPERSATURATION OF METALLIC IRON

With the failure of the water enrichment model to
produce the fayalite contents observed in chondritic
olivine, a completely different idea was investigated for
yielding fayalitic olivine during condensation. Blander
and Katz (1967) found that, if kinetic barriers to

homogeneous nucleation of metallic iron allowed it to
become supersaturated in a system of solar composition,
olivine that condenses at high temperature would reach
high fayalite contents at temperatures much higher
than when metallic iron condenses at equilibrium.
Using the same computer program and input data as
in Fedkin and Grossman (2006), full equilibrium
condensation calculations were performed for a gas of
solar composition, without allowing either metallic iron
or Fe3C to condense. Shown in Fig. 11 is the resulting
fayalite content of olivine as a function of temperature,
compared with that computed when metallic iron
condenses at equilibrium, for a total pressure of
10)3 bar. It is seen that fayalite contents of 30 mole%
are readily produced at 1200 K, a temperature far in
excess of 800 K, where the fayalite content would first
become significant if metallic iron condensed at
equilibrium. Furthermore, because the temperature of
fayalite formation is so high in this case, diffusion is
capable of equilibrating 10 lm olivine grains with the gas
even if it cooled from 1400 to 1100 K in only 600 yrs.
Thus, if metallic Fe could have been supersaturated
significantly during solar nebular cooling, the problem of
making oxidized iron during condensation of a gas of
solar composition would be solved.

To investigate this phenomenon further, nucleation
theory was used to estimate S, the critical
supersaturation ratio, which is the factor by which the
actual partial pressure must exceed the equilibrium vapor
pressure over a phase to allow the latter to nucleate
homogeneously. S is related to r, the surface tension of
the condensed phase, through the expression,
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J ¼ ½4:5x1033ðP=TÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rM
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�exp½�17:56ðM=qÞ2
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where J is the number of nuclei formed per second per
mole, T is the equilibrium condensation temperature,
P is the partial pressure of the condensing species
in atmospheres at the equilibrium condensation
temperature, and M and q are the molecular weight and
density, respectively, of the condensed phase (Blander
and Katz 1967). Literature data for surface tensions of
liquid metals are plotted as a function of temperature in
Fig. 12. The surface tension of metallic nickel-iron was
assumed equal to that of pure liquid iron, whose value at
1823 K from Elliot et al. (1963) was extrapolated to
higher and lower temperature using the mean slope of
the experimental data for Re, W, and Ir. Condensation
calculations were performed for solar gas over a range of
total pressures from 10)1 to 10)5 bar without
suppressing condensation of metallic nickel-iron.
Substituting P and T from the output into Equation 1, S
for the metal phase was found to vary from �150 at
10)1 bar to 4.6 · 103 at 10)5 bar, resulting in
undercooling of 250 to 270 K over the range of total
pressures of interest. The condensation calculations were
then repeated over the same pressure range, this time by
suppressing condensation of metallic iron and Fe3C, to
see the effect of metallic iron supersaturation on olivine
composition.

The equilibrium condensation temperatures of
metallic nickel-iron and forsterite are plotted as a
function of total nebular pressure in Fig. 13a. In Fig. 13b,

the homogeneous nucleation temperature of metallic
nickel-iron is compared to the equilibrium condensation
temperature of olivine as a function of total nebular
pressure. Also shown are contours of the fayalite content
of olivine, which increases with decreasing temperature at
a given total pressure. After nucleation of metal, the
system reverts to the equilibrium state, so the fayalite
contours are truncated by the homogeneous nucleation
curve, at temperatures below which the fayalite content
would once again become near-zero. At temperatures
above the homogeneous nucleation temperature of metal,
however, it is seen that the fayalite content of the olivine
reaches �8 mole% at 10)2 bar, �14 mole% at 10)3 bar,
�25 mole% at 10)4 bar, and >30 mole% at 10)5 bar.
Thus, if heterogeneous nucleation of metallic nickel-iron
near its equilibrium condensation temperature did not
occur, the fayalite content of olivine grains would become
quite significant, particularly at relatively low nebular total
pressures. Furthermore, as mentioned above, this would
occur at high enough temperatures that the calculated
contents could actually be produced in grains many
microns in size by diffusion on a nebular cooling
time-scale. These fayalite contents are appropriate for
precursors of many chondrules. To serve as such, however,
the grain compositions would have to be preserved by
isolation from further chemical communication with the
gas, before nucleation of metallic nickel-iron, which would
otherwise form partly at the expense of the fayalite that is,
after all, metastable.

There are, however, several ways by which metallic
nickel-iron could have been prevented from becoming
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significantly supersaturated during nebular cooling. All
involve the presence of other condensed phases at or
above the equilibrium condensation temperature of
metallic nickel-iron. First, the model requires that, after
supercooling occurs, olivine condenses at a higher
temperature than the metal. The olivine grains themselves
might have provided nuclei for heterogeneous nucleation
of metallic iron, causing the latter phase to condense
nearer its equilibrium condensation temperature, removing
a large fraction of the metastable iron from the gas and
once again preventing the olivine from becoming iron-rich.
Second, residues of metastable, presolar phases such as
graphite and SiC may have provided nuclei for
heterogeneous condensation of metallic iron. Third, phases
with higher equilibrium condensation temperatures than
metallic nickel-iron, such as refractory siderophile alloys,
corundum, hibonite, perovskite, melilite, and spinel, could

have provided nuclei for heterogeneous condensation of
metallic iron, and thereby prevent its supersaturation, if
they themselves were able to nucleate homogeneously
above the equilibrium condensation temperature of
metallic iron. Surface tension data are seen in Fig. 12
for four phases, Os, W, Ir, and Re, whose equilibrium
condensation temperatures are higher than that of metallic
iron. Also, the surface tension was measured for corundum
in both solid and liquid form by Kingery (1954, 1959),
respectively.

For each of these five phases, the surface tension data
were used in Equation 1 to calculate S, from which the
temperature of homogeneous nucleation was computed
using condensation calculations. Results are shown in
Fig. 14. Even if supersaturation of corundum, Os, and W
occurred, each of them would have still nucleated
homogeneously at temperatures above the equilibrium
condensation temperature of metallic iron. This would
have provided heterogeneous nuclei for condensation of
metallic iron near its equilibrium condensation
temperature, precluding high-temperature condensation
of fayalitic olivine.

It is conceivable that, when the primary cooling and
condensation stage of the solar nebula ended, there was
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not yet any appreciable iron oxide in the inner solar
system. A generation of planetesimals may have accreted
from CAIs, magnesium silicates, metallic nickel-iron,
troilite, and water ice. Formation of the first oxidized iron
may not have occurred until liquid water interacted with
metallic nickel-iron and magnesium silicates at elevated
temperatures inside such planetesimals. The resulting
assemblage, then containing FeO-bearing silicates, could
have been the source of chondrule precursors. Impacts on
icy planetesimals could have generated rapidly heated,
relatively high pressure, water-rich vapor plumes
containing high concentrations of dust and droplets,
environments favorable for formation of types I and II
chondrules (Fedkin et al. 2012). Such a sequence of events
would be in agreement with radiometric ages indicating
that chondrules are �1–2 Myr younger than refractory
inclusions (Amelin et al. 2002). Considerations different
from those discussed herein also led Asphaug et al. (2011)
to explore chondrule formation in plumes resulting from
planetesimal collisions.

CONCLUSIONS

Production of oxidized iron during primary nebular
condensation is unlikely. Even in a system of solar
composition enriched in water by a factor of ten, the
maximum enrichment produced in dynamical models of
the solar nebula, diffusion limitations restrict the
fayalite content of 0.1 lm olivine grains to £5 mole%
fayalite even after 104 yr. Metastable production of high
fayalite contents at elevated temperatures by
supersaturation of metallic nickel-iron is unlikely due to
the predicted presence of many other phases at its
equilibrium condensation temperature, any one of which
may have promoted heterogeneous nucleation of the
metal phase instead. Formation of oxidized iron may
have been delayed until after condensation of water ice
and its accretion into planetesimals containing FeO-free
silicates. At this point, the first FeO-bearing silicates
could have formed at elevated temperature inside the
planetesimals by reactions between metal, silicates, and
liquid or gaseous water, or by interaction of silicate
droplets with water-rich vapor inside impact-generated
plumes.
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