A chemical and isotopic study of hibonite-rich refractory inclusions in primitive meteorites

RICHARD W. HINTON1‡, ANDREW M. DAVIS2, DEBRA E. SCATENA-WACHEL3‡, LAWRENCE GROSSMAN1,4 and RONALD J. DRAUS6

1Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, U.S.A.
2James Franck Institute, University of Chicago, Chicago, IL 60637, U.S.A.
3Department of Chemistry, University of Chicago, Chicago, IL 60637, U.S.A.
4Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, U.S.A.

(Received September 1, 1987; accepted in revised form July 25, 1988)

Abstract—The ion microprobe has been used to determine the concentrations of a number of trace elements (including all 14 stable rare earth elements) and the isotopic compositions of Ca and Mg in seven hibonite-rich refractory inclusions. Hibonite in every inclusion analyzed shows the effect of REE partitioning with other solid or liquid phases, in which hibonite is enriched in light over heavy REE compared to other coexisting phases. This partitioning causes CI chondrite-normalized enrichments to drop by factors of 4 to 22 from lanthanum to lutetium. Fractionations due to gas-solid partitioning of REE are sometimes superimposed on the pattern produced by partitioning between condensed phases. Two inclusions, HAL and DH-H1, show evidence for formation in extremely oxidizing environments and their Ca is mass fractionated in favor of the heavy isotopes by 7 and 12%, respectively. Two corundum-hibonite inclusions show evidence of extremely high temperature gas-solid fractionation, such that the more volatile light REE are depleted as a group relative to the more refractory heavy REE. These inclusions both have Ca that is mass fractionated in favor of the light isotopes. Hibonite preserves the largest nuclear isotope anomalies in Ti found to date (FAHEY et al., 1985a; HINTON et al., 1987b), but there does not seem to be a simple relationship between chemical composition, isotopic mass fractionation and the sign and magnitude of nuclear isotopic anomalies in hibonite-rich inclusions. One possibility for producing a variety of chemical compositions and degrees of mass fractionation while preserving nuclear isotope anomalies is by multiple cycles of condensation and evaporation in a turbulent protoplanetary accretion disk (MORFILL, 1983; MORFILL and R. N. CLAYTON, 1986a,b). These cycles could also occur in a presolar nebula with large non-axisymmetric temperature and pressure distributions (BOSS, 1988). Nuclear anomalies are most likely to be preserved in hibonite because hibonite is the most refractory major phase to occur commonly in meteorites.

1. INTRODUCTION

Calcium-, aluminum-rich refractory inclusions in meteorites have attracted considerable attention since the discovery that they: (1) are composed of very high temperature minerals, regardless of geochemical character; (2) are strongly enriched in all refractory trace elements, and the isotopic compositions of Ca and Mg in seven hibonite-rich refractory inclusions. Hibonite in every inclusion analyzed shows the effect of REE partitioning with other solid or liquid phases, in which hibonite is enriched in light over heavy REE compared to other coexisting phases. This partitioning causes CI chondrite-normalized enrichments to drop by factors of 4 to 22 from lanthanum to lutetium. Fractionations due to gas-solid partitioning of REE are sometimes superimposed on the pattern produced by partitioning between condensed phases. Two inclusions, HAL and DH-H1, show evidence for formation in extremely oxidizing environments and their Ca is mass fractionated in favor of the heavy isotopes by 7 and 12%, respectively. Two corundum-hibonite inclusions show evidence of extremely high temperature gas-solid fractionation, such that the more volatile light REE are depleted as a group relative to the more refractory heavy REE. These inclusions both have Ca that is mass fractionated in favor of the light isotopes. Hibonite preserves the largest nuclear isotope anomalies in Ti found to date (FAHEY et al., 1985a; HINTON et al., 1987b), but there does not seem to be a simple relationship between chemical composition, isotopic mass fractionation and the sign and magnitude of nuclear isotopic anomalies in hibonite-rich inclusions. One possibility for producing a variety of chemical compositions and degrees of mass fractionation while preserving nuclear isotope anomalies is by multiple cycles of condensation and evaporation in a turbulent protoplanetary accretion disk (MORFILL, 1983; MORFILL and R. N. CLAYTON, 1986a,b). These cycles could also occur in a presolar nebula with large non-axisymmetric temperature and pressure distributions (BOSS, 1988). Nuclear anomalies are most likely to be preserved in hibonite because hibonite is the most refractory major phase to occur commonly in meteorites.

‡ Present address: Grant Institute of Geology, University of Edinburgh, Edinburgh EH9 3SW, Scotland.
† Present address: General Electric Corporation, Schenectady, New York 12305.
by these methods was isolated from a unique inclusion containing exceptionally large and pure hibonite grains (Lee et al., 1979, 1980; Allen et al., 1980; Davis et al., 1982). Hibonite grains in refractory inclusions are usually much smaller and cannot be analyzed by conventional bulk techniques. For such samples, the ion microprobe offers a number of advantages over conventional analytical techniques because of its spatial resolution of 5 to 20 μm. Use of the ion microprobe allows much better integration with other methods now used for chemical and mineralogical studies, because analyses can be made on exactly the same spot previously examined with petrographic and scanning electron microscopes and analyzed with an electron microprobe. Analyses can be made of samples having far greater mineralogical purity than those separated by chemical and physical means for analysis by conventional methods. Recent advances in analytical technique have overcome previous problems due to isobaric molecular interferences, allowing routine determination of many chemical and isotopic properties. Although isotopic analyses made by ion microprobe are at least a factor of ten less precise than those made by thermal ionization mass spectrometry, this is offset by the larger isotopic anomalies seen in smaller inclusions (Hutchison et al., 1983; Fahey et al., 1985a,c, 1986a,b, 1987a; Hinton et al., 1985a, 1987b; Ireland et al., 1985; Zinner et al., 1986).

The isotopic compositions of carbon, oxygen, magnesium, silicon, potassium, calcium, titanium, chromium, iron, nickel, strontium, ruthenium, molybdenum, hafnium and lead in meteorite samples have been measured by ion microprobe (R. N. Clayton et al., 1984; Fahey and Zinner, 1987; Fahey et al., 1985a, 1986a, 1987a,b; Hinton et al., 1985a, 1987; Ireland et al., 1985, 1986; Scatena-Wachel et al., 1984, 1985, 1986; Zinner and Epstein, 1987; Zinner et al., 1986, 1987). Rare earth element (REE) and other trace element concentrations can now be determined down to 10 to 50 ppm (this work; Fahey et al., 1985b, 1987a; Hinton et al., 1985b; Zinner and Crozaz, 1986).

This paper combines isotopic and chemical analysis of hibonite grains (and in some cases, coexisting minerals) from carbonaceous and ordinary chondrites in an effort to better understand the chemical processes operating early in the history of the solar system. Most of the inclusions have been analyzed in bulk by INAA and have been petrographically characterized by polarizing microscope, scanning electron microscope (SEM) and electron microprobe methods. Some of the data in this paper have been reported in abstract form (Hinton et al., 1984a, 1985b,c; Hinton and Davis, 1986b); in most cases, more analyses have been made to improve precision. Titanium isotopic compositions of a number of these inclusions have been reported by Hinton et al. (1987b).

2. SAMPLES

2.1 DJ-1

DJ-1 is an ~100 × 150 μm hibonite crystal obtained by freeze-thaw disaggregation of the Murchison C2 ordinary chondrite. It is one of six texturally similar isolated hibonite grains studied by MacPherson et al. (1983). The titanium isotopic composition of this grain was reported by Hinton et al. (1987b).

2.2 MUCH-1

MUCH-1 is a hibonite-rich refractory inclusion of ~300 × 600 μm obtained by excavation from a broken surface of Murchison. Its petrography and mineral chemistry were studied by MacPherson et al. (1983). Major, minor and trace elements were determined by INAA in hibonite hand-picked from a powder of the bulk inclusion (Ekambaram et al., 1984, 1985).

2.3 BB-6

BB-6 is a blue spinel-, hibonite-rich spherule recovered by freeze-thaw disaggregation of Murchison. A small sample of the bulk inclusion was analyzed by INAA (Ekambaram et al., 1984, 1985). The petrography was studied by MacPherson et al. (1983). Magnesium isotopic analyses were given by Hutchison et al. (1980).

2.4 BB-5

Bar-Matthews et al. (1982) studied the petrography, mineral chemistry and magnesium isotopic composition of BB-5, a corundum-hibonite inclusion recovered from Murchison by freeze-thaw disaggregation. The chemistry of BB-5 was studied by Ekambaram et al. (1984, 1985). The titanium isotopic composition has been measured by Hinton et al. (1987b). The isotopic compositions of oxygen, calcium and titanium have also been measured by Zinner et al. (1987) and Fahey et al. (1987c). Six different volumes of BB-5 were sampled by ion microprobe. Two analyses of hibonite-rich areas were made: BB-5A, on hibonite alone; and BB-5B, centered on a tiny perovskite grain whose diameter was much smaller than that of the beam spot. Four analyses were made on corundum-rich areas: BB-5-C, on corundum alone; BB-5-O, centered on two trace-element-rich phases whose proportions varied as the ion beam sputtered the sample; BB-5-A, centered on a high Lu/Gd trace phase; and BB-5-B, centered on a low Lu/Gd trace phase. There was considerable overlap of the BB-5-D, beam spot onto hibonite and of the BB-5-O, BB-5-A and BB-5-B beam spots onto corundum.

2.5 GR-1

GR-1, a hibonite-corundum inclusion, was obtained by freeze-thaw disaggregation of Murchison. It was described in detail by MacPherson et al. (1984, 1985), who found two generations of hibonite, an inner magnesium-poor core and an outer magnesium-rich rim, which were separated by corundum. Four spots were analyzed within GR-1: GR-1-C and GR-1-R are analyses of core and rim hibonite, respectively. GR-1-M is an analysis of corundum and GR-1-B is a rastered beam analysis of the entire inclusion. Hibonite in GR-1 is never more than 20 μm across, so there was minor overlap of the GR-1-C and GR-1-R beam spots onto corundum.

2.6 HAL

HAL was found by T. Lee on a broken surface of the Allende C3V carbonaceous chondrite. This isotopically anomalous hibonite-rich inclusion has been extensively studied: its mineralogy and petrography have been described by Allen et al. (1980); its chemistry by Davis et al. (1982); its calcium isotopic composition by Lee et al. (1979) and Hinton et al. (1985c); its magnesium isotopic composition by Lee et al. (1979), Hinton and Bischoff (1984) and Fahey et al. (1987a); its titanium isotopic composition by Fahey et al. (1987a); and its oxygen isotopic composition by Lee et al. (1980).

2.7 DH-H1

DH-H1 is an isolated hibonite fragment found in the Dhajala H3 ordinary chondrite by Bischoff and Keil (1984). The magnesium isotopic composition of DH-H1 was studied by Hinton and Bischoff (1984). The main hibonite fragment, 100 × 150 μm (see SEM photomicrograph in Hinton and Bischoff, 1984) has a rim of iron-rich spinel (1.5 wt% Cr2O3) which pseudomorphically replaced the original hibonite crystal. The spinel was, in turn, replaced by chromite (43 wt% Cr2O3). Several small fragments of hibonite are attached to
the large hibonite grain by an unknown sodium-rich phase (possibly glass) and nepheline. These sodium-rich phases differ in chemical composition from fine-grained alkali-rich material present within the surrounding matrix.

3. EXPERIMENTAL

All analyses reported in this work were obtained with a modified AEI 1M-20 ion microprobe at the University of Chicago. Polished thin sections were bombarded with a primary beam of 20 keV "O" ions focused into a 5-20 µm spot. The primary beam current was 1-5 nA for isotopic measurements and up to 15 nA for trace element analyses. Details of analytical methods for measurement of calcium and magnesium isotopic compositions and concentrations of REE and other trace elements are given in the Appendix. The analytical method for titanium isotopic measurement of HAL hibonite was reported by Hinton et al. (1987b).

4. COMPARISON WITH PREVIOUS ANALYSES

Minor and trace element analyses of hibonite and other phases are given in Table 1. Iron is the only element which occurs in concentrations of 1000 ppm or more that was not determined by ion microprobe, so electron microprobe values are included in Table 1, where available. Barium and lanthanide analyses of the same samples are given in Table 2. The Ca chondrite normalization values in these tables were calculated by A. M. Davis (in prep.), using methods similar to those used by Anders and Bihara (1982) with some additional recent analytical data. Ca chondrite-normalized REE patterns are shown in Figs. 1-4. Comparisons with literature values for lanthanides are shown in the Figs. 1, 2 and 4. A comparison between ion microprobe and literature values for elements not shown in the figures is given in Table 3. Magnesium and calcium isotopic results on hibonite are given in Table 4. Errors were calculated assuming that all uncertainty was due to counting statistics. All errors given in the tables and figures are ±2σ.

4.1 DJ-1

The calcium and titanium concentrations determined by electron and ion microprobe are in good agreement, but the electron microprobe value for magnesium is significantly higher than the ion microprobe value (Table 3). The electron microprobe analysis was done using an energy-dispersive detector. In this method of analysis, magnesium and silicon are often difficult to determine accurately, because the small magnesium and silicon Kα peaks cannot be completely resolved from the large aluminum Kα peak. For this reason, the EDS magnesium and silicon analyses are believed to be inaccurate.

4.2 MUCH-1

The ion microprobe data reported in Table 2 are higher than the INAA data of Ekambaram et al. (1984, 1985) for all REE except lutetium. There is some uncertainty in the absolute concentrations determined by INAA because the microbalance used to weigh the sample was faulty. Therefore, we have normalized the INAA analyses to the Ca concentration in Table 1. After this normalization LREE have the same enrichments for both techniques (Fig. 1), but the INAA Fe* and Cr concentrations determined by electron and ion microprobe are in good agreement, but the electron microprobe value for magnesium is significantly higher than the ion microprobe value (Fig. 1b). This discrepancy can be explained if MUCH-1 hibonite is zoned, as has been observed in unpublished REE data on hibonite from MacPherson in 1987.

嗳

Table 1. Trace element concentrations, in ppm unless otherwise stated. Ca in hibonite was determined from hibonite stoichiometry, assuming CaAl₂O₄ with substitution of minor elements for Al. Errors due to counting statistics (±2σ) are given when they exceed 10%.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phase</th>
<th>Na</th>
<th>Mg</th>
<th>Si</th>
<th>K</th>
<th>Ca</th>
<th>Sc</th>
<th>Ti</th>
<th>V</th>
<th>Cr</th>
<th>Ma</th>
<th>Fe*</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI-1</td>
<td>hibonite</td>
<td>4</td>
<td>3075</td>
<td>83</td>
<td>4.9</td>
<td>5.98%</td>
<td>535</td>
<td>7517</td>
<td>24</td>
<td>0.8</td>
<td>0.6</td>
<td>—</td>
<td>64</td>
<td>41</td>
<td>90</td>
<td>DI-1</td>
</tr>
<tr>
<td>MUCH-1</td>
<td>hibonite</td>
<td>27</td>
<td>4643</td>
<td>1889</td>
<td>8.2</td>
<td>5.97%</td>
<td>455</td>
<td>1.01%</td>
<td>34</td>
<td>7.9</td>
<td>15</td>
<td>0.24%</td>
<td>68</td>
<td>76</td>
<td>122</td>
<td>MUCH-1</td>
</tr>
<tr>
<td>BB-6</td>
<td>hibonite</td>
<td>73</td>
<td>1.35%</td>
<td>4127</td>
<td>40</td>
<td>5.93%</td>
<td>333</td>
<td>2.71%</td>
<td>247</td>
<td>192</td>
<td>132</td>
<td>—</td>
<td>136</td>
<td>5.0</td>
<td>51</td>
<td>BB-6</td>
</tr>
<tr>
<td>BB-5-I</td>
<td>hibonite</td>
<td>5.19</td>
<td>4170T</td>
<td>56</td>
<td>0.21</td>
<td>0.04</td>
<td>5.96%</td>
<td>483</td>
<td>9052</td>
<td>53</td>
<td>2.0</td>
<td>0.5</td>
<td>0.68%</td>
<td>75</td>
<td>39</td>
<td>102</td>
</tr>
<tr>
<td>BB-5-II</td>
<td>hibonite</td>
<td>0.6</td>
<td>4417</td>
<td>120</td>
<td>0.9</td>
<td>5.98%</td>
<td>550</td>
<td>7919</td>
<td>34</td>
<td>1.2</td>
<td>0.5</td>
<td>—</td>
<td>71</td>
<td>76</td>
<td>135</td>
<td>BB-5-II</td>
</tr>
<tr>
<td>BB-5-C</td>
<td>spinel</td>
<td>0.3</td>
<td>7.3</td>
<td>93</td>
<td>0.15</td>
<td>±0.02</td>
<td>125</td>
<td>289</td>
<td>2534</td>
<td>17</td>
<td>0.6</td>
<td>±0.1</td>
<td>0.5</td>
<td>0.6</td>
<td>3.1</td>
<td>BB-5-C</td>
</tr>
<tr>
<td>BB-5-O</td>
<td>corundum</td>
<td>0.1</td>
<td>117</td>
<td>14</td>
<td>0.03</td>
<td>±0.01</td>
<td>3720</td>
<td>436</td>
<td>3150</td>
<td>23</td>
<td>0.8</td>
<td>0.1</td>
<td>—</td>
<td>125</td>
<td>106</td>
<td>BB-5-O</td>
</tr>
<tr>
<td>BB-5-A</td>
<td>corundum</td>
<td>8.4</td>
<td>64</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>243</td>
<td>393</td>
<td>2676</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>102</td>
<td>1091</td>
<td>BB-5-A</td>
</tr>
<tr>
<td>BB-5-B</td>
<td>corundum</td>
<td>1794</td>
<td>334</td>
<td>—</td>
<td>2.85%</td>
<td>320</td>
<td>4833</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>96</td>
<td>74</td>
<td>—</td>
<td>BB-5-B</td>
<td></td>
</tr>
<tr>
<td>GR-1-C</td>
<td>hibonite</td>
<td>0.2</td>
<td>1515</td>
<td>94↑</td>
<td>0.14</td>
<td>5.99%</td>
<td>1336</td>
<td>4240↑</td>
<td>10↑</td>
<td>1.3↑</td>
<td>&lt;0.03</td>
<td>0.02%</td>
<td>85</td>
<td>481↑</td>
<td>131↑</td>
<td>GR-1-C</td>
</tr>
<tr>
<td>GR-1-R</td>
<td>hibonite</td>
<td>0.01</td>
<td>2750</td>
<td>384↑</td>
<td>46</td>
<td>5.99%</td>
<td>449</td>
<td>4510↑</td>
<td>30↑</td>
<td>2.9↑</td>
<td>0.74%</td>
<td>0.02%</td>
<td>10</td>
<td>20</td>
<td>11</td>
<td>GR-1-R</td>
</tr>
<tr>
<td>GR-1-M</td>
<td>corundum</td>
<td>53</td>
<td>23</td>
<td>2155</td>
<td>54</td>
<td>663</td>
<td>150</td>
<td>1695</td>
<td>9.3</td>
<td>12.8</td>
<td>1.6</td>
<td>0.02%</td>
<td>26</td>
<td>0.9</td>
<td>3.4</td>
<td>GR-1-M</td>
</tr>
<tr>
<td>GR-1-B</td>
<td>hibonite</td>
<td>158</td>
<td>881</td>
<td>7455</td>
<td>220</td>
<td>122%</td>
<td>495</td>
<td>1799</td>
<td>13</td>
<td>175</td>
<td>23</td>
<td>—</td>
<td>15</td>
<td>135</td>
<td>118</td>
<td>GR-1-B</td>
</tr>
<tr>
<td>HAL</td>
<td>hibonite</td>
<td>7</td>
<td>231</td>
<td>57</td>
<td>0.7</td>
<td>5.98%</td>
<td>236</td>
<td>3812</td>
<td>0.4</td>
<td>0.3</td>
<td>0.29</td>
<td>0.49%</td>
<td>70</td>
<td>4.0</td>
<td>23</td>
<td>HAL</td>
</tr>
<tr>
<td>DH-H1</td>
<td>hibonite</td>
<td>13</td>
<td>62</td>
<td>314</td>
<td>5.9</td>
<td>5.99%</td>
<td>131</td>
<td>541</td>
<td>&lt;0.12</td>
<td>30</td>
<td>4.5</td>
<td>0.34%</td>
<td>74</td>
<td>3.6</td>
<td>11.2</td>
<td>DH-H1</td>
</tr>
</tbody>
</table>

4.1 DJ-1

The calcium and titanium concentrations determined by electron and ion microprobe are in good agreement, but the electron microprobe value for magnesium is significantly higher than the ion microprobe value (Table 3). The electron microprobe analysis was done using an energy-dispersive detector. In this method of analysis, magnesium and silicon are often difficult to determine accurately, because the small magnesium and silicon Kα peaks cannot be completely resolved from the large aluminum Kα peak. For this reason, the EDS magnesium and silicon analyses are believed to be inaccurate.

4.2 MUCH-1

The ion microprobe data reported in Table 2 are higher than the INAA data of Ekambaram et al. (1984, 1985) for all REE except lutetium. There is some uncertainty in the absolute concentrations determined by INAA because the microbalance used to weigh the sample was faulty. Therefore, we have normalized the INAA analyses to the Ca concentration in Table 1. After this normalization LREE have the same enrichments for both techniques (Fig. 1), but the INAA levels of terbium, dysprosium, holmium and thulium are a factor ~1.3 lower, europium a factor of ~1.7 higher and lutetium a factor of ~2.7 higher than the ion microprobe values (Fig. 1b). This discrepancy can be explained if MUCH-1 hibonite is zoned, as has been observed in unpublished REE data on hibonite from MacPherson inclusion SH-7 (described in Hashimoto et al., 1986) and Allende inclusion 3529-42 (described in MacPherson et al., 1986). Sodium, chromium and manganese contents given by INAA (Ekambaram et al., 1986) for much of the large hibonite grain by an unknown sodium-rich phase (possibly glass) and nepheline. These sodium-rich phases differ in chemical composition from fine-grained alkali-rich material present within the surrounding matrix.
Table 2. Barium and lanthanide concentrations, in ppm. All uncertainties are ±2σ based on counting statistics.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phase</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJ 1</td>
<td>hibonite</td>
<td>13.92</td>
<td>11.79</td>
<td>29.01</td>
<td>4.89</td>
<td>23.85</td>
<td>7.70</td>
<td>0.67</td>
<td>9.71</td>
<td>1.39</td>
<td>8.49</td>
<td>1.39</td>
<td>2.54</td>
<td>0.20</td>
<td>&lt;0.24</td>
<td>0.13</td>
<td>DJ-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.29</td>
<td>±0.22</td>
<td>±0.41</td>
<td>±0.15</td>
<td>±0.40</td>
<td>±0.26</td>
<td>±0.04</td>
<td>±0.65</td>
<td>±0.12</td>
<td>±0.36</td>
<td>±0.09</td>
<td>±0.19</td>
<td>±0.03</td>
<td>±0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUCHI-1</td>
<td>hibonite</td>
<td>10.41</td>
<td>13.62</td>
<td>34.57</td>
<td>5.56</td>
<td>26.44</td>
<td>8.13</td>
<td>0.56</td>
<td>12.79</td>
<td>2.32</td>
<td>14.56</td>
<td>2.96</td>
<td>7.25</td>
<td>0.75</td>
<td>0.34</td>
<td>0.20</td>
<td>MUCHI-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.41</td>
<td>±0.40</td>
<td>±0.73</td>
<td>±0.26</td>
<td>±0.69</td>
<td>±0.44</td>
<td>±0.06</td>
<td>±1.29</td>
<td>±0.26</td>
<td>±0.76</td>
<td>±0.22</td>
<td>±0.47</td>
<td>±0.10</td>
<td>±0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB-6</td>
<td>hibonite</td>
<td>68.2</td>
<td>8.0</td>
<td>26.4</td>
<td>3.5</td>
<td>17.4</td>
<td>5.6</td>
<td>0.90</td>
<td>2.6</td>
<td>0.53</td>
<td>1.6</td>
<td>0.39</td>
<td>0.46</td>
<td>0.42</td>
<td>0.76</td>
<td>&lt;0.12</td>
<td>BB-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±1.9</td>
<td>±0.6</td>
<td>±1.2</td>
<td>±0.4</td>
<td>±1.0</td>
<td>±0.7</td>
<td>±0.16</td>
<td>±1.1</td>
<td>±0.24</td>
<td>±0.6</td>
<td>±0.15</td>
<td>±0.31</td>
<td>±0.14</td>
<td>±0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB-5-1</td>
<td>hibonite</td>
<td>13.78</td>
<td>11.53</td>
<td>27.54</td>
<td>4.48</td>
<td>21.05</td>
<td>6.44</td>
<td>0.69</td>
<td>8.67</td>
<td>1.46</td>
<td>7.68</td>
<td>1.39</td>
<td>2.92</td>
<td>0.31</td>
<td>0.49</td>
<td>0.26</td>
<td>BB-5-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.49</td>
<td>±0.38</td>
<td>±0.67</td>
<td>±0.24</td>
<td>±0.64</td>
<td>±0.41</td>
<td>±0.07</td>
<td>±1.02</td>
<td>±0.21</td>
<td>±0.57</td>
<td>±0.15</td>
<td>±0.33</td>
<td>±0.07</td>
<td>±0.23</td>
<td>±0.08</td>
<td></td>
</tr>
<tr>
<td>BB-5-2</td>
<td>hibonite + perov.</td>
<td>7.17</td>
<td>5.23</td>
<td>13.4</td>
<td>2.48</td>
<td>11.7</td>
<td>4.88</td>
<td>0.70</td>
<td>8.9</td>
<td>2.16</td>
<td>14.9</td>
<td>2.06</td>
<td>4.29</td>
<td>0.39</td>
<td>0.61</td>
<td>0.30</td>
<td>BB-5-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.74</td>
<td>±0.54</td>
<td>±1.0</td>
<td>±0.37</td>
<td>±1.0</td>
<td>±0.74</td>
<td>±0.17</td>
<td>±2.8</td>
<td>±0.55</td>
<td>±2.7</td>
<td>±0.49</td>
<td>±0.92</td>
<td>±0.16</td>
<td>±0.60</td>
<td>±0.21</td>
<td></td>
</tr>
<tr>
<td>BB-5-C*</td>
<td>corundum</td>
<td>≤0.01</td>
<td></td>
</tr>
<tr>
<td>BB-5-Q*</td>
<td>corundum + 2 unk.</td>
<td>3.06</td>
<td>0.63</td>
<td>0.61</td>
<td>0.40</td>
<td>3.43</td>
<td>1.91</td>
<td>0.32</td>
<td>18.4</td>
<td>2.38</td>
<td>18.7</td>
<td>4.6</td>
<td>15.9</td>
<td>2.75</td>
<td>1.76</td>
<td>3.82</td>
<td>BB-5-Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.19</td>
<td>±0.07</td>
<td>±0.08</td>
<td>±0.06</td>
<td>±0.21</td>
<td>±0.19</td>
<td>±0.04</td>
<td>±1.3</td>
<td>±0.24</td>
<td>±1.0</td>
<td>±0.2</td>
<td>±0.6</td>
<td>±0.16</td>
<td>±0.32</td>
<td>±0.20</td>
<td></td>
</tr>
<tr>
<td>BB-5-A*</td>
<td>corundum + unk. #1</td>
<td>≤0.1</td>
<td>±0.6</td>
<td>±0.3</td>
<td>±0.4</td>
<td>±0.5</td>
<td>±0.5</td>
<td>±0.6</td>
<td>3.1</td>
<td>0.8</td>
<td>8.7</td>
<td>3.8</td>
<td>15.1</td>
<td>2.9</td>
<td>&lt;0.5</td>
<td>3.7</td>
<td>BB-5-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±1.4</td>
<td>±0.5</td>
<td>±1.8</td>
<td>±1.2</td>
<td>±2.9</td>
<td>±1.0</td>
<td>±1.2</td>
<td>±1.2</td>
<td>±0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB-5-B*</td>
<td>corundum + unk. #2</td>
<td>5.3</td>
<td>±0.5</td>
<td>±0.9</td>
<td>±0.4</td>
<td>2.8</td>
<td>1.6</td>
<td>≤0.3</td>
<td>21.4</td>
<td>2.7</td>
<td>14.3</td>
<td>3.5</td>
<td>5.7</td>
<td>0.81</td>
<td>—</td>
<td>&lt;1.2</td>
<td>BB-5-B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±1.2</td>
<td>±1.0</td>
<td>±1.0</td>
<td>±1.0</td>
<td>±2.4</td>
<td>±1.8</td>
<td>±0.9</td>
<td>±1.2</td>
<td>±0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR-1-C</td>
<td>hibonite core</td>
<td>19.6</td>
<td>90.7</td>
<td>108.7</td>
<td>21.1</td>
<td>207.0</td>
<td>38.9</td>
<td>1.36</td>
<td>316.1</td>
<td>46.9</td>
<td>256.4</td>
<td>42.1</td>
<td>73.7</td>
<td>3.37</td>
<td>&lt;2.2</td>
<td>5.12</td>
<td>GR-1-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.6</td>
<td>±1.2</td>
<td>±1.5</td>
<td>±0.6</td>
<td>±2.1</td>
<td>±1.1</td>
<td>±0.12</td>
<td>±5.7</td>
<td>±1.2</td>
<td>±2.9</td>
<td>±0.8</td>
<td>±1.7</td>
<td>±0.23</td>
<td>±0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR-1-R*</td>
<td>hibonite rim</td>
<td>0.92</td>
<td>0.36</td>
<td>0.56</td>
<td>0.20</td>
<td>0.44</td>
<td>0.33</td>
<td>0.13</td>
<td>0.5</td>
<td>0.33</td>
<td>2.43</td>
<td>0.78</td>
<td>1.54</td>
<td>0.17</td>
<td>0.17</td>
<td>0.09</td>
<td>GR-1-R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.19</td>
<td>±0.09</td>
<td>±0.14</td>
<td>±0.07</td>
<td>±0.14</td>
<td>±0.05</td>
<td>±0.5</td>
<td>±0.14</td>
<td>±0.47</td>
<td>±0.15</td>
<td>±0.29</td>
<td>±0.07</td>
<td>±0.15</td>
<td>±0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR-1-M*</td>
<td>corundum</td>
<td>0.04</td>
<td>0.08</td>
<td>0.13</td>
<td>0.01</td>
<td>0.07</td>
<td>0.02</td>
<td>0.002</td>
<td>0.04</td>
<td>0.02</td>
<td>0.11</td>
<td>0.03</td>
<td>0.10</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>GR-1-M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.01</td>
<td>±0.01</td>
<td>±0.02</td>
<td>±0.01</td>
<td>±0.01</td>
<td>±0.001</td>
<td>±0.01</td>
<td>±0.03</td>
<td>±0.01</td>
<td>±0.03</td>
<td>±0.01</td>
<td>±0.02</td>
<td>±0.01</td>
<td>±0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR-1-B†</td>
<td>hib. + cor. bulk</td>
<td>5.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.37</td>
<td></td>
</tr>
<tr>
<td>HAL</td>
<td>hibonite</td>
<td>7.49</td>
<td>13.10</td>
<td>0.062</td>
<td>3.28</td>
<td>16.89</td>
<td>3.49</td>
<td>0.99</td>
<td>2.80</td>
<td>0.28</td>
<td>1.47</td>
<td>0.26</td>
<td>0.36</td>
<td>0.06</td>
<td>0.12</td>
<td>0.07</td>
<td>HAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.16</td>
<td>±0.18</td>
<td>±0.014</td>
<td>±0.09</td>
<td>±0.25</td>
<td>±0.13</td>
<td>±0.04</td>
<td>±0.28</td>
<td>±0.05</td>
<td>±0.13</td>
<td>±0.03</td>
<td>±0.07</td>
<td>±0.02</td>
<td>±0.08</td>
<td>±0.02</td>
<td></td>
</tr>
<tr>
<td>DH-HI</td>
<td>hibonite</td>
<td>0.48</td>
<td>25.54</td>
<td>0.037</td>
<td>1.44</td>
<td>30.21</td>
<td>5.68</td>
<td>1.12</td>
<td>4.27</td>
<td>0.46</td>
<td>1.97</td>
<td>0.29</td>
<td>0.38</td>
<td>0.05</td>
<td>0.19</td>
<td>0.12</td>
<td>DH-HI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.06</td>
<td>±0.38</td>
<td>±0.016</td>
<td>±0.09</td>
<td>±0.52</td>
<td>±0.76</td>
<td>±0.07</td>
<td>±0.52</td>
<td>±0.10</td>
<td>±0.74</td>
<td>±0.05</td>
<td>±0.12</td>
<td>±0.04</td>
<td>±0.12</td>
<td>±0.04</td>
<td></td>
</tr>
<tr>
<td>Cl Chondrites</td>
<td>2.299</td>
<td>0.2347</td>
<td>0.6032</td>
<td>0.08908</td>
<td>0.4524</td>
<td>0.1471</td>
<td>0.05600</td>
<td>0.1966</td>
<td>0.03633</td>
<td>0.2427</td>
<td>0.05556</td>
<td>0.1589</td>
<td>0.02416</td>
<td>0.1625</td>
<td>0.02431</td>
<td>Cl's</td>
<td></td>
</tr>
</tbody>
</table>

*Absolute lanthanide abundances based on the Y content and the mean Ho/Y in Cl chondrites. †Rastered beam analysis; no LREE values given because of overlap onto adjacent Madagascar hibonite standard.
FIG. 1. Enrichment factors relative to CI chondrites for REE in Murchison hibonite. Uncertainties shown are $\pm 2\sigma$, based on counting statistics. Enrichment factors for bulk inclusions BB-5 and MUCH-I (EKAMBARAM et al., 1984, 1985) are normalized to the calcium concentration determined in this work. The INAA strontium concentration is substantially higher than the ion microprobe value, but has a large uncertainty (302 ± 224 ppm Sr, calcium-normalized, $\pm 2\sigma$).

FIG. 2. Enrichment factors relative to CI chondrites for REE in selected areas of BB-5. Uncertainties shown are $\pm 2\sigma$, based on counting statistics. (a) BB-5-O consists of combined runs on two HREE-rich phases within corundum. The individual analyses most closely approaching compositions of the two pure phases in BB-5-O are shown in (b): BB-5-A is a low Gd/Lu, HREE-rich phase within corundum, believed to be zirconium oxide; BB-5-B is a high Gd/Lu, HREE-rich phase within corundum, believed to be hibonite. Enrichment factors in BB-5-A and BB-5-B are minimum values because of uncorrected overlap onto REE-free corundum. (c) Mixing of 27% BB-5-O and 73% BB-5-1 matches the REE pattern of bulk BB-5 (EKAMBARAM et al., 1984, 1985) quite well except for ytterbium. The uncertainty in neodymium in the bulk pattern (not shown) overlaps neodymium in the calculated pattern. (d) BB-5-1 is pure hibonite and BB-5-2 is hibonite containing a small amount of perovskite.
Previously unpublished electron microprobe analyses of BB-6 hibonite by G. J. MacPherson are given in Table 3. The hibonite analyzed by ion microprobe is lower in magnesium and higher in silicon than that analyzed by electron microprobe. The electron microprobe analyses may be incorrect, since they were done using an energy-dispersive detector. Sample heterogeneity is also possible. The observed Ca/La ratio measured by ion microprobe is over an order of magnitude higher than INAA upper limit given by Ekambaram et al. (1984), but reexamination of the INAA data revealed an error in calculation of the CaO concentration of BB-6. The correct INAA 2σ upper limit is <6.9 wt% CaO or <4.9 wt% Ca. INAA and ion microprobe REE patterns agree well for all elements analyzed except ytterbium (Fig. 3c), for which the INAA value is higher by a factor of ~2.5. There may be another REE-bearing phase with a different REE pattern in the INAA sample. Perovskite, observed by MacPherson et al. (1983), may be that second phase. The INAA chromium content is 6 times higher than the ion microprobe value, perhaps because some matrix adhered to the INAA sample. The scandium concentration measured by ion microprobe is 2.5 times higher than the INAA value. The reason for this is not known.

**4.4 BB-5**

Major and minor element compositions of corundum (BB-5-C) and hibonite (BB-5-H) determined by ion microprobe are compared with electron microprobe values of Bar-Matthews et al. (1982) in Table 3. There are significant discrepancies for silicon and calcium in corundum and vanadium in hibonite, where electron microprobe values are two, one-half and four times ion microprobe values, respectively. A possible explanation for these differences is that these electron microprobe values are near detection limits.

Although calcium and lanthanum contents determined by INAA in bulk BB-5 (Ekambaram et al., 1984) are lower than the ion microprobe contents of these elements in BB-5-1 hibonite (Tables 1 and 2) by ~30%, the Ca/La ratios measured by the two techniques agree. The ion microprobe analysis demonstrates that corundum, an abundant phase in BB-5, is extremely low in all trace elements except titanium and scandium. In order to compare ion microprobe data on hibonite with INAA data on bulk BB-5, dilution by trace element-poor corundum was corrected for by normalizing the INAA data to

![Graph](image-url)
Table 3. Comparison of ion microprobe (IP) analyses with literature analyses by instrumental neutron activation analysis (INAA) and electron microprobe analysis using energy-dispersive (EDS) or wavelength-dispersive (WDS) spectrometers. All results are given in ppm unless otherwise indicated. INAA analyses of MUCH-1 and BB-5 hibonite were normalized to the Ca concentration given in Table 1. MUCH-1 was used as a Sc standard.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Method</th>
<th>Na</th>
<th>Mg</th>
<th>Si</th>
<th>Ca</th>
<th>Sc</th>
<th>Ti</th>
<th>V</th>
<th>Cr</th>
<th>Mn</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJ-1</td>
<td>IP</td>
<td>4</td>
<td>3075</td>
<td>83</td>
<td>5.98%</td>
<td>535</td>
<td>7517</td>
<td>24</td>
<td>0.8</td>
<td>0.6</td>
<td>64</td>
<td>41</td>
<td>90</td>
<td>DJ-1</td>
</tr>
<tr>
<td>hibonite</td>
<td>EDS</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.21%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>hibonite</td>
</tr>
<tr>
<td>MUCH-1</td>
<td>IP</td>
<td>77</td>
<td>4643</td>
<td>1889</td>
<td>5.97%</td>
<td>485</td>
<td>545</td>
<td>1.01%</td>
<td>0.8</td>
<td>0.6</td>
<td>64</td>
<td>41</td>
<td>172</td>
<td>MUCH-1</td>
</tr>
<tr>
<td>hibonite</td>
<td>EDS</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.22%</td>
<td>—</td>
<td>—</td>
<td>1.23%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>hibonite</td>
</tr>
<tr>
<td>INAA</td>
<td>&lt;14%</td>
<td>5.97%</td>
<td>455</td>
<td>&lt;3.3%</td>
<td>&lt;0.079%</td>
<td>468</td>
<td>76</td>
<td>302</td>
<td>&lt;245</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>hibonite</td>
</tr>
<tr>
<td>BB-6</td>
<td>IP</td>
<td>73</td>
<td>1.35%</td>
<td>4127</td>
<td>5.93%</td>
<td>33.3</td>
<td>2.71%</td>
<td>247</td>
<td>192</td>
<td>132</td>
<td>136</td>
<td>&lt;4.0</td>
<td>51</td>
<td>BB-6</td>
</tr>
<tr>
<td>hibonite</td>
<td>EDS</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.86%</td>
<td>—</td>
<td>—</td>
<td>3.88%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>hibonite</td>
</tr>
<tr>
<td>INAA</td>
<td>&lt;74%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>&lt;4.9%</td>
<td>13.1</td>
<td>—</td>
<td>&lt;0.52%</td>
<td>1108</td>
<td>&lt;50</td>
<td>&lt;250</td>
<td>&lt;220</td>
<td>—</td>
<td>hibonite</td>
</tr>
<tr>
<td>BB-5-1</td>
<td>IP</td>
<td>3.1</td>
<td>4.17</td>
<td>56</td>
<td>5.96%</td>
<td>483</td>
<td>9052</td>
<td>53</td>
<td>2.0</td>
<td>0.5</td>
<td>75</td>
<td>39</td>
<td>102</td>
<td>BB-5-1</td>
</tr>
<tr>
<td>hibonite</td>
<td>WDS</td>
<td>3%</td>
<td>0.39%</td>
<td>0.005%</td>
<td>5.96%</td>
<td>1.21%</td>
<td>0.02%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>hibonite</td>
</tr>
<tr>
<td>INAA</td>
<td>&lt;74%</td>
<td>5.96%</td>
<td>497</td>
<td>&lt;1.5%</td>
<td>&lt;0.023%</td>
<td>36</td>
<td>54</td>
<td>&lt;162</td>
<td>223</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>hibonite</td>
</tr>
<tr>
<td>BB-5-C</td>
<td>IP</td>
<td>0.3</td>
<td>7.3</td>
<td>23</td>
<td>125</td>
<td>259</td>
<td>2534</td>
<td>17</td>
<td>0.6</td>
<td>&lt;0.1</td>
<td>0.5</td>
<td>0.6</td>
<td>3.1</td>
<td>BB-5-C</td>
</tr>
<tr>
<td>corundum</td>
<td>WDS</td>
<td>&lt;0.012%</td>
<td>0.019%</td>
<td>70</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>corundum</td>
</tr>
<tr>
<td>GR 1 C</td>
<td>IP</td>
<td>0.2</td>
<td>1515</td>
<td>94</td>
<td>5.99%</td>
<td>1316</td>
<td>4176</td>
<td>10</td>
<td>1.3</td>
<td>0.01</td>
<td>84</td>
<td>474</td>
<td>129</td>
<td>GR 1 C</td>
</tr>
<tr>
<td>hibonite</td>
<td>WDS</td>
<td>0.15%</td>
<td>&lt;0.019%</td>
<td>5.88%</td>
<td>0.10%</td>
<td>0.38%</td>
<td>&lt;0.014%</td>
<td>&lt;0.03%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>hibonite</td>
</tr>
<tr>
<td>GR-1-R</td>
<td>IP</td>
<td>30</td>
<td>2750</td>
<td>384</td>
<td>5.96%</td>
<td>442</td>
<td>4442</td>
<td>37</td>
<td>2.9</td>
<td>0.7</td>
<td>10</td>
<td>20</td>
<td>11</td>
<td>GR-1-R</td>
</tr>
<tr>
<td>hibonite</td>
<td>WDS</td>
<td>0.23%</td>
<td>&lt;0.019%</td>
<td>5.92%</td>
<td>0.05%</td>
<td>0.61%</td>
<td>&lt;0.014%</td>
<td>&lt;0.03%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>hibonite</td>
</tr>
<tr>
<td>GR-1-M</td>
<td>IP</td>
<td>53</td>
<td>23</td>
<td>2155</td>
<td>663</td>
<td>150</td>
<td>1695</td>
<td>9.3</td>
<td>12.8</td>
<td>1.6</td>
<td>2.6</td>
<td>0.9</td>
<td>3.4</td>
<td>GR-1-M</td>
</tr>
<tr>
<td>corundum</td>
<td>WDS</td>
<td>&lt;0.012%</td>
<td>&lt;0.019%</td>
<td>0.01%</td>
<td>0.05%</td>
<td>0.11%</td>
<td>&lt;0.014%</td>
<td>&lt;0.03%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>corundum</td>
</tr>
<tr>
<td>HAL</td>
<td>IP</td>
<td>7</td>
<td>23</td>
<td>57</td>
<td>5.08%</td>
<td>236</td>
<td>3817</td>
<td>0.4</td>
<td>0.3</td>
<td>3.9</td>
<td>70</td>
<td>4.0</td>
<td>23</td>
<td>HAL</td>
</tr>
<tr>
<td>hibonite</td>
<td>WDS</td>
<td>&lt;0.006%</td>
<td>&lt;0.009%</td>
<td>6.22%</td>
<td>0.03%</td>
<td>0.43%</td>
<td>&lt;0.014%</td>
<td>&lt;0.014%</td>
<td>&lt;0.02%</td>
<td>&lt;0.02%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>hibonite</td>
</tr>
<tr>
<td>INAA</td>
<td>297</td>
<td>&lt;3.6%</td>
<td>&lt;1.2%</td>
<td>5.36%</td>
<td>452</td>
<td>50.5%</td>
<td>&lt;57</td>
<td>&lt;3.6</td>
<td>20.9</td>
<td>&lt;285</td>
<td>&lt;65</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DH-HI</td>
<td>IP</td>
<td>13</td>
<td>62</td>
<td>314</td>
<td>5.99%</td>
<td>113</td>
<td>541</td>
<td>0.03</td>
<td>30</td>
<td>4.7</td>
<td>74</td>
<td>3.6</td>
<td>11.2</td>
<td>DH-HI</td>
</tr>
<tr>
<td>hibonite</td>
<td>WDS</td>
<td>&lt;74</td>
<td>&lt;0.012%</td>
<td>0.12%</td>
<td>6.36%</td>
<td>&lt;0.03%</td>
<td>—</td>
<td>&lt;0.05%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>hibonite</td>
</tr>
</tbody>
</table>


the Ca concentration in Table 1. The calcium-normalized INAA concentration of Zr is 2.2 times higher than the ion microprobe value (Table 3). Although the INAA value has a large uncertainty, the higher zirconium in bulk may be due to tiny zirconium-rich oxide grains found in corundum by ion microprobe (see section 5.5). Volatile element concentrations measured by ion microprobe in BB-5 are significantly lower than the normalized INAA values (Table 3). A minor amount of the pyroxene observed by BBS-1 are significantly lower than the normalized INAA values (Table 3). Although the INAA value has a large uncertainty, the calcium-normalized INAA value has a higher zirconium in bulk may be due to tiny zirconium-rich oxide.

The amount of perovskite may have been included in the ion microprobe analysis area.

4.6 HAL

Most major and trace element concentrations measured for hibonite in this work are in good agreement with those measured by INAA, radiochemical neutron activation analysis (RNAA) (Davis et al., 1982) and electron microprobe (Allen et al., 1980) (Table 3; Fig. 4). The minor differences are probably related to chemical zoning observed within HAL hibonite (Allen et al., 1980; Davis et al., 1982). The Sc concentration determined by ion microprobe is significantly lower than the two INAA values, but within the range of values determined by electron microprobe (Allen et al., 1980). The high sodium content measured by INAA is probably due to the presence of alkali-rich phases on surfaces of hibonite (Allen et al., 1980). The Y concentration determined by ion microprobe to HAL hibonite is lower than the two RNAA values by factors of 2.6 + 1.7 and 2.0 ± 1.4 (±2σ). The reason for this discrepancy is not known. The δCa value obtained for HAL hibonite, +7.0 ± 5%amu, is in very good agreement with that obtained by Lee et al. (1979) using thermal ionization mass spectrometry, +6.8 ± 1.8%amu and that obtained by Fahey et al. (1987a) by ion microprobe, +7.7 ± 1.8%amu. Magnesium in HAL hibonite is of normal isotopic composition, also in agreement with the data of Lee et al. (1979). Only 1168 and 2111168 could be measured in HAL hibonite, because of the presence of interferences from 39SiO at mass 46, 44Ca at mass 48 and 56NaF at mass 50. The 47Ti/48Ti ratio of HAL hibonite is lower than that of normal titanium. Since Fahey et al. (1987a) found no nuclear isotopic anomalies at these masses in HAL hibonite, we conclude that titanium in HAL hibonite is enriched in the heavy isotopes by 5 ± 1%amu. Fahey et al. (1987a) measured all masses of titanium in HAL hibonite and found a titanium mass fractionation of +4.4 ± 2.2%amu, based on δTi, δTi and δTi.
4.7 **DH-HI**

The Si concentration given by electron microprobe is substantially higher than that found by ion microprobe (Table 3). There may have been fluorescence from surrounding silica-rich matrix during electron microprobe analysis. The Ti concentration found by ion microprobe is somewhat higher than the limit set by electron microprobe. Ion microprobe analyses of several spots within DH-HI hibonite showed that titanium concentrations are uniform. The reason for this discrepancy is not known.

5. RESULTS AND DISCUSSION

5.1 Trace element patterns in hibonite

The trace element patterns of hibonite have a number of features in common. In Fig. 5, CI chondrite-normalized enrichment factors for trace elements (including selected REE) in the mean of DJ-1 and MUCH-1 hibonite are plotted in order of volatility. These enrichment factors range over five orders of magnitude. All hibonite shows an enrichment in refractory relative to volatile trace elements, but this enrichment is not entirely due to volatility. In solar nebula condensation or evaporation models in which hibonite is permitted to equilibrate with the surrounding gas and with coexisting trace element-bearing phases, the concentration of each trace element in hibonite depends on a number of factors: temperature, pressure, the amount of trace element in the system (hibonite plus its environment), the volatility of that trace element, the ease with which the trace element can substitute into the hibonite lattice and the quantities present of other trace element-bearing phases with which hibonite has partitioned. In order to compensate for the effect of solubility in hibonite and to facilitate comparison of different hibonite samples with one another, the trace element concentrations in all hibonite have been normalized to the mean of concentrations in DJ-1 and MUCH-1 in Fig. 6. DJ-1 and MUCH-1 were chosen because they appear to have come from group III refractory inclusions (see discussion of individual hibonite samples). In group III inclusions, all refractory lithophiles are enriched to the same degree, with the exception of europium, ytterbium, strontium and barium, which are somewhat depleted (Martin and Mason, 1974; Mason and Martin, 1977). Ideally, hibonite chosen for normalization should come from an internally equilibrated inclusion with uniform enrichments of all refractory elements, such as a once-molten group I inclusion. Unfortunately, the suite of trace elements reported here have not yet been determined in hibonite from such an inclusion. In the two hibonite samples chosen for normalization, the Eu/Eu* and Yb/Yb* ratios range from 0.11 + 0.08 to 0.24 + 0.02 (±2σ). (A europium or ytterbium anomaly (Eu/Eu* or Yb/Yb*) is defined as the measured enrichment factor relative to CI chondrites divided by that calculated by averaging the enrichment factors of adjacent REE.) This degree of fractionation is relatively minor compared to five orders of magnitude of variation in enrichments plotted in Fig. 6 and the eight orders of magnitude variation in trace element enrichment factors in all of the hibonite analyzed in this work. The remaining inclusions were not used for normalization because (1) sodium and magnesium in BB-5-1 were determined in a separate analysis from other minor and trace elements, (2) BB-6 and GR-1 seem to have experienced significant gas-solid fractionation

![Fig. 5. CI chondrite-normalized enrichment factors of trace elements in the mean of DJ-1 and MUCH-1 hibonite, in order of increasing refractoriness.](image-url)

Table 4. Nuclear isotopic anomalies in magnesium and isotopic mass fractionation of magnesium, calcium and titanium. Uncertainties are ±2σ. Only in DH-HI does $\Delta^{25}Mg$ vary with Al/Mg.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$\Delta^{25}Mg^*$</th>
<th>$\delta^{25}Mg$</th>
<th>$\Delta^{44}Ca$</th>
<th>$\Delta^{46}Ti$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(‰/amu)</td>
<td>(‰)</td>
<td>(‰/amu)</td>
<td>(‰/amu)</td>
</tr>
<tr>
<td>DJ-1</td>
<td>-2.2 ± 2.6</td>
<td>+1.9 ± 3.3</td>
<td>-0.5 ± 1.5</td>
<td>+4.0 ± 1.6</td>
</tr>
<tr>
<td>BB-5</td>
<td>-7.0 ± 3.2</td>
<td>+5.8 ± 2.4</td>
<td>-3.7 ± 0.6</td>
<td>+1.3 ± 1.0</td>
</tr>
<tr>
<td>GR-1(gore)</td>
<td>-4.4 ± 1.8</td>
<td>-0.8 ± 2.3</td>
<td>-2.6 ± 1.9</td>
<td>+1.1 ± 1.9</td>
</tr>
<tr>
<td>GR-1(rim)</td>
<td>-6.5 ± 2.7</td>
<td>-1.7 ± 1.8</td>
<td>-7.3 ± 1.4</td>
<td>+0.4 ± 2.9</td>
</tr>
<tr>
<td>HAL</td>
<td>-2.5 ± 5.0</td>
<td>+1.2 ± 3.80</td>
<td>+7.0 ± 0.9</td>
<td>+5.5 ± 0.9</td>
</tr>
<tr>
<td>DH-HI</td>
<td>+18.9 ± 5.79</td>
<td>+66 to +9200</td>
<td>+12.5 ± 0.2</td>
<td></td>
</tr>
</tbody>
</table>

$*\Delta^{25}Mg = (^{25}Mg/^{24}Mg)_{unknown} - (^{25}Mg/^{24}Mg)_{standard} \times 1000.$

$\delta^{25}Mg = (^{25}Mg/^{24}Mg)_{unknown} - (^{25}Mg/^{24}Mg)_{standard} \times 1000.$

corrected for mass fractionation using $\Delta^{25}Mg$.

$\Delta^{44}Ca = (^{44}Ca/^{40}Ca)_{unknown} - (^{44}Ca/^{40}Ca)_{standard} \times 1000.$

$\delta^{44}Ca = (^{44}Ca/^{40}Ca)_{unknown} - (^{44}Ca/^{40}Ca)_{standard} \times 1000.$

$\Delta^{46}Ti = (^{46}Ti/^{48}Ti)_{unknown} - (^{46}Ti/^{48}Ti)_{standard} \times 1000.$

$\delta^{46}Ti = (^{46}Ti/^{48}Ti)_{unknown} - (^{46}Ti/^{48}Ti)_{standard} \times 1000.$

HINTON et al. (1987b).

0data of HINTON and BISCHOFF (1984).
at such high temperatures that LREE are fractionated from HREE by volatility, and (3) HAL and DH-H1 seem to have come from a highly oxidizing environment (see sections 5.4, 5.6 and 5.7).

5.2 DJ-1

The CI chondrite-normalized enrichment factors of REE in DJ-1 are quite uniform for LREE and drop smoothly through HREE (Fig. 1a). Superimposed are negative europium and ytterbium anomalies, Eu/Eu* ≈ 0.23 ± 0.029 and Yb/Yb* = 0.06 ± 0.02. Within analytical uncertainty, these anomalies can be of the same magnitude. Smooth REE patterns with negative europium and ytterbium anomalies of similar magnitude were first recognized in Allende refractory inclusions by Martin and Mason (1974). In these group III inclusions all REE except europium and ytterbium have the same CI chondrite-normalized enrichment factor. These patterns are thought to arise because europium and ytterbium, the least refractory REE in a gas of solar composition (Boynton, 1975; Davis and Grossman, 1979), failed to condense when the inclusions were removed from a cooling solar nebular gas. These elements would also be the first REE lost if the inclusions formed by volatilization.

Hibonite appears to favor LREE over HREE in partitioning with the other phases likely to be found in refractory inclusions. A number of REE partitioning studies have been done on hibonite, perovskite, melilite and fassaite, phases that are the major carriers of REE in refractory inclusions. Partitioning of REE between hibonite and a silicate liquid in the CaTiO3 system gives a hibonite/silicate partition coefficient for lanthanum that is 69 ± 24 (±2σ) times that of ytterbium (Drake and Boynton, 1988). In a system containing 32 wt% TiO2, 30 wt% SiO2 and 38 wt% CaO, perovskite/silicate partition coefficients drop by a factor of 6 from lanthanum to lutetium (Nagasawa et al., 1980). Similar experiments done with melilite in a system containing 41 wt% CaO, 5 wt% MgO, 26 wt% Al2O3 and 28% wt% SiO2 show a drop in partition coefficient by a factor 2 from lanthanum to lutetium (Nagasawa et al., 1980). A number of studies show that diopside favors HREE relative to LREE compared to silicate liquids (Irvine, 1978). The structure of silicate melts can affect REE partition coefficients (Myssen and Virgo, 1980), but the REE patterns of coexisting phases in refractory inclusions are generally in agreement with the partitioning experiments. Hinton and Davis (1986a) showed that fassaite and melilite in a once-molten Allende refractory inclusion have higher and lower HREE/LREE ratios than the hulk.
respectively, in agreement with separate melt-lifuid and pyroxene-liquid partitioning experiments. HASHIMOTO et al. (1986) measured REE in adjacent hibonite and perovskite in Murchison inclusion SH-7. Assuming that these phases are in equilibrium, hibonite/perovskite partition coefficients decrease by a factor of \(\sim 120\) from lanthanum to lutetium. Although the silicate liquids in the partitioning experiments differ in composition and probably differ in partitioning behavior, there can be little doubt that hibonite has the strongest preference for LREE over HREE of the REE-bearing minerals commonly found in refractory inclusions.

If REE were partitioned among the phases of a group III inclusion, hibonite separated from that inclusion should have an enrichment of LREE over HREE, no matter which of the other common REE-bearing phases were present during partitioning. This partitioning can take place during crystallization from a melt or during cocondensation of several REE-bearing phases. The degree of enrichment of LREE over HREE in hibonite depends on the identities and amounts of other phases involved in partitioning. If the condensed phases in the system in which partitioning took place were depleted in europium and ytterbium due to volatility, then ytterbium and europium depletions would be expected to be superimposed on the otherwise smoothly fractionated REE pattern of hibonite. This is what is qualitatively observed in DJ-1 (Fig. 1). The minerals with which DJ-1 hibonite partitioned REE are now missing. Perhaps an original DJ-1 inclusion was friable because it was a fluffy aggregate of condensate grains or because other primary minerals were replaced during alteration. It is unclear whether the loss of the other primary or secondary minerals took place prior to parent body formation or in the freeze-thaw disaggregation and density separation. It is also possible that the minerals that condensed with DJ-1 hibonite never accreted with it.

5.3 MUCH-1

MUCH-1 hibonite has negative europium and ytterbium anomalies of similar magnitude: Eu/Eu* = 0.166 ± 0.020 and Yb/Yb* = 0.107 ± 0.082 (Fig. 1b). Apart from europium and ytterbium, the REE pattern of MUCH-1 is flat and HREE drop smoothly in C1 chondrite-normalized enrichment factor from gadolinium to lutetium. There appears to be a step up in enrichment factor between LREE and HREE. The INAA analysis of MUCH-1 gives a similar REE pattern, but shows a step downwards from LREE to HREE (Fig. 1b). Similar small steps, both up and down, have been observed in REE patterns from the Murchison hibonite-rich inclusion SH-7 (HASHIMOTO et al., 1986; unpublished work from this laboratory), so the differences between the ion microprobe and INAA REE patterns for MUCH-1 may be due to sample heterogeneity. If the REE content of MUCH-1 hibonite were controlled by igneous partitioning in a reservoir with C1 chondritic proportions of REE, lanthanide enrichment factors in it should be a smooth function of atomic number. Gas/solid fractionation in a reservoir with C1 chondritic proportions of REE can lead to irregular REE patterns, because REE volatilities are not a smooth function of atomic number and the LREE as a group are significantly less refractory than all HREE except ytterbium (BOYNTON, 1975; DAVIS and GROSSMAN, 1979). Hibonite with a smoothly fractionated, but stepped REE pattern could also be produced by igneous partitioning in a reservoir with a stepped bulk REE pattern. Preservation of hibonite with steps going both up and down, however, could not be caused by igneous partitioning, regardless of bulk composition. The most likely explanation is that these stepped patterns preserve the condensation history of hibonite, in which hibonite grains passed through gases of changing composition as they grew. A hibonite grain having a REE pattern with a step up from LREE to HREE could be formed by removing the grain from equilibrium with the gas at a temperature such that the LREE have not completely condensed. If another grain of hibonite with REE fully condensed (i.e., having a smooth REE pattern) then came into equilibrium with this gas at lower temperature, only LREE would be added and this hibonite would end up with a REE pattern with a step down from LREE to HREE.

DJ-1 and MUCH-1 have similar concentrations of refractory elements, but MUCH-1 is significantly higher in sodium, manganese, chromium and silicon than DJ-1 (Fig. 6). MUCH-1 hibonite is surrounded by a highly altered region of calcite and gypsum with minor perovskite (MACPHERSON et al., 1983). Some volatile elements may have been introduced into hibonite during alteration.

REE patterns in MUCH-1 hibonite determined by INAA and ion microprobe can only be explained by condensation of hibonite with at least one other REE-bearing phase as these phases passed through gases of varying composition. For hibonite observed by MACPHERSON et al. (1983) in the altered region of MUCH-1 may be the phase that cocondensed with hibonite. The trace element data support the textural and petrographic arguments that MUCH-1 is a condensate (MACPHERSON et al., 1983).

5.4 BB-6

Although they could not measure the characteristic thulium anomaly with sufficient precision, EKAMBARAM et al. (1984) inferred that BB-6 has a group II REE pattern on the basis of the depletion of several HREE compared with LREE, a negative europium anomaly and an ytterbium enrichment factor similar to that of europium. Since this work demonstrates that nearly all hibonite is depleted in HREE relative to LREE (Figs. 1-4), these criteria alone cannot be used to identify a sample as a group II inclusion. The REE pattern of BB-6 hibonite is indeed different from that observed in hibonite believed to come from group III inclusions, DJ-1, MUCH-1 and BB-5, in that thulium is enriched relative to the neighboring erbium and there is a substantial drop in enrichment factor from samarium to gadolinium. Thus BB-6 is a group II inclusion.

BB-6 hibonite is unlike bulk group II inclusions (DAVIS and GROSSMAN, 1979) in two respects: thulium has a lower enrichment factor than the LREE and ytterbium is depleted relative to europium. The fractionated REE patterns of DJ-1 and MUCH-1 are believed to have arisen from REE partitioning between hibonite and other condensed phases in closed systems with bulk group III REE patterns. The differences between the Tm/Sm and Yb/Eu ratios in BB-6 hibonite and those in bulk group II inclusions are probably
caused by the same process. This is consistent with the observation that in BB-6 hibonite the depletion of thulium relative to LREE (Tm/SmC1 = 0.46 ± .16) is intermediate between the depletions seen in DJ-1 and MUCH-1 (Tm/SmC1 = 0.16 ± .02 and 0.56 ± .08, respectively). BB-6 hibonite reflects some other peculiarities of group II inclusions. Group II inclusions compared with normal group I or III inclusions are enriched in volatile elements and depleted in the most refractory trace elements (GROSSMAN and GANAPATHY, 1976b; MASON and MARTIN, 1977). Similarly, BB-6 hibonite compared with hibonite from group III inclusions is enriched in volatile sodium, potassium, silicon, chromium, manganese and iron and depleted in highly refractory scandium and yttrium (Table 1, Fig. 6b). The only highly refractory element which is not significantly depleted in BB-6 hibonite is zirconium, for which the concentration is only slightly less than in hibonite from other inclusions. The reason for the lack of a significant zirconium depletion in BB-6 hibonite is unclear.

The high sodium and silicon contents of the hibonite demonstrate that enrichment of volatile elements in bulk group II inclusions is not restricted to secondary phases. Either the primary phases were initially high in volatile elements or they have been reequilibrated with a volatile-rich gas or melt at lower temperatures. Magnesium isotopic analyses show that secondary alteration in Allende coarse-grained inclusions, specifically that producing sodium-rich minerals, occurred after decay of 26Al (HUTCH~ON and NEWTON, 1981). BB-6 has a 26Mg excess consistent with an initial 26Al/27Al ratio of \( \sim 4 \times 10^{-3} \) (HUTCH~ON et al., 1980; HUTCH~ON, pers. comm.). If sodium and silicon were introduced into hibonite, this introduction occurred before 26Al decay or without magnesium isotopic exchange. Thus, it is possible that the high volatile element content of BB-6 hibonite is a primary feature.

5.5 BB-5

The bulk sample of BB-5 analyzed by EKAMBARAM et al. (1984, 1985) has a C1 chondrite-normalized REE pattern that resembles a group III pattern (MASON and MARTIN, 1977), but with important differences. While all group III inclusions have Yb/Yb* values very close to their Eu/Eu* values, the Yb/Yb* value, 0.031 ± .019, is only one tenth the Eu/Eu* value, 0.306 ± .090 (±2σ), in BB-5. Group III inclusions have uniform enrichments of all REE except europium and ytterbium, while BB-5 is enriched in HREE relative to LREE by a factor of ~1.3. Ion microprobe analysis of BB-5 has revealed the presence of several REE-bearing phases which can be combined to explain the bulk pattern.

Corundum is the only phase in BB-5 that does not contain REE. No LREE were detected within BB-5-C corundum; the upper limit based on a background count rate of 1 count per minute gave a total LREE content of <0.1 ppm (3σ background level) or less than 0.05 times CI chondritic levels. LREE concentrations, although very low, may reflect minor overlap onto HREE-bearing phases described below. Scandum, titanium and vanadium appear to be present within the corundum structure, because Sc/REE, Ti/REE and V/REE ratios are much higher than one would expect from overlap onto HREE-rich phases. The concentration of titanium is far in excess of those of magnesium and iron, so titanium must exist as Ti³⁺ unless there are vacancies in the corundum structure. The concentrations of strontium, yttrium, zirconium and volatile elements in corundum are very low.

The C1 chondrite-normalized REE pattern of BB-5-1 hibonite (Fig. 1d) is similar to those of DJ-1 and MUCH-1 (Fig. 1a,b); LREE are uniformly enriched; HREE enrichments drop smoothly from gadolinium to lutetium; and superimposed on this are europium and ytterbium anomalies of similar magnitude. Levels of refractory elements other than REE in BB-5-1 hibonite are similar to those in DJ-1 and MUCH-1. Levels of volatile elements are similar to those found in DJ-1 and, except for sodium, about a factor of ten lower than in MUCH-1 (Fig. 6a).

Since BB-5-1 hibonite is depleted in HREE relative to LREE and bulk BB-5 is somewhat enriched in HREE relative to LREE, there must be additional HREE-rich phases present in this inclusion. One such phase known to be present is perovskite, which is found enclosed in hibonite (BAR-MATTHEWS et al., 1982). Although the primary ion beam was larger than any of the perovskite grains in BB-5, an analysis was made centered on one of the largest ones. The minor and trace element content of this area, BB-5-2, is similar to that of pure hibonite, BB-5-1, but Fig. 2d shows that BB-5-2 has a REE pattern somewhat different from that of BB-5-1: C1 chondrite-normalized enrichments increase smoothly from lanthanum to dysprosium and then fall smoothly to lutetium. The Eu/Eu* and Yb/Yb* values in BB-5-2 are both ~0.3, in excellent agreement with BB-5-1. Dysprosium and holmium appear to have the highest enrichment factors in this perovskite, since the BB-5-2 REE pattern shows the largest excess relative to that of BB-5-1 for these REE. Hibonite in BB-5-1 and perovskite in BB-5-2 both have lower Lu/Dy ratios than BB-5 bulk, so these two components combined cannot explain the bulk BB-5 REE pattern.

The REE pattern of bulk BB-5 may be influenced by the presence of two additional HREE components that were found in submicron grains in corundum. Both components were found in one volume within corundum, BB-5-O, which gave very high concentrations of HREE, but was essentially free of LREE (Fig. 2a). In two long runs giving the REE pattern of BB-5-O, the Gd/Lu ratio was highly variable, indicating that two HREE-bearing phases were being analyzed simultaneously (Fig. 7). Areas enriched in each of the individual phases were found by searching for spots rich in either gadolinium or lutetium. The area with the lowest Gd/Lu ratio was labelled BB-5-A and the area with the highest Gd/Lu was labelled BB-5-B. Owing to the small size of HREE-rich phases in these areas and the necessity to establish quickly the major and minor element chemistry before the grain was sputtered away by the primary ion beam, REE data obtained on BB-5-A and BB-5-B are based only on single passes through the REE mass range.

Absolute abundances of REE and major elements in BB-5-A and BB-5-B (Fig. 2b) are difficult to assess due to the overlap of the primary beam onto surrounding corundum. In the lutetium-rich phase, BB-5-A, HREE increase steadily from gadolinium to lutetium. The composition of this phase was estimated by comparing its composition with that of BB-5-C corundum. If the phase contains no aluminum, spot BB-5-A contains 0.2% of a phase whose composition is ~7%
CaO, 7% Sc$_2$O$_3$, 13% TiO$_2$, 6% Y$_2$O$_3$, 65% ZrO$_2$ and 2% HREE oxides. This phase could be much lower in calcium, scandium and titanium if corundum in this area were slightly high in these elements. In the gadolinium-rich phase (BB-5-B) the HREE decrease from gadolinium to lutetium. BB-5-B is enriched in magnesium, calcium, titanium, yttrium and HREE relative to surrounding corundum. The Ca/Ti ratio of ~5 in BB-5-B, the presence of magnesium and the slope of the HREE pattern suggest that the gadolinium-rich phase is hibonite rather than perovskite. Comparison of the calcium content of BB-5-B with those of BB-5-1 hibonite and BB-5-C corundum indicates that BB-5-B contains 47% hibonite. The REE pattern of hibonite observed in BB-5-B is quite different from that of BB-5-1. If normalized to the Ca concentration of BB-5-1, BB-5-B hibonite is depleted in LREE by a factor of ~8 and enriched in HREE by a factor of ~5 compared with BB-5-1 hibonite. Both BB-5-A and BB-5-B are enriched in HREE relative to LREE. Since HREE as a group are more refractory than LREE, BB-5-A and BB-5-B can be considered to be ultrarefractory components.

The gadolinium content of BB-5-O remained fairly constant throughout the run, while lutetium was highly variable (Fig. 7). This indicates that hibonite in BB-5-O is fairly constant in composition and uniformly distributed and that zirconium-rich oxide is present as very tiny grains that are inhomogeneously distributed. The gadolinium content of BB-5-B is nearly the same as that of BB-5-O, yet the calcium content of BB-5-O is only one-seventh of that of BB-5-B. The most likely explanation for this is that the calcium analysis of BB-5-O, which was done after the REE analysis, was made on a slightly different spot which contained less hibonite.

The LREE pattern of BB-5-B resembles that of BB-5-O and has substantially higher enrichments than were found in BB-5-A. The LREE patterns of the individual passes that make up the BB-5-O analysis are remarkably consistent despite the widely varying Gd/Lu ratio. Although statistically significant numbers of counts were recorded at the LREE masses, there may be molecular interferences in the LRFF mass spectrum that are not completely removed by energy filtering. Nonetheless, the remarkable similarity between the shapes of LREE patterns of BB-5-O and core hibonite in GR-1 suggests that the LREE concentrations are real and indicates a similar origin for the two hibonite samples by cocondensation of hibonite and another phase with incomplete condensation of LREE (see section 5.6).

The slope of the HREE pattern of BB-5-B is similar to that of BB-5-1 hibonite, but BB-5-B is strongly depleted in LREE. Such a pattern could be explained if the volume analyzed in BB-5-B contained a hibonite grain that condensed at such a high temperature that LREE did not condense. The decreasing enrichment factor with increasing atomic number among HREE in BB-5-B hibonite requires that other phases, enriched in heavier over lighter HREE, condensed with it. One candidate for such a phase is the one present in BB-5-A, which is enriched in the heaviest HREE. BB-5-A and BB-5-B cannot be combined to give a flat HREE pattern. When they are combined, as in BB 5 O, they give a HREE pattern depleted in the middle range of HREE. The middle HREE cannot be depleted due to volatility, because they are more refractory than lighter HREE in BB-5-A and more volatile than heavier HREE in BB-5-B. The carrier for middle HREE may be perovskite, since perovskite-bearing BB-5-2 is most highly enriched in these HREE. Perovskite in the Ornans ultrarefractory inclusion OSCAR is also enriched in the middle HREE (Davis and Hinton, 1985). Formation of the HREE-enriched components in BB-5 probably took place by high temperature cocondensation of hibonite, perovskite and zirconium oxide. It is not clear whether perovskite is missing from the ultrarefractory assemblage within BB-5 corundum or was not observed by us or Bar-Matthews et al. (1982).

Ekambaram et al. (1984) had difficulty explaining the large ytterbium anomaly coupled with a much smaller europium anomaly in BB-5, because during gas-solid fractionation in gases of relatively reducing solar composition (Davis and Grossman, 1979) or in oxidizing gases (Davis et al., 1982) ytterbium is always more refractory than europium. They suggested that BB-5 condensed as a group III inclusion with equally large europium and ytterbium anomalies and subsequently equilibrated with another phase under reducing conditions where only europium (as Eu$^{2+}$) was added. The REE pattern of bulk BB-5 (Ekambaram et al., 1984, 1985) can be explained by a combination of the REE patterns of BB-5-1 hibonite and the combined HREE-rich phases within corundum, BB-5-O. The bulk BB-5 data were first normalized to the Ca concentration measured in BB-5-1 hibonite. A sufficient quantity of BB-5-O was added to BB-5-1 to match the terbium enrichment factor in the calcium-normalized bulk. Although the calculated pattern is higher in ytterbium than the bulk pattern (Fig. 2c), the calculated pattern has an ytterbium anomaly that is significantly larger than its europium anomaly. The remaining REE agree quite well in the two patterns. BB-5-A and BB-5-B, which dominate the REE pattern of BB-5-O, do not contain detectable levels of ytterbium. BB-5-O may be contaminated with a minor amount of another ytterbium-bearing phase. Nonetheless, BB-5-O was used in the mixing calculation because its REE data were more precise than those of BB-5-A and BB-5-B. If the component
mixed with BB-5-1 was HREE-rich with no ytterbium, but the calculated pattern would have an ytterbium abundance that overlaps that of the bulk REE pattern. In BB-5, hibonite is depleted in the heaviest HREE and the ultrarefractory components are enriched in HREE, so addition of the ultrarefractory components to BB-5-1 deepens the ytterbium anomaly while only having a minor effect on the europium anomaly. Thus, BB-5 appears to be a mixture of hibonite typical of a group III inclusion with an ultrarefractory component enriched in HREE, but very low in LREE and ytterbium.

The two major REE-bearing portions of BB-5 have different condensation histories. The REE pattern of BB-5-O has a step between LREE and HREE while that of BB-5-1 does not. The HREE condensed into several high temperature phases, which were trapped in corundum and removed from equilibrium with the gas. BB-5-1 hibonite condensed from a reservoir which experienced no significant amount of prior removal of highly refractory HREE. It is possible that both BB-5-1 and BB-5-O formed in the same reservoir if the trapping of HREE at high temperature was inefficient. As shown for DJ-1 and MUCH-1, condensation of hibonite with a smoothly fractionated HREE-poor pattern must occur by cocondensation of another phase with a HREE-rich sloping pattern. As in DJ-1 and MUCH-1, hibonite must have been separated from the missing HREE-rich phase. There are three possibilities for this: (1) hibonite was mechanically separated from a group III inclusion prior to incorporation into BB-5; (2) perovskite or some other phase that favors HREE cocondensed with, but did not accrete with BB-5; and (3) the second phase is not missing from BB-5, but only from the sample taken for bulk analysis.

BAR-MATTHEWS et al. (1982) demonstrated that despite enormous variations in the Al/Mg ratio both hibonite and corundum have uniform $^{26}$Mg values of $\sim +7\%$. Both magnesium and calcium in BB-5 hibonite are isotopically mass fractionated in favor of light isotopes (Table 4). The lack of a large $^{26}$Mg excess may have been caused by exchange of magnesium with an external reservoir after decay of $^{26}$Al. The uniform magnesium isotopic mass fractionation makes this rather unlikely, because in other refractory inclusions where magnesium exchange is suspected, the exchange occurs with a reservoir of near-normal isotopic composition (FAHEY et al., 1985a; DAVIS et al., 1986; LAUGHLIN et al., 1986; MACPHERSON et al., 1986). The uniform $^{26}$Mg excess, the lack of evidence for decay of $^{26}$Al and the mass fractionated magnesium and calcium reflect formation from an isotopically peculiar reservoir. There is a second possible interpretation of the magnesium isotopic data that requires an isotopically peculiar reservoir. IRELAND (1987a) found that a number of hibonite grains from C2 chondrules show a 1:1 correlation between $-\Delta^{25}$Mg and $\delta^{26}$Mg, generally in the direction of excess $^{25}$Mg and isotopically light magnesium. He suggested that such a correlation could be produced by mixing monoisotopic $^{25}$Mg normal magnesium, in much the same way that $^{16}$O is mixed with normal oxygen in most refractory inclusions (R. N. CLAYTON et al., 1973). Ireland's data turned out to be incorrect because of an analytical artifact (T. R. IRELAND, pers. commun.), but this still remains a possible explanation for magnesium in BB-5, because $\delta^{25}$Mg and $\delta^{26}$Mg have the same magnitude and opposite sign (Table 4). The very large $^{26}$Ti depletion of $-68\%$ in BB-5 (HINTON et al., 1985a, 1987b) certainly requires formation in a reservoir with a peculiar titanium isotopic composition. The similarity of hibonite and corundum in their magnesium and titanium isotopic compositions indicates that both phases formed in the same reservoir. The $\delta^{26}$Ti value calculated from the mass scan of BB-5-O made for trace element analysis, $-64 \pm 17\%$, is in good agreement with the hibonite and corundum values. Since 50–75% of the titanium in BB-5-O is contributed from HREE-rich trace phases, the latter must have formed from the same isotopic reservoir as the major phases.

The presence of a "trapped" ultrarefractory HREE component within corundum demonstrates that BB-5 cannot have been totally molten at any time. It also rules out the possibility of formation by evaporation unless corundum and small HREE-rich grains were the only refractory residue. The most plausible scenario is a formation by condensation with limited time available for reequilibration as the temperature fell. Condensation must have occurred from a reservoir with isotopically anomalous titanium and magnesium and lacking $^{26}$Al. Fractionation in both calcium and magnesium may have been caused by a single condensation process; however, the large degree of mass fractionation suggests that this is unlikely.

5.6 GR-1

GR 1 has a concentric structure, with a hibonite core, a corundum mantle and a hibonite rim. MACPHERSON et al. (1984) found significant differences in mineral chemistry between rim and core hibonite in this inclusion. These hibonite regions are also quite different in their trace element and isotopic compositions (Fig. 3, Tables 1, 2 and 4), not only from each other, but from other hibonite analyzed in this work.

Rim hibonite (GR-1-R) is higher in magnesium than core hibonite, but significantly depleted in refractory elements compared to core hibonite and Murchison hibonite in general. Core hibonite gave variable contents of zirconium and yttrium due to overlap of the primary ion beam onto a refractory oxide phase at the boundary between core hibonite and mantle corundum (see photomicrograph in MACPHERSON et al., 1985). The low ends of the ranges given in Table 1 for yttrium and zirconium are believed to be representative of core hibonite. The zirconium content of rim hibonite is $\sim 2$ times lower than that of core hibonite and $\sim 10$ times lower than those of other Murchison hibonite. Core hibonite (GR-1-C) is enriched in scandium relative to rim hibonite (Fig. 6c), but this enrichment cannot be due to the refractory oxide grains surrounding the core. The atomic Zr/Sc ratio in these grains is $\sim 1$ (MACPHERSON et al., 1984) while that in core hibonite is $\sim 7 \times 10^{-2}$. Overlap of the beam onto this phase would result in much larger zirconium contents than are observed. The strontium and barium contents of core hibonite are similar to those of other Murchison hibonite reported here, but rim hibonite is substantially depleted in these elements (Fig. 6c). Strontium and barium are among the most volatile of the elements normally considered refractory.

In some areas of GR-1 core hibonite, count rates at m/e = 176 to 192 were observed that are in excess of those that attributable to LnO$^+$ ions of HREE. Especially high count
rates were observed at $m/e = 188, 189, 190$ and 197. Relative proportions of these peaks match the isotopic composition of osmium quite well, so we conclude that osmium is present. The count rates at $m/e = 191$ and 193, corresponding to iridium, are much lower. This is not surprising, because the ion yield of Ir$^+$ under oxygen bombardment of iridium metal is only one tenth that of Os$^+$ from osmium metal (Storms et al., 1977). The ratio of the count rate at $m/e = 192$ to that at $m/e = 139$, which should be proportional to the Os/La ratio, varied between 0.02 and >100. Since osmium is always accompanied by other refractory siderophile elements, refractory nuggets appear to be heterogeneously distributed within core hibonite.

GR-1 core and rim hibonite have very different REE patterns (Fig. 3). They contain the highest and lowest REE concentrations, respectively, of all hibonite analyzed in our laboratory. The C1 chondrite-normalized LREE pattern in core hibonite is very irregular and there is a distinct break between samarium and gadolinium. LREE are depleted by factors of 3.5 to 8.9 compared to gadolinium. HREE decrease monotonically from gadolinium to erbium, then fall sharply to thulium. Europium and ytterbium are strongly depleted relative to neighboring REE. Although the ytterbium concentration could not be measured, due to large interfering GdO$^+$ peaks, there is clearly a significant depletion. The cosmochronal behavior of yttrium is similar to that of the HREE: it is trivalent and has an ionic radius between those of dysprosium and holmium; its refractoriness is similar to those of erbium and lutetium. The Y/Zr ratio in the refractory oxide phase between core hibonite and the mantle corundum (MacPherson et al., 1984) is ~1. The very high Y/Zr ratio core hibonite (Table 1) implies that the bulk of the REE are in solid solution in hibonite rather than concentrated in zirconium-rich oxide grains. Some variations of the slope of HREE patterns were observed from run to run: C1 chondrite-normalized Lu/Gd ratios vary from 0.03 to 0.19. In contrast, LREE patterns were constant. The slopes in HREE patterns of core hibonite are correlated with zirconium content and probably reflect overlap onto zirconium rich grains. These grains appear to be more lutetium-rich than hibonite, as was observed in BB-5.

REE concentrations are much lower in rim hibonite (GR-1-R) than in core hibonite (GR-1-C). Rim hibonite grains are quite small, so the beam spot overlapped onto corundum. Although uncertainties are given for LREE in rim hibonite, the concentrations should be considered as upper limits because of molecular interferences, a possibility raised by the low levels and irregular pattern of the LREE. HREE are substantially more enriched than LREE in rim hibonite. The C1 chondrite-normalized Dy/Ce ratio is ≥11 in the rim compared to 6 for the core. Rim hibonite differs from core hibonite in having much less fractionation among HREE.

REE concentrations in GR-1 corundum (GR-1-M) are extremely low. Although concentrations listed in Table 2 are usually larger than 2σ uncertainties, we cannot exclude the possibility that the observed count rates are due to molecular interferences. Therefore, these values should be considered as upper limits.

Magnesium and calcium isotopic compositions were measured for both core and rim hibonite. Hinton et al. (1987b) measured the titanium isotopic composition of these hibonite areas. Magnesium in both core and rim hibonite is mass fractionated in favor of the light isotopes by about 5‰/amu (Table 4). Initial magnesium isotope measurement (Hinton et al., 1984a) suggested an apparent δMg value of ~3‰ in both core and rim. Further analyses did not confirm this depletion; no δMg anomalies greater than 2σ are observed in GR-1 hibonite (Table 4). Hinton et al. (1984a) combined measurements of calcium mass fractionation for both core and rim hibonite to give a Δ44Ca value of ~5‰/amu. Further analyses showed that while both core and rim hibonite are fractionated in favor of light isotopes, rim is much lighter (7.3 ± 1.4‰/amu) than the core (2.6 ± 1.9‰/amu). This difference of nearly 5‰/amu in calcium mass fractionation between two portions of the inclusion is quite large. The entire range of Δ44Ca observed by Niederer and Papastassiou (1984) in Allende refractory inclusions is from −2.3 to +1.8‰/amu (with the exception of HAL and B-29). The amount of fractionation observed between GR-1 core and rim hibonite is too large to be explained by a single stage fractionation process. More likely, the two generations of hibonite formed in two different isotopic reservoirs. The reservoirs may be related through multistage condensation and evaporation steps.

Davis and Grossman (1979) showed that although calculations of REE condensation in a gas of solar composition indicated small differences in volatility between the HREE, uncertainties in thermodynamic data also allow the possibility that lanthanum, cerium, praseodymium, neodymium and samarium have exactly the same volatility. When these authors modeled gas-solid fractionation of REE in attempting to explain group II REE patterns, they assumed that the LREE all had the same volatility, because most group I, II and III REE patterns have nearly uniform abundances of LREE. Since GR-1-C is enriched in HREE over LREE, the LREE are probably incompletely condensed and the irregular LREE pattern may be caused by the relative volatilities of the LREE.

We have applied calculations of gas-solid partitioning behavior of the LREE to GR-1 core hibonite, using methods described in Davis and Grossman (1979). A calculation was done for a gas of solar composition at a total pressure of 10⁻⁷ atm at 1710 K. Thermodynamic data for gaseous REE monoxides were taken from Pedley and Marshall (1983); data for all other compounds were the same as in Davis et al. (1982). Hibonite clearly shows nonideal solid solution of lanthanides. In order to calculate the depletion of LREE due to volatility, one must first estimate what the REE pattern of the hibonite would have been if there were no LREE depletion. The HREE pattern of GR-1-C hibonite resembles that of other hibonite analyzed here in having a monotonically decreasing REE enrichment factor from gadolinium to lutetium (except for ytterbium). This type of pattern is believed to be caused by partitioning of REE between hibonite and perovskite or another refractory oxide. The slopes of the HREE pattern in GR-1-C is intermediate between those of HAL and DJ-1. Had the LREE completely condensed, GR-1-C would have a LREE pattern with a slope intermediate between those of HAL (except for cerium and praseodymium) and DJ-1. We estimate that it would follow the HREE and smoothly extrapolate to a C1 chondrite-normalized enrich-
concentration is much greater than expected from volatility.

Core hibonite are due to small differences in volatility of LREE.

We conclude that the variations in LREE enrichments in GR-1 core and the calculated pattern. We ~e~~ynamic data still permit all LREE to have the same above-estimated GR-1-C pattern and compared with ob-

served enrichments in GR-1-C (Fig. 8). Uncertainties in thermodynamic data, there is an excellent match between the calculated and observed patterns.

ment factor of 2500 for lanthanum (Fig. 8). The deviation of this estimated pattern from a flat one takes into account nonideal solid solution behavior and competition with other cocondensing REE-bearing phases. It is an estimate of what the REE pattern of GR-1-C would have had if the LREE had fully condensed into hibonite and its competitors; and large open circles with error bars represent LREE abundances calculated from thermodynamic data. Uncertainties shown are the ranges of LREE patterns allowed by uncertainties in thermodynamic data. Despite uncertainties in thermodynamic data, there is an excellent match between the calculated and observed patterns.

The above derivation of the activity coefficients for LREE in GR-1-C have occurred prior to formation of rim hibonite, as the latter is ten times lower in europium than the core.

We have inferred that GR-1 core hibonite would have been enriched in lanthanum by a factor of ~2500 compared to C1 chondrites if lanthanum had fully condensed into hibonite and its REE-bearing cocondensates. This implies that only one part in 2500 of the total condensable matter had condensed into this hibonite when it formed. If aluminum were fully condensed in the form of hibonite, a trace element refractory enough to fully condense into this hibonite would have an enrichment factor of 58, using C1 chondritic abundances slightly modified from those of ANDERS and EBHARA (1982). In the condensation sequence given by DAVIS et al. (1982), corundum condenses at 1742 K and is replaced by hibonite at 1727 K in a gas of solar composition at $P_{\text{tot}} = 10^{-3}$ atm. Since there is negligible solid solution of REE and most other refractory trace elements in corundum, these elements only begin to condense when hibonite begins to form from corundum. If GR-1-C hibonite formed by this mechanism, it must have been separated when only 58/2500 (2.3%) of the hibonite that could possibly form had actually formed. The temperature at which this fraction of hibonite condenses at $P_{\text{tot}} = 10^{-3}$ atm is 1726.88 K, only 0.09 K below the tempera-
ture at which hibonite appears. The fractionated HREE pattern of GR-1-C hibonite implies that the REE were partitioned between hibonite and at least one other phase. Perovskite is not believed to be the second phase, because its condensation temperature is 1676 K at $P_{\text{tot}} = 10^{-3}$ atm, below the temperature range inferred for formation of GR-1. Zirconium-rich oxide is suspected, as this phase is enriched in the heaviest HREE in BB-5. Zirconium oxide first condenses at 1808 K and is 90% condensed at 1730 K in a gas of solar composition at $P_{\text{tot}} = 10^{-3}$ atm, so it is reasonable to assume that it had already condensed when hibonite formed by reaction of the gas with corundum. If hibonite is 2.3% condensed and zirconium oxide is fully condensed, the hibonite/ zirconium oxide weight ratio calculated from cosmic abundances is ~100. Given what is known about the partitioning behavior of these two phases, most of the LREE are likely to be in hibonite and most of the heaviest HREE are likely to be in zirconium oxide. Lutetium should be largely condensed into zirconium oxide at 1730 K. Based on C1 chondritic abundances, the enrichment factor of lutetium in zirconium oxide should be ~2 X 104 and the concentration of Lu should be ~5000 ppm. Under ideal solid solution, the light REE are only 0.1% condensed at this temperature, yet in GR-1-C hibonite, they appear to be ~15% condensed. In order for the LREE to be this refractory, the activity coefficients for lanthanum and other LREE in hibonite must be quite low, ~0.02.

The above derivation of the activity coefficients for LREE in hibonite depends on many assumptions and illustrates the difficulty in determining absolute activity coefficients from natural inclusions. DRAKE and BOYNTON (1988) have calculated absolute activity coefficients for REE in hibonite from hibonite-liquid partitioning experiments made under a variety of oxygen fugacity conditions. Their inferred activity coefficients range from 330 for lanthanum to 24,000 for ytterbium. Their derivation also involved many assumptions and gave activity coefficients more than four orders of magnitude larger.
than ours. Although the relative activity coefficients of Drake and Boynton may be correct, the absolute ones are almost certainly too high. Proceeding with their assumption that the activity coefficients of trivalent REE in silicate liquids are all about the same, 2400, the activity coefficients for solid solution of lanthanum in perovskite and melilite are 1100 and 4800, respectively. If REE activity coefficients are of this order of magnitude and REE condensation occurs by solid solution in major condensate phases, lanthanum and the other LREE would not be refractory elements. 80% of the lanthanum would still be in the gas phase at the temperature at which most refractory inclusions are thought to have ceased equilibrating with the gas, ~1470K at $P_{tot} \sim 10^{-3}$ atm. The pure lanthanide oxides are quite refractory compounds and are expected to condense on their own if solid solution in major phases is thermodynamically unfavorable; similarly, lanthanide oxides might be expected to appear as a separate phase in the partitioning experiments of Drake and Boynton (1988) if REE are strongly excluded from other liquid and crystalline phases. Since lanthanide oxides are not ob served in refractory inclusions or in partitioning experiments, activity coefficients for REE in hibonite and other phases must be much lower than they inferred and could be less than one for hibonite and perovskite.

Zirconium-rich grains occur between GR-1-C hibonite and GR-1-M corundum. A rastered beam analysis of bulk GR-1 was made (GR-1-B in Tables 1 and 2). Although not plotted, the trace element pattern resembles that of core hibonite. Either zirconium oxide is underrepresented in the plane of the polished section or zirconium oxide and hibonite cocondensed and were separated prior to assembly of GR-1.

One possibility advanced by MacPherson et al. (1984) for the presence of two generations of hibonite in GR-1 was that pure hibonite was flash-heated such that some hibonite incongruently melted to corundum and a calcium-rich liquid. Calcium was then preferentially volatilized from the melt. Upon cooling, a second generation of hibonite crystallized at the outside of the inclusion. The core hibonite was viewed by MacPherson et al. (1984) as an unmelted relic. If GR-1 were once pure hibonite, a loss of >80% of the calcium would be required to produce the observed proportions of hibonite and corundum; however, it is difficult to believe that relic hibonite could survive under these conditions. In nonideal solution of REE in hibonite, all REE except europium and ytterbium are calculated to be more refractory than calcium. Since calcium loss should be more complete than REE loss from the melt, the liquid would be more enriched in REE than the original hibonite. Thus, the extremely low refractory trace element content of GR-1 rim hibonite makes it unlikely that the rim is a late-stage crystallization product from an aluminum-rich melt. Hibonite low in refractory trace elements is more likely to have formed by reaction of the exposed corundum with solar nebular gas at lower temperature after REE had condensed but while some calcium was still available in the gas. The different calcium isotope mass fractionation in core and rim hibonite indicates that formation of rim hibonite took place in a different isotopic reservoir than that in which core hibonite and mantle corundum formed. This second possibility was also mentioned by MacPherson et al. (1984).

5.7 HAL and DH-H1

Hibonite-normalized trace element enrichment patterns of HAL and DH-H1 show a remarkable degree of fractionation from more normal hibonite patterns (Fig. 6). The most dramatic effects are substantial depletions in vanadium and cerium. Fractionations compared with normal hibonite are generally more extreme in DH-H1 than in HAL hibonite: DH-H1 is even more depleted in cerium and vanadium and is depleted in barium whereas HAL hibonite has close to normal levels of this element. Davis et al. (1982) performed extensive calculations on gas-solid fractionation of trace elements in a variety of oxygen partial pressures and found that cerium and vanadium become much more volatile and barium somewhat more volatile than other refractory elements in oxidizing environments. They attributed low cerium, vanadium and barium contents of HAL hibonite to the oxidizing environment in which HAL formed. We find, however, that hibonite in general is less enriched in barium than in many other refractory lithophile elements (Fig. 5) and that HAL hibonite is similar in barium content to other more normal hibonite, such as MUCH-1, DJ-1 and BB-5-1 (Fig. 6). The general depletion of barium probably occurs because it is one of the least refractory of the lithophiles normally considered refractory in a gas of solar composition. The large ionic radius of Ba$^{2+}$ may also cause it to favor other host phases compared to hibonite. Thus, depletion of barium relative to other refractory lithophiles in hibonite compared with C1 chondrites cannot be attributed to oxidizing conditions during formation. The depletion of barium in DH-H1 compared to HAL and other hibonite, as well as the larger depletions of cerium and vanadium, may indicate that DH-H1 formed under more oxidizing conditions than HAL.

REE patterns of the two hibonite samples are similar (Fig. 4); however, cerium is depleted relative to lanthanum in DH-H1 by a factor of $1770 \pm 770$ relative to C1 chondrites, a depletion three times larger than that in HAL hibonite, $543 \pm 123$. The slope of the REE pattern of DH-H1 is also steeper than that of HAL (C1-normalized La/Ho ratios of 2 and 11, respectively). The sizes of the cerium depletions in HAL and DH-H1 hibonite approach the limit of ~2000 set by thermodynamic data for condensation or evaporation under oxidizing conditions (Davis et al., 1982). From their Fig. 3, the cerium depletion in DH-H1 hibonite indicates formation at $P_{tot} < 10^{-12}$ atm in a C1 chondritic gas or in ejecta from helium- or carbon-burning zones of supernovae with C/O < 1. There is another possible explanation for at least part of the depletion of cerium in these hibonite samples. Davis and Hinton (1986) determined REE patterns in coexisting perovskite and hibonite in a tiny Ornans refractory inclusion and found that hibonite has a negative cerium anomaly and perovskite a positive one. They suggested that under oxidizing conditions, where most lanthanides are trivalent but cerium is tetravalent, Ce$^{4+}$ might more easily substitute into perovskite and thus be partitioned differently than neighboring REE. If lanthanides partitioned between hibonite and perovskite in both HAL and DH-H1 during condensation under highly oxidizing conditions, and Ce$^{4+}$ is more enriched in perovskite than in hibonite, the latter could have a cerium anomaly larger than that calculated assuming identical solid
solution behavior for La$^{3+}$, Ce$^{3+}$ and Ce$^{4+}$, as was done by DAVIS et al. (1982). The difference in partitioning of cerium and other REE between hibonite and perovskite could also explain why the cerium depletion factor measured by DAVIS et al. (1982) in the perovskite-rich rim layers of HAL is not as large as those observed for the hibonite core.

The FeO contents of DH-Hl and HAL hibonite, 0.44 and 0.63 wt% (Table 1), respectively, are much higher than in Murchison hibonite, ≤0.05 wt% (MACPHERSON et al., 1983, 1984). As noted by ALLEN et al. (1980), the higher iron contents probably reflect the oxidizing conditions under which the HAL and DH-H1 hibonite formed. HAL hibonite is unusual in having fewer atoms of magnesium than titanium per formula unit. Fe$^{2+}$ may partially replace Mg$^{2+}$ in the coupled substitution Mg$^{2+}$ + Ti$^{4+}$ = 2 Al$^{3+}$. DH-H1 hibonite has an unusually low Ti concentration of 541 ppm, a factor of ~8 lower than HAL hibonite. The atomic (Fe + Mg)/Ti ratio is 5.5. As no other tetravalent cations are present in amounts sufficient to balance divalent iron, Fe$^{3+}$ may be present. This provides support for the hypothesis that DH-H1 formed under more oxidizing conditions than HAL.

Concentrations of the volatile elements manganese and chromium are dissimilar in the two hibonite samples. Manganese is slightly lower in DH-H1 hibonite than in HAL hibonite, but is still somewhat higher than in Murchison hibonite samples DJ-1, BB-5 and GR-1. Chromium is significantly higher in DH-H1 hibonite than in most other hibonite analyzed. BB-6 is also high in chromium, but it is also higher in other volatile elements than is DH-H1. The major condensation reaction for chromium is: $2Cr^{3+} + 3O_0 = Cr_2O_3$, while for most lanthanides and aluminum is: $2MO_0 + O_0 = M_2O_3$. As conditions become more oxidizing, the condensation reaction for chromium is driven to the right more rapidly than is that for aluminum and most lanthanides. Thus, the higher chromium content may indicate that DH-H1 hibonite formed under more oxidizing conditions than HAL and other hibonite. A more mundane explanation of the high chromium content is that there was overlap of the chromium-rich spinel surrounding DH-H1 hibonite.

In DH-H1 praseodymium is strongly depleted relative to neodymium, in contrast with the slight depletion observed in HAL and the lack of depletion in DJ-1, MUCH-1, BB-6 and BB-5 (Figs. 1 and 4). The praseodymium depletions in DH-H1 and HAL hibonite suggest that PrO$_2$ may be an important species in gas-solid fractionation under oxidizing conditions. If so, praseodymium could become more volatile than lanthanum and neodymium in oxidizing environments by the same mechanism thought to be responsible for enhanced volatility of cerium (BOYNTON and CUNNINGHAM, 1981; DAVIS et al., 1982). No reliable thermodynamic data exist for PrO$_2$, although PrO$_2$ has been observed during Knudsen cell evaporation of PrO$_2$ at (STALEY and NORMAN, 1969). FEGLEY (1986) calculated REE volatilities under oxidizing conditions, using thermodynamic data for a number of gaseous REE dioxides. In addition to cerium depletions, depletions in neodymium and gadolinium were predicted. Since depletions in these elements are not seen in DH-H1 hibonite, the sample with the largest negative cerium anomaly measured to date, we concur with FEGLEY's (1986) suggestion that the data used for gaseous REE dioxides are probably not reliable.

The similarity of the sloping REE patterns of HAL and DH-H1 and the presence of sloping HREE patterns in other hibonite samples strongly suggests that the REE patterns were generated by partitioning of REE between hibonite and another solid or liquid phase. The phase which competed with hibonite for REE in HAL was probably perovskite, since abundant perovskite was observed in friable rim layers which surround the core hibonite (ALLEN et al., 1980). INAA analyses of the rim layers (DAVIS et al., 1982) gave C1 chondrite-normalized REE patterns showing enrichments in HREE. Relative partition coefficients for REE between hibonite and perovskite were estimated from analyses of coexisting phases in the Murchison inclusion SH-7 (HASHIMOTO et al., 1986; unpublished data from this laboratory), assuming local equilibrium. Using these partition coefficients we have modeled HAL to test the hypothesis that the REE patterns in core hibonite and rim in HAL are due only to partitioning between hibonite and perovskite. In this calculation we assume that partitioning occurs in a reservoir with uniform REE enrichment factors relative to C1 chondrites and that all REE in friable rim layer 4 are contained in perovskite. Using measured contents of lanthanum and dysprosium in hibonite and samarium in the friable rim layer, we calculated the proportions of hibonite and perovskite in HAL, the enrichment factor for all REE in bulk HAL (hibonite plus friable rim layer 4), absolute partition coefficients between hibonite and perovskite and complete REE patterns for hibonite and friable rim layer 4 in HAL. The calculated and observed REE patterns of hibonite are in excellent agreement (Fig. 9). The calculated pattern for friable rim layer 4 is also close to the observed pattern, but is slightly lower in lanthanum and higher in the heaviest HREE. The calculation supports the idea that perovskite is the major REE carrier in the friable rim layers. The observed enrichment factors for cerium in hibonite and rim layer 4 are much lower than the respective calculated values and the observed enrichment factor for praseodymium in hibonite is slightly lower than the calculated value, because the reservoir was not assumed to have cerium and praseodymium anomalies. FABY et al. (1987b) measured REE in a sample of the black rim surrounding HAL hibonite and showed that it had a similar pattern to friable rim layer 4, but with lower absolute enrichment factors. This pattern also has a praseodymium depletion relative to the value expected from the calculations. Perovskite and hibonite in HAL appear to have condensed together from an oxidizing gas and were removed from the gas when little of the cerium had condensed and about 75% of the praseodymium had condensed.

DH-H1 hibonite has a similar REE pattern to HAL hibonite and may also have coexisted with perovskite. The steeper REE pattern of DH-H1 hibonite can be modeled if the ratio of hibonite to perovskite when REE partitioning took place was approximately 35% of that in HAL. Perovskite was not observed surrounding DH-H1 hibonite. If it once coexisted with the hibonite, it must have been lost.

In addition to its more deviant chemical properties, DH-H1 also shows larger deviations from normal isotopic composition than does HAL (Table 4). Calcium in DH-H1 is
strongly mass fractionated in favor of heavy isotopes, with a $\Delta^{44}$Ca value almost twice that of HAL. Titanium is mass fractionated in HAL hibonite by 5 $\pm$ 1‰/amu and contains a distinct positive $^{56}$Ti anomaly ($\delta^{56}$Ti = +14.09‰, FAHEY et al., 1987a). Although the low titanium content prohibited measurement of the $^{47}$Ti/$^{46}$Ti ratio in DH-Hl under low mass resolution conditions in the Chicago ion microprobe, A. J. FAHEY and E. ZINNER (pers. commun.) were able to do so using a Cameca IMS-3F ion microprobe. They found that all hibonite from group III inclusions has a significant $^{56}$Ti anomaly. FAHEY et al. (1987a) found that no hibonite from group II inclusions has a significant $^{56}$Ti anomaly. Unfortunately, BB-6 was too small to be analyzed for titanium isotopes.

Both HAL and DH-Hl hibonite formed from isotopically peculiar gases under highly oxidizing conditions. The aggregate structure of HAL (ALLEN et al., 1980) make condensation a more likely origin than evaporation. DH-Hl appears to have formed under even more highly oxidizing conditions than HAL. It also shows more extreme isotopic mass fractionation of calcium and titanium. The processes responsible for the oxidizing conditions may also be responsible for the isotopic mass fractionation, but the nature of the relationship is not clear.

5.8 General properties of trace element patterns in hibonite

All hibonite samples analyzed in this work show depletions in HREE that can be attributed to REE partitioning between hibonite, which favors LREE, and other condensed phases, which favor HREE. Most hibonite REE patterns measured by FAHEY et al. (1987a) show this effect, too. The rarity of unfractionated REE patterns in hibonite implies that hibonite rarely condenses without other REE carriers. The condensation sequence of refractory phases in a gas of solar composition at a total pressure of $10^{-3}$ atm is as follows: zirconium oxide—1808 K; corundum—1742 K; hibonite—1727 K; perovskite—1675 K. If equilibrium condensation does occur, zirconium oxide is likely to be present when hibonite forms by reaction of the gas with corundum. As condensation proceeds to lower temperatures, perovskite is likely to condense and compete with hibonite for REE. Hibonite could only form in the absence of other REE carriers if zirconium oxide were unable to nucleate on its own. A further requirement for an unfractionated REE pattern in hibonite is that hibonite must be isolated from the gas before perovskite condenses. A number of condensation calculations suggest removal of hibonite from the gas shortly after condensation begins (SH-2 in EKAMBARAM et al. (1984) and GR-1 in this work), so it may not be uncommon to isolate hibonite in the 50 K interval between the hibonite and perovskite initial condensation temperatures. If hibonite forms by evaporation of less fractionated material, other phases are likely to be present with hibonite. Thus, the rarity of unfractionated REE patterns in hibonite is to be expected, regardless of whether hibonite has a condensation or evaporation origin.

5.9 Relationships between mineralogy, chemistry and isotopic composition

FAHEY et al. (1987a) noted some relationships between titanium isotopic composition and type of REE pattern. They found that all hibonite from group III inclusions has a large positive or negative $^{56}$Ti anomaly. The two group III inclusions for which HINTON et al. (1987b) measured titanium isotopes, DJ-1 and BB-5, both show significant $^{56}$Ti anomalies. FAHEY et al. (1987a) found that no hibonite from group II inclusions has a significant $^{56}$Ti anomaly. Unfortunately, BB-6 was too small to be analyzed for titanium isotopes. FAHEY et al. (1987a) noted that preliminary data for GR-1 (HINTON and DAVIS, 1986b) showed evidence for an ultrarefractory REE pattern; yet, GR-1 does not have a significant $^{56}$Ti anomaly. BB-5, however, also contains ultrarefractory components and has the largest $^{56}$Ti deficit seen to date.

There are also some relationships between calcium isotopic mass fractionation and chemistry. The two inclusions with the most isotopically heavy calcium, HAL and DH-Hl, show evidence for formation in a highly oxidizing environment. The two inclusions with the most isotopically light calcium, BB-5 and GR-1, are the only two inclusions which contain corundum and are the only two inclusions that show evidence for formation at temperatures so high that the LREE have not completely condensed.
Mass fractionations of calcium and magnesium appear to be related. In Fig. 10 are plotted calcium and magnesium fractionations normalized by the inverse square root of the mass ratios. In this representation, fractionation by the kinetic isotope effect will lie along a line of slope one if the masses involved in the fractionation are the same as those used to calculate mass ratios. We have chosen to use the masses of elemental magnesium and calcium, because the major gas phase species under solar nebular conditions are Ca and Mg. Four of the six hibonite samples analyzed lie along the slope-one line. The two samples not on the line have $\Delta^{26}\text{Mg}$ values closer to normal than would be expected for their $\Delta^{40}\text{Ca}$ values. This deviation is in the direction expected for magnesium exchange with a reservoir of near-normal isotopic composition.

Fahey et al. (1987a) found that hibonite from refractory inclusions in C2 and C3V chondrites rarely contains radiogenic $^{26}\text{Mg}$ from decay of $^{26}\text{Al}$. They also noted that there was no correlation between $^{50}\text{Ti}$ anomalies and radiogenic $^{26}\text{Mg}$. We find that radiogenic $^{26}\text{Mg}$ and large $^{50}\text{Ti}$ anomalies are mutually exclusive. In their review of the isotopic compositions of meteoritic samples of all sorts, R. N. Clayton et al. (1988) pointed out that all refractory inclusions containing $^{50}\text{Ti}$ anomalies of 10% or larger (and all but one with 2% or larger), only one, HAL (Fahey et al., 1987a), shows evidence for radiogenic $^{26}\text{Mg}$. Lance HH-1, a very $^{50}\text{Ti}$-poor inclusion, contains excess $^{26}\text{Mg}$, but it does not appear to be correlated with Al/Mg and may not be radiogenic (Fahey et al., 1986b). Anomalies in the neutron-rich isotopes of calcium, titanium and chromium almost certainly originated in supernovae (Hartmann et al., 1985). $^{26}\text{Al}$ can be produced in a variety of sources, including novae (D. D. Clayton and Leising, 1987), red giant stars (Cameron, 1984), massive stars (Dearborn and Blake, 1984, 1985) and supernovae (Cameron and Truran, 1977). Since radiogenic $^{26}\text{Mg}$ and anomalies in the neutron-rich isotopes of calcium, titanium and chromium seem to be mutually exclusive in refractory inclusions, the two almost certainly were not produced in the same astrophysical source.

In the model of Hinton et al. (1987b) for explaining the range in $^{50}\text{Ti}$ anomalies in meteoritic hibonite it was proposed that there were two end members: one similar to BB-5 with a 7% deficit in $^{50}\text{Ti}$ and one with a large excess, of at least 10%, in $^{50}\text{Ti}$. One implication of this model is that most solar system material obtained 7% of its $^{50}\text{Ti}$ by addition of the $^{50}\text{Ti}$-rich component. Since radiogenic $^{26}\text{Mg}$ is never found in objects with large $^{50}\text{Ti}$ anomalies, $^{26}\text{Al}$ must have been added only to the material that had exactly 7% of its $^{50}\text{Ti}$ added. The material with 7% $^{50}\text{Ti}$ addition may have arisen from homogenization of material with a variety of $^{50}\text{Ti}$ anomalies, but $^{26}\text{Al}$ cannot have been present until after the homogenization.

The data on $^{50}\text{Ti}$, $^{44}\text{Ca}$ and $^{54}\text{Cr}$ anomalies in Allende FUN inclusions C1 and EK-1-4-1 (Niederer and Papasaitis, 1984; Niederer et al., 1985; Papasaitis, 1986) and on $^{50}\text{Ti}$ and $^{44}\text{Ca}$ in hibonite-rich inclusions (Zinner et al., 1986) provide some clues about the properties of the component containing the neutron-rich isotopes. Anomalies in these three isotopes are of comparable magnitude, in agreement with predictions of Hartmann et al. (1985) for nucleosynthesis near the mass cut of a supernova. D. D. Clayton (1981a, 1987) has pointed out that if material from this region of a supernova condenses, it should do so as a metallic alloy, because there are essentially no elements lighter than calcium present. D. D. Clayton (1987) noted that it may be difficult for this condensation to occur because of the energy input from radio emission from the supernova remnant and from $^\beta^+$ decay of $^{56}\text{Ni}$ within the zone containing the neutron-rich isotopes. He proposed that this material condensed later as tiny particles. These particles were then sputtered and redeposited onto larger oxide-rich condensates from the outer, $^{50}\text{Ti}$-, $^{44}\text{Ca}$-, $^{54}\text{Cr}$-poor portion of the supernova ejecta which was of approximately chondritic composition. Melting and evaporation of these grains during solar system formation then produced the FUN inclusions and anomalous hibonite. Calcium and titanium are refractory elements that are enriched by about 20 times relative to CI chondrites and from $^\beta^+$ decay of $^{56}\text{Ni}$ within the zone containing the neutron-rich isotopes. He proposed that this material condensed later as tiny particles. These particles were then sputtered and redeposited onto larger oxide-rich condensates from the outer, $^{50}\text{Ti}$-, $^{44}\text{Ca}$-, $^{54}\text{Cr}$-poor portion of the supernova ejecta which was of approximately chondritic composition. Melting and evaporation of these grains during solar system formation then produced the FUN inclusions and anomalous hibonite. Calcium and titanium are refractory elements that are enriched by about 20 times relative to CI chondrites and from $^\beta^+$ decay of $^{56}\text{Ni}$ within the zone containing the neutron-rich isotopes. He proposed that this material condensed later as tiny particles. These particles were then sputtered and redeposited onto larger oxide-rich condensates from the outer, $^{50}\text{Ti}$-, $^{44}\text{Ca}$-, $^{54}\text{Cr}$-poor portion of the supernova ejecta which was of approximately chondritic composition. Melting and evaporation of these grains during solar system formation then produced the FUN inclusions and anomalous hibonite.
In his model for separation of supernova condensates with different chemical and isotopic compositions by their grain sizes, D. D. Clayton (1980, 1981b) proposed that Allende inclusion C1, which has a deficit in $^{26}$Ti, was formed by aggregation of larger-than-average supernova condensates which were quite refractory and enriched in material from the outer portions of supernova ejecta. He proposed that this explanation accounted for the deficit in $^{44}$Ca, $^{50}$Ti and cerium and that the light isotopes of magnesium, silicon and calcium in C1 had been lost by sputtering in the interstellar medium. BB-5, which has a much larger negative $^{26}$Ti anomaly, should be much more depleted in cerium and the light isotopes of magnesium and calcium. In fact, it has no cerium anomaly and is depleted in the heavy isotopes of magnesium and calcium. Although different nucleosynthetic components certainly have different chemical properties, it is not clear that these have any direct relationship with the chemical properties of the refractory inclusions. Although many of the isotopic anomalies found are characteristic of nucleosynthesis in supernovae, we have yet to recognize the distinctive chemical signatures of the carriers of these anomalies.

A reasonable explanation of the lack of correlation is that reservoirs with distinctive chemical compositions, nuclear anomalies and mass fractionations were formed prior to the condensation of the inclusions now observed, possibly by multiple evaporation-condensation cycles. Such cycles are expected to be expected in the turbulent protoplanetary accretion disk model of Morfill (1983) and Morfill and R. N. Clayton (1986a, b). This model envisages turbulent cycling of material through the hotter inner part of the accretion disk; the cycles are sufficiently short (of the order of years) and few in number (≤10) to permit survival of original isotopic and chemical inhomogeneities. Recent models of solar nebula formation have suggested that turbulence may not be as important as previously thought (Boss, 1988). A recent three-dimensional model of solar system formation shows the development of nonaxiymmetric mass and temperature distributions, with bars of >1500 K extending out to at least 3 AU (Boss, 1988). This model might allow grains to experience several evaporation-condensation cycles at a fixed distance from the sun. Since hibonite is the most refractory mineral commonly found in refractory inclusions it is the most likely to preserve chemical and isotopic anomalies.

Acknowledgements—We thank I. D. Hutcheon for the use of unpublished ion microprobe analyses of BB-6 and A. J. Fahey and E. Zinner for the use of unpublished ion microprobe analyses of DHH1. We are grateful for valuable discussions with M. Boily, R. N. Clayton, V. Fiambrara and A. Hashimoto. This paper was considerably improved due to the thorough, constructive reviews of E. K. Zinner, G. J. MacPherson and an anonymous reviewer. This work was supported by funds from the National Aeronautics and Space Administration through grants NAG 9-51 (to R. N. Clayton), NAG 9-111 (to A.M.D.) and NAG 9-54 (to L.G.).

Editorial handling: H. Palme

REFERENCES


Ekambaram V., Kawabe I., Tanaka T., Davis A. M. and Gross-
Hibonite-rich meteorite inclusions

A large negative titanium-50 anomaly in a refractory inclusion from the Murchison meteorite (abstr.). Meteoritics 20, 664-665.


LONG J. V. P. and HINTON R. W. (1984) The intensity of metal...


6. APPENDIX

6.1 Calcium and magnesium mass fractionation

Nuclear isotope anomalies in calcium are principally confined to 44Ca; while anomalies are seen at other masses, these are generally small compared to mass fractionation effects (NIEDERER and PANASTASSIOU, 1984). Measurement of calcium isotopes on our ion microprobe is effectively limited to 40Ca, 42Ca, 43Ca and 44Ca, since 42Ca and 43Ca are overlapped by 40Ti and 41Ti, respectively. The large 40Ti/44Ca ratio observed in hibonite and the incomplete separation of 40Ca from 41Ti at the maximum mass resolution of the Chicago ion microprobe (M/ΔM = 5000) makes high precision measurement of 40Ca/44Ca ratios virtually impossible. Measurement of calcium mass fractionation using 42Ca, 43Ca and 44Ca is difficult, because of intrinsic interferences from molecular ions such as MgO and SiO2.

We have found that there is a significant yield of Ca+ ions and that the yields of MgO+ and SiO2+ are very low. Measurement of calcium mass fractionation can readily be made at low mass resolution by measuring Ca+ at m/e = 20, 21 and 22. The ion yield of Ti2+ is also much lower than that of Ca+, but 40Ca cannot be measured because of an interference from 44Sc. These problems are fully discussed in Appendix B (abstr.).

Calcium mass fractionation was determined by making alternate short runs (20 sweeps through m/e = 20, 21 and 22 in 10 minutes) on unknowns and terrestrial standards of similar chemical composition. Terrestrial standards used were Madagascar hibonite, a natural diopside and synthetic anorthite glass. Under normal operating conditions, observed variations in the 40Ca/44Ca ratio calculated in the standard from one run to the next were less than ±2% (2σ).

In our initial analyses (HINTON et al., 1985c), each sample lay within statistical uncertainty but slightly to the 40Ca-rich side of the terrestrial mass fractionation line. Mg2+ scattering was initially ruled out (HINTON et al., 1985c) since other low-magnesium hibonite, such as HAI, seemed to show the same effect. Subsequent analyses have shown that only the Madagascar hibonite standard, with at least three times more magnesium than the unknowns, has a significant deviation from the terrestrial fractionation line, having an excess of ~3% at m/e = 21 not attributable to 40Ca+. The excess at m/e = 21 is probably due to a 2Mg scatter peak which has been observed in magnesium-rich minerals such as olivine. The scatter peak is believed to be due to Mg+ ions striking some portion of the mass spectrometer and may be very sensitive to tuning conditions. Since it is difficult to be certain that the correction would remain constant for all tuning conditions used, 40Ca was not used for calculating calcium isotopic mass fractionation in hibonite. The largest effect that the Mg+ scatter peak could have on 40Ca/44Ca should be less than 0.2%/amu.

Low mass resolution analyses of calcium isotopic fractionation can be extended to calcic pyroxene and plagioclase, both of which have significant Ca2+ yields. Precisions of ±1.0%/amu can readily be obtained for these two phases. Values measured in pyroxene and plagioclase do not depart significantly from a linear fractionation line passing through normal calcium on a 40Ca/44Ca vs. 42Ca/44Ca plot, presumably because the intensity of Mg+ scatter peaks is lower. Analyses of fassaita in several of the EGG series coarse-grained Allende inclusions show excellent agreement with the data obtained by thermal ionization mass spectrometry with a double isotopic spike correction. (NIEDERER and PANASTASSIOU, 1984), Table A1. EGG-1 and EGG-2 give normal values for 40Ca; EGG-3 gives the expected value of ~ 1.0%/amu; and EGG-6, not analyzed by NIEDERER AND PANASTASSIOU (1984), shows a 40Ca value of ~ 1.6 ± 0.8%/amu. Calcium
Table A1. Calcium isotopic mass fractionation of CAI pyroxene, relative to terrestrial diopside and of terrestial plagioclase, relative to anorthite glass. Uncertainties are ±2σ.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$\Delta^{42}\text{Ca}^\ast$ (‰/amu)</th>
<th>$\Delta^{40}\text{Ca}^\dagger$ (‰/amu)</th>
<th>$\Delta^\text{CaM}^\natural$ (‰/amu)</th>
<th>$\Delta^{44}\text{Ca}^$ (‰/amu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGG-1</td>
<td>+2.5 ± 4.1</td>
<td>0.0 ± 1.6</td>
<td>+0.4 ± 0.6</td>
<td>+0.1 ± 0.6</td>
</tr>
<tr>
<td>EGG-2</td>
<td>-0.8 ± 1.5</td>
<td>-0.9 ± 0.8</td>
<td>-0.0 ± 0.7</td>
<td>-0.2 ± 0.7</td>
</tr>
<tr>
<td>EGG-3</td>
<td>-1.4 ± 1.1</td>
<td>-1.2 ± 0.9</td>
<td>-1.3 ± 0.7</td>
<td>-1.0 ± 0.8</td>
</tr>
<tr>
<td>EGG-6</td>
<td>-0.1 ± 2.0</td>
<td>-1.8 ± 0.9</td>
<td>-1.6 ± 0.8</td>
<td>-1.0 ± 0.8</td>
</tr>
<tr>
<td>Ang0</td>
<td>-0.6 ± 2.8</td>
<td>+0.2 ± 1.4</td>
<td>+0.1 ± 1.3</td>
<td>-</td>
</tr>
<tr>
<td>Ang1</td>
<td>+1.0 ± 1.9</td>
<td>-1.1 ± 0.8</td>
<td>-0.8 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>Ang2</td>
<td>-0.2 ± 2.9</td>
<td>+0.8 ± 1.0</td>
<td>+0.7 ± 0.5</td>
<td>-</td>
</tr>
<tr>
<td>Mean Plagioclase</td>
<td>-</td>
<td>-0.2 ± 0.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

$\Delta^{42}\text{Ca}^\ast = \frac{^{42}\text{Ca}^{40}\text{Ca}}{^{40}\text{Ca}^{40}\text{Ca}}^\text{unknown} - \frac{^{42}\text{Ca}^{40}\text{Ca}}{^{40}\text{Ca}^{40}\text{Ca}}^\text{standard} \times 1000$.

$\Delta^{40}\text{Ca}^\dagger = \frac{^{40}\text{Ca}^{40}\text{Ca}}{^{40}\text{Ca}^{40}\text{Ca}}^\text{maximum} - \frac{^{40}\text{Ca}^{40}\text{Ca}}{^{40}\text{Ca}^{40}\text{Ca}}^\text{standard} \times 1000$.

$\Delta^\text{CaM}^\natural = \text{mean of } \Delta^{42}\text{Ca} \text{ and } \Delta^{44}\text{Ca}, \text{weighted by uncertainties.}$

$\Delta^{44}\text{Ca}^\$ = \text{mean of } \frac{^{44}\text{Ca}^{40}\text{Ca}}{^{40}\text{Ca}^{40}\text{Ca}}^\text{minimum}, \text{weighted by uncertainties.}$

isotopic analyses of feldspar glasses show no variation in mass fractionation with chemical composition (Table A1).

The procedures used for measurement of magnesium isotopic compositions, both for mass fractionation and for nuclear anomalies, were not made at the same time. Calcium and magnesium mass fractionation determinations were only made when a number of repeat measurements could be made on the same sample. These measurements were not made on MUCH-I and BB-6, because it was difficult to repeatedly place the ion microprobe primary beam spot on hibonite free of surrounding matrix.

6.2 Barium and rare earth elements

Barium and REE were determined at low mass resolution by computer-controlled magnetic peak switching. Intensities at every m/e value from 192 (104 in later runs) to 135 were recorded for 10 seconds each scan. At least 3 scans were made for each REE analysis and 60 were made of the HAL hibonite standard. Background count rates for this instrument are typically one count per minute; this is approximately equivalent to 9 ppb La for a 5 nA primary beam under energy filtering conditions.

In order to obtain concentrations from these count rates, it is necessary to know ion yields and to correct for molecular interferences. Relative ion yields in a given matrix are quite constant, but absolute ion yields can vary from day to day because of differences in primary ion bombardment conditions and secondary ion extraction tuning. For this reason, ratios of count rates were measured and normalized to a single element. Calcium was used as a reference element in hibonite because it is quite constant in concentration. Its concentration was calculated from CaAl$_2$O$_4$ stoichiometry assuming substitution of minor and trace elements for aluminum only.

In brief, count rates were collected in the REE mass range, corrected for molecular interferences and converted to relative concentrations using ion yields. Absolute concentrations were determined from separate measurements of relative count rates of cerium and calcium.

6.2.1 Suppression of molecular interferences. Determination of relative concentrations for both LREE and HREE requires elimination of molecular interferences from the hibonite matrix and correction for monoxide ions of barium and LREE. On a plot of ion yield vs. secondary ion energy, ion yields of all species have maxima at about the same ion energy, but the energy distributions of molecular ions are narrower than those of monatomic ions, so molecular interferences can be reduced by making measurements at high ion energies. Further, molecular ions containing many atoms have narrower energy distributions than those with fewer atoms. Long chain molecules are therefore easier to discriminate against than less complex molecules such as LnO$^+$ and LnAl$^+$. Hibonite is a simple substrate containing low concentrations of elements with Z > 56. Molecular ions with m/e between 135 and 192 (except combinations of REE and major elements) must therefore consist of three or more atoms. When the ion microprobe is tuned for maximum intensity the most intense molecular ion with more than two atoms in the Ln$^+$ m/e range is CaAl$_2$O$_4$ at m/e = 142. This species can be shown to be significantly reduced by the use of energy filtering. Energy filtering on the Chicago ion microprobe is accomplished by increasing the voltage on the repeller, a small bent wire very close to the beam spot. The energy of ions transmitted through the secondary ion optic of the ion microprobe increases with increasing repeller voltage (Steele et al., 1977). A plot of Ca$^+$, Ce$^+$, CeO$^+$ and CaAl$_2$O$_4$ against repeller voltage is given in Fig. A1. CaAl$_2$O$_4$ is reduced by at least a factor of 10$^5$ and CeO$^+$ is reduced by a factor of 30–40 when Ce$^+$ is reduced by a factor of only 10. While neither the absolute energy nor the energy window can be defined for the Chicago ion microprobe, ion yield vs. repeller voltage profiles for Ln$^+$ and LnO$^+$ can be compared with ion yield vs. secondary ion energy profiles measured on a Cameca IMS 3F ion microprobe (Reed, 1983). The degree of LnO$^+$ suppression indicates that the hibonite data reported in this study were measured at an energy of ≤30 eV. LnAl$^+$ and LnO$^+$ are molecular species not completely eliminated here by energy filtering. LnO$^+$ and LnAl$^+$ ions (principally those of lanthanum, cerium and praseodymium) were observed in the mass spectrum of Madagascar hibonite because of its very high LREE/HREE ratio. While LaO$^+$ and CeO$^+$ are considerably reduced by energy filtering, CeAl$^+$ actually increases relative to Ce$^+$. The measured CeAl$^+/Ce^+$ ratio increased from 0.00064 to 0.0010 in going from normal to energy-filtering conditions, thus vi-

![Fig. A1. Secondary ion intensities of $^{48}\text{Ca}^+$, $^{140}\text{Ce}^+$, $^{146}\text{Ce}^+\text{O}^+$ and $^{40}\text{Ca}^2\text{Al}^2\text{O}^+$ (all normalized to 1 at a repeller setting of 750) vs. repeller setting. The repeller setting is proportional to ion energy.](image)
Energy filtering is assumed to remove all molecular species except LnO⁺, BaO⁺, LnO₂⁺ and LnAl⁺ at the masses used in the deconvolution procedure. La⁺ could not be used to set the degree of energy filtering because interferences at m/e = 139 occur under unfiltered conditions. Ca⁺ could not be used as it has a much narrower energy distribution than Ln⁺; its energy distribution is very similar to that of CeO⁺ (Fig. A1). The level of energy filtering was set by reducing the 46Ti⁺ intensity by exactly 10 times compared to unfiltered conditions. Ratios measured at different ion energies lie along lines of constant slope that pass through the origin. Measured LnO⁺/Ln⁺ ratios for lanthanum, cerium, praseodymium, neodymium and samarium in MM hibonite under varying degrees of energy filtering used was limited by the requirement of detecting a high ion signal. A plot of LnO⁺/Ln⁺ vs. NdO⁺/Nd⁺ shows that LnO⁺/Ln⁺ ratios remain in constant proportion to one another regardless of the degree of energy filtering (Figs. A2, A3). The LnO⁺/Ln⁺ ratios are assumed to behave similarly for barium, europium, gadolinium and terbium. The relationship between LnO⁺/Ln⁺ ratios for the various REE agree reasonably well with the values obtained for calcium aluminum silicate glasses by REED (1983). The LnO⁺/Ln⁺ ratios for europium, gadolinium and terbium, relative to that of neodymium, have been taken from his work. The value for BaO⁺/Ba⁺ was taken from that measured relative to LaO⁺/La⁺ in a Corning borosilicate glass standard.

The deconvolution procedure initially assumes an average set of LnO⁺/Ln⁺ ratios (Table A2). The procedure first corrects for 139BaO⁺/Ba⁺ overlap on 147La⁺, then 146Eu⁺/Eu⁺ on 150La⁺, 151Sm⁺/Sm⁺ on 161Eu⁺ and finally 163Dy⁺/164Dy⁺ on 169Nd⁺. Once the NdO⁺/Nd⁺ ratios are determined, this ratio is then used to recalculate the BaO⁺/Ba⁺, PrO⁺/Pr⁺, etc. ratios, simply by multiplying the ratios given in Table A2 by (NdO⁺/Nd⁺)La/160(NdO⁺/Nd⁺)La/160. This procedure is repeated until the difference in the NdO⁺/Nd⁺ ratio between iterations is less than 1%. The deconvolution procedure converges rapidly and only rarely were more than two iterations required. NdO⁺/Nd⁺ ratios were generally in the range 0.20-0.30. In this procedure, the major interfering species, NdO⁺ and SmO⁺, are determined separately and the constancy of the (NdO⁺/Nd⁺)/(Sm⁰⁺/Sm⁺) ratio is an independent check of the deconvolution procedure. The SmO⁺/Sm⁺ ratio can also be fixed relative to that of the NdO⁺/Nd⁺ ratio; the use of this procedure does not significantly change any of the results reported here. Alternatively, since 149LaO⁺ and 140CeO⁺ are usually much more intense than 154Gd⁺ and 156Gd⁺, respectively, once an approximate Gd⁺ count rate is established using m/e = 157 and 160, the LaO⁺/La⁺ or CeO⁺/Ce⁺ ratio can be calculated and could be used to determine the other LnO⁺ count rates.

### Table A2. Monoxide/monatomic ion yield ratios and lanthanum-normalized ion yields, measured at high ion energy.

<table>
<thead>
<tr>
<th>Element</th>
<th>Ion Yield</th>
<th>MO⁺/M⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>1.000</td>
<td>0.052</td>
</tr>
<tr>
<td>La</td>
<td>1.000</td>
<td>0.49</td>
</tr>
<tr>
<td>Ce</td>
<td>0.863</td>
<td>0.55</td>
</tr>
<tr>
<td>Pr</td>
<td>0.961</td>
<td>0.41</td>
</tr>
<tr>
<td>Nd</td>
<td>1.059</td>
<td>0.33</td>
</tr>
<tr>
<td>Sm</td>
<td>1.196</td>
<td>0.18</td>
</tr>
<tr>
<td>Eu</td>
<td>1.471</td>
<td>0.326</td>
</tr>
<tr>
<td>Gd</td>
<td>0.941</td>
<td>0.326</td>
</tr>
<tr>
<td>Tb</td>
<td>0.941</td>
<td>0.288</td>
</tr>
<tr>
<td>Dy to Lu</td>
<td>0.941</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. A2. Element to oxide ion yield ratios for cerium, lanthanum, praseodymium and samarium vs. neodymium in Madagascar hibonite. Ratios measured at different ion energies lie along lines of constant slope that pass through the origin.
determined from electron microprobe measurements of the La/Ce ratio
of Madagascar hibonite (I. D. HUTCHCORN, pers. commun.). The Pr*
ion yield was determined by interpolation between the Ce* and Nd*
ion yields.

Ion yields of the HREE are more difficult to determine because of the
low concentrations of these elements in the HAL standard.

The most consistent HREE patterns are obtained if the ion yields of
the HREE are assumed to be uniform. Admittedly, ion yields which
smoothly increase or decrease would also give smooth patterns. HREE
ion yields determined by ZINNER and CROSS (1986) also suggest that there is little variation in their relative yields (with the possible
exceptions of gadolinium and lutetium). The ion yields used here are
calculated to give concentrations for HAL hibonite similar to those
given by DAVIS et al. (1982), weighted towards the more abundant
elements.

6.2.5 Determination of absolute concentrations. Ion yields of Ce*,
La*, relative to that of Ca*, were determined under normal ex-
traction conditions using HAL and Madagascar hibonite. The absolute
concentrations of cerium (or lanthanum for HAL and DH-HI) were
calculated from ion yields so obtained using ion count rates measured
on unknowns, without energy filtering applied, at the m/e values for
the HRBE are assumed to be uniform. Admittedly, ion yields which
are calculated to give concentrations for HAL hibonite similar to
those given by DAVIS et al. (1982), weighted towards the more abun-
dant elements.

Since the LREE concentrations in GR-1 rim hibonite were very
low, lanthanum and cerium intensities recorded without energy fil-
tering may be significantly affected by normally minor molecular
interferences. Absolute abundances of REE were calculated from the
yttrium concentration, assuming that the hibonite had the C1 chon-
dritic Ho/Y ratio of 0.0366. The cerium count rate observed at m/e =
140 without energy filtering suggests a concentration 20% higher than
the value in Table 2. The REE concentrations in GR-1 rim hibonite
reported in HINTON and DH-HI (1986b) were calculated using observed count rates under energy filtering conditions and are
approximately 60% lower than those reported here. The absolute
abundances in BB-5 and GR-1 corundum and BB-5 HREE-rich phases
(BB-5-A, BB-5-A and BB-5-B) were also determined from the
yttrium concentration.

6.3 Other minor and trace elements

Trace element determinations were made by measuring intensities from m/e = 100 to 20 at low mass resolution without energy filtering.
M/e = 40 (Ca*) and 27 (Al*) were normally excluded to avoid over-
loading the extraction multiplier. All ion yields were normalized to
Ca* (using "Ca" intensities); the Ca* ion yield was ~25 counts s^-1
ppm^1 nA^-1.

Ion yields for Mg*, Si*, Ti* and Sr*, relative to Ca*, were initially
calculated using electron microprobe determinations of Madagascar
hibonite (I. D. Hutton analyses by wavelength dispersion and K.
W. Hinton analyses by energy dispersion). Sc* ion yields were
determined using INAA data for MUCH-1 (EKAMBARAM et al., 1984)
assuming that all calcium and scandium in both the INAA and ion
microprobe samples is present in hibonite. Ion yields for all other
elements were determined using intensities measured on three doped
borosilicate glasses made by Corning. Intensities were recorded on
these glasses manually, corrected for drift in intensity with time and
for molecular interferences. Intensities were then normalized to
"Ca", because of a substantial 26SiO" interference on "Ca". Comparison
of "Ca"-normalized ion yields for pure metals (STORMS et al., 1977).
Corning borosilicate glasses, plagioclase and Madagascar hibonite
(Table A3), suggest that ion yields for elements for which no hibonite
standard was available are within ~30% of the true value. Ti* ion
yields appear to be sensitive to the matrix and, in hibonite, appear
to vary with titanium content: this is discussed below.

Possible or known interferences at the masses used to determine
the trace element concentrations are discussed below. Despite the
presence of significant interferences at the ppm level, the uncorrected
upper limits are often much lower than those set by electron micro-
probe and INAA.

6.3.1 23Na*. No major interferences are known. The most likely
interference, 29Ti*, can be shown to be equivalent to less than 0.1
ppm Na for a sample with 3 wt% Ti by using intensities recorded for
46Ti2+ at m/e = 24.5 to set limits on the Ti+/Ti2+ ratio (>6 X 10^-6).
Li" counts (and therefore the possibility of a Li"O" interference)
were observed in one run made on HAL hibonite. No large Li" count
rate was observed in any of the runs reported here. No corrections
were made for molecular species.

6.3.2 26Mg*. Corrections are made for 24Ca*, as described by BAR-
MATHEWS et al. (1982). The largest correction for this species was
2% (relative) for magnesium in DH-HI. 44Ti* represents less than
0.7 ppm Mg for every 1 wt% Ti; no corrections were made for this
species.

6.3.3 28Sr. 72Al/Hf is a potential interference; fortunately, alu-
ninium does not form a strong hydride ion. The Al/Hf ratio is
~7 times greater than the Si/SiH ratio (LONG and HINTON, 1984).
The limit set by HAL hibonite indicates that the Al+/AlH+ ratio is
>7 x 10^-4 and AlH+ represents less than 60 ppm Si in hibonite. No
correction was made for this species. Elevated Si* count rates are
usually indicative of overlap of the ion beam onto the surrounding,
principally silicate, matrix. Where repeat analyses were made on the
same area or grain, those with the lowest apparent silicon content
were taken as being most representative of hibonite.

6.3.4 54K*. Na"O is a possible interference; however, the Na*/
Na* ratios measured in An65 feldspar demonstrate that this species
represents less than 0.1 ppm K for all hibonite analyzed here.

6.3.5 50Ca*. Interferences at m/e = 44 include 27AlO"H* and
25SiO". Analyses of BB-5,C indicate that the AIO7/AI0H* ratio is
greater than 1000 and that AI0H* represents less than 0.2% of the
m/e = 44 count rate. High resolution measurements give a SIO*/Si*
ratio of 0.036; SIO* represents less than 1% of the e/e = 44 count
rate.

6.3.6 84Sr*. A limit to the intensity of "CaH* was set in the low
potassium and magnesium HAL hibonite by measuring Ca" and
CaH* at m/e = 40 and 41. Ca* represents less than 0.07 ppm Sc for
each 1 Ca. 25SiO" is more significant: high mass resolution
measurements of 25SiO" at m/e = 44 show that SIO* is equivalent
to ~3 ppm Sc for every 1 wt% Si; this correction is only significant
in BB-6 hibonite.

6.3.7 86Ti*. A correction is made for 44Ca* using the "Ca* intensity.
A high resolution study (HINTON et al., 1987b) determined that
24Mg is equivalent to 5 ppm Ti for every 1% Mg. Comparison be-
tween Ti* count rates and electron microprobe-determined Ti con-
centrations suggests that its ion yield decreases by approximately
30% when the Ti content increases from 1 to 4%.

6.3.8 131I. 24MgAl* is equivalent to 0.2 ppm V for every 1% Mg. The
24Mg*Al" contribution can be substantial and often consti-
tutes more than half the intensity recorded at m/e = 51. The applied
correction determined in section 6.3.9 corresponds to 65 ppm V for
every 1 wt% Mg.
6.3.0 $^{12}\text{C}^+$ Intensities at $m/e = 52$ and 53 are dominated by $\text{Cr}^+$, $^{24}\text{Mg}^{3+}\text{Al}^+$ and $^{26}\text{Mg}^{3+}\text{Al}^+$; if the $^{24}\text{Mg}^{3+}\text{Mg}^+$ ratio is known, intensities of these species can therefore be calculated using simultaneous equations. The calculated $\text{MgAl}^+/\text{Mg}^+$ ratio (0.0036) was constant to $\pm 5\%$ in analyses not limited by counting statistics. This value agrees reasonably well with a measurement of the $\text{MgAl}^+$ intensity made at high mass resolution at $m/e = 51$ in low-vanadium Madagascar hibonite ($\text{MgAl}^+/\text{Mg}^+ = 0.0030$). Poor counting statistics usually limited the use of simultaneous equations; corrections were made at $m/e = 51$ and 52 assuming a constant $\text{MgAl}^+/\text{Mg}^+$ ratio of 0.0036. $\text{MgAl}^+$ is equivalent to 9 ppm Cr for every 1 wt% Mg.

6.3.10 $^{27}\text{Al}^{28}\text{Si}^+$ can be significant if hibonite has a high silicon content or if the primary beam partially overlaps a silicate phase. Samples with low manganese content give an upper limit of 0.0025 to the $\text{AlSi}^+/\text{Si}^+$ ratio; $\text{AlSi}^+$ is therefore equivalent to <15 ppm Mn for every 1 wt% Si. This correction amounts to more than 50% of the $m/e = 55$ intensity only in GR-1 hibonite.

6.3.11 $^{88}\text{Sr}^+$. $\text{Ca}^+$ and $\text{CaMgO}^+$ are negligible, accounting for <0.06 ppm Sr. $^{47}\text{Sc}^{28}\text{Al}^{16}\text{O}^+$ is more significant. This species cannot, however, be measured directly, even at high mass resolution. Initially, the $\text{ScAlO}^+/\text{Sc}^+$ ratio was assumed to be the same as that of $\text{CaAlO}^+/\text{Ca}^+$. Results given for GR-1 in HINTON and DAVIS (1986b) used this correction. Analysis of the mixed phase within BB-5 corundum and scandium-rich phases within the OSCAR inclusion from Ornans (DAVIS, 1984; DAVIS and HINTON, 1985) indicates that the $\text{ScAlO}^+/\text{Sc}^+$ ratio is approximately 2.7 times lower than the $\text{CaAlO}^+/\text{Ca}^+$ ratio. $\text{CaAlO}^+$ is equivalent to 0.004 ppm Sr for every 1 ppm Sc. $^{48}\text{Ca}^{44}\text{Ti}^+$ is also a likely interference and the $\text{CaTi}^+/\text{Ca}^+$ ratio has been estimated from perovskite. The $\text{CaTi}^+$ correction represents 8 ppm Sr for every 1 wt% Ti. Molecular interferences account for less than 10% of the $m/e = 88$ intensity except in GR-1-R hibonite, where the correction is 25%.

6.3.12 $^{89}\text{Y}^+$. This isotope has molecular interferences from $\text{CaTi}^+$ (see section 6.3.11) and $^{47}\text{Al}^{44}\text{Ti}^{16}\text{O}^+$ (see section 6.3.13) $\text{AlTiO}^+$ represents ~4 ppm Y and $\text{CaTi}^+$ ~0.9 ppm Y for every 1 wt% Ti. In only one case, that of BB-6 hibonite, did the correction result in an apparently negative abundance. Molecular interferences account for less than 20% of the $m/e = 89$ count rate except for HAL and BB-6 hibonite.

6.3.13 $^{91,92}\text{Zr}^+$. $\text{AlTiO}^+$ is a major interference, but its intensity can be calculated using simultaneous equations on intensities recorded at masses 91 and 92. The $\text{AlTiO}^+$ and $\text{Zr}^+$ intensities agree well with those calculated using measured count rates at $m/e = 93$ ($\text{AlTiO}^+$ only) and 94 ($\text{Zr}^+$ only). They also agree with $\text{AlTiO}^+$ and $\text{Zr}^+$ intensities recorded using simultaneous equations on $m/e = 90$ and 91 after 90 is corrected for $\text{CaTi}^+$.

Concentrations were determined in corundum assuming that, under the same operating conditions, the ion yields are identical to those of hibonite.