VALENCE OF TITANIUM IN Ca-AI-RICH INCLUSIONS: EXPERIMENTAL SAMPLES AND RELEVANCE TO NATURAL CAIS

J. M. Paque¹, S. R. Sutton², S. B. Simon², J. R. Beckett¹, D.S. Burnett¹, and L. Grossman². ¹Caltech, Pasadena, CA 91125. E-mail: julie@paque.com. ²Univ. of Chicago, Chicago, IL 60637.

Introduction: Previous X-ray Absorption Near Edge Structure (XANES) Spectroscopy studies on spinels (sp) from Allende TS-34 [1, 2] have shown them to contain little Ti^{3+} , relative to Ti^{4+} , in spite of being hosted by Ti^{3+} -enriched clinopyroxene (cpx). This suggests that the spinels are products of a more oxidizing environment.

Analytical Methods: Sp and cpx from a suite of experimental samples [3] were analyzed by XANES at the Advanced Photon Source (APS) at Argonne National Laboratory (beamline 13-1D, GSECARS). The bulk composition represents an average Type B Ca-Al-rich inclusion (CAIB, [3]). Due to the narrow (~2 μ m), but deep (~10 μ m) excitation area, and the fine grained nature of the samples, it was difficult to ensure that only one phase was analyzed, particularly for sp. Ti counts and spectral shape were monitored to help distinguish sp from glass and cpx.

Results: Results are shown below for coexisting phases in experiments conducted in H₂-CO₂ gas mixtures, along with one dynamic crystallization experiment (1316.4-5) run under CCO [1]. There is a trend to increased Ti³⁺ with decreasing fO₂, as expected. Valences for all glasses were dominated by Ti⁴⁺ (>3.6) and showed no trend with fO₂.

Sample	Phas	T (°C)/temp (hrs)	ΔΙW	Ti valence	1σ
CAI-62	Cpx	1229°C/96.2 hrs	0.0	3.98	0.0
CAI-62	Sp	1229°C/96.2 hrs	0.0	3.96	0.0
CAI-63	Cpx	1226°C/120 hrs	-2.3	3.79	0.0
CAI-63	Sp	1226°C/120 hrs	-2.3	3.64	0.0
CAI-40	Sp	1407°C/5.7 hrs	-2.6	3.49	0.0
CAI-64	Cpx	1227°C/74 hrs	-3.6	3.68	0.0
CAI-64	Sp	1227°C/74 hrs	-3.6	3.42	0.0
CAI-66	Cpx	1234°C/23 hrs	-5.1	3.22	0.0
CAI-66	Sp	1234°C/23 hrs	-5.1	3.54	0.0
CAI-65	Cpx	1227°C/29 hrs	-5.7	3.24	0.0
CAI-65	Sp	1227°C/29 hrs	-5.7	3.30	0.0
1316.4-5	Sp	See [1]	-6.4 to -5.7	3.05	0.0

Discussion: The experimental results indicate that sp cocrystallizing at equilibrium from a melt with Ti^{3+} -rich cpx will also be Ti^{3+} -rich. The fact that observed CAI sp hosted by Ti^{3+} rich cpx is Ti^{3+} -poor is consistent with the idea that the CAI experienced oxidizing conditions prior to cpx crystallization. A late oxidizing metamorphic or alteration event, while improbable, could produce the observed Ti valence. However, the cpx blebs or rinds on the surface of sp [4-6] contain significant Ti^{3+} , which would not be expected if they formed during an oxidizing event, and the zoning to increased Ti^{3+} at the edge of sp [1] is inconsistent with this theory.

Conclusions: Experimental results are consistent with the hypothesis that sp from CAIs are relict. The Ti valence in sp and cpx in TS-34 is one example that CAIs record multiple events.

References: [1] Paque J. M. et al. 2010. Abstract #1391. 41st Lunar & Planetary Science Conference. [2] Simon S. B. et al. 2010. Abstract #1459. 41st Lunar & Planetary Science Conference. [3] Stolper E. 1982. *Geochimica et Cosmochimica Acta* 46:2159-2180. [4] MacPherson G. J. et al. 1984. J. Geology 92:289-305. [5] Kuehner S. M. et al. 1989. *Geophysical Research Letters* 16:775-778. [6] Simon S. B. et al. 1991. *Geochimica et Cosmochimica Acta* 55:2635-2655. [7] Paque J. M. et al. 2009. *Meteoritics & Planetary Science* 44:665-687