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Introduction:  In general, calcium-, aluminum-rich 

inclusions (CAIs) are observed to be 16O-rich relative 
to planetary materials and are thought to record the O-
isotope composition of solar nebular gas from which 
they grew [1]. Recent high spatial resolution O-isotope 
measurements afforded by ion microprobe analysis 
across the rims and margin of CAIs reveal systematic 
variations in Δ17O and suggest formation from a diver-
sity of nebular environments [2-3]. This heterogeneity 
has been explained by isotopic mixing between the 
16O-rich solar reservoir [4] and a second 16O-poor res-
ervoir (probably nebular gas) with a “planetary-like” 
isotopic composition [e.g., 1, 4-5], but the mechanism 
and location(s) where these events occur within the 
protoplanetary disk remain uncertain. 

 The large and systematic variations in Δ17O that 
we found [3] within the Wark-Lovering (WL) rim and 
the outer margin of the interior of a compact Type A 
CAI, A37 from the Allende oxidized CV3 chondrite, 
indicate exposure of the inclusion to several distinct, 
nebular O reservoirs and imply the transfer of CAIs 
among different nebular settings within the protoplane-
tary disk [3]. To further investigate this hypothesis and 
the extent of intra-CAI O-isotope variation, a relatively 
unaltered compact Type A CAI, Ef-1 from the reduced 
CV3 chondrite Efremovka, and a Type B2 CAI, TS4 
from Allende were analyzed by NanoSIMS. Our new 
results are equally intriguing because collectively the 
O-isotopic zoning patterns in the CAIs appear to reveal 
a progressive and systematic record of different stages 
of isotopic exchange with a series of distinct O-
isotopic gas reservoirs. 

Samples:  Ef-1 is an ~3 x 3.5 mm convoluted com-
pact Type A CAI composed mainly of melilite and 20-
70 µm-sized spinel locally enclosed by fassaite. It is 
surrounded by a ~15 to 40 µm thick WL rim comprised 
from its interior outwards of spinel and pyroxene. TS4 
is an ~5 x 8 mm irregularly shaped Type B2 CAI com-
posed mainly of a partial margin of melilite (Åk35-50), 
5-70 µm-sized spinel found throughout and as pali-
sades, fassaite, and anorthite. The latter are found to-
wards the interior along with spinel in concentrations 
so high that they are in contact. TS4 is surrounded by a 
~30 to 50 µm thick WL rim comprised from its interior 
outwards of spinel, Ti-bearing pyroxene, Al-rich py-
roxene, and an outermost band of forsterite. Secondary 
sodalite is found in patches at the edge of the interior. 
A37 is described in [3]. 

Methods: We used the NanoSIMS at LLNL to per-
form O-isotopic measurements following the method 
developed by [3]. We evaluated instrumental mass 
fractionation (IMF) and reproducibility by analyses of 
terrestrial spinel, anorthite, grossular, and forsterite 
standards. O-isotope compositions are reported in 
terms of δ17O and δ18O. These values reflect the per 
mil difference from the reference ratios of standard 
mean ocean water (SMOW) such that 
δiO=103((iO/16O)/(iO/16O)SMOW-1) where i is either 17 
or 18. Based on the range of standard analyses, the 
external precision was <4.0‰ (sd) for both ratios. 
Δ17O, defined as Δ17O=δ17O-0.52xδ18O, represents the 
departure from the terrestrial mass fractionation (TMF) 
line that defines the terrestrial O reservoir. Our preci-
sion on Δ17O ranged from 1.9‰ (sd) for olivine to 
3.5‰ (sd) for garnet and the difference in Δ17O among 
the terrestrial minerals was <2.5‰ (sd), about equal to, 
or less than our typical uncertainty (~3.0‰). X-ray and 
backscattered electron maps were obtained at NASA-
JSC, UChicago, and/or LLNL before and after 
NanoSIMS analysis to guide ion probe traverses and to 
verify the mineralogy of the analysis spots. 

Results: On O three-isotope plots, data for Ef-1 
and TS4 exhibit scatter about and along the carbona-
ceous chondrite anhydrous mineral (CCAM) line (Figs. 
1 & 2). Data for each inclusion come from ~2 µm spot 
analyses along traverses spanning across their WL rims 
and coarse-grained interiors (Fig. 3a,b,c). Like A37, 
data from both Ef-1 and TS4 exhibit heterogeneous 
16O abundances (>20‰). Yet, compared to A37, the 
interior melilites in Ef-1 and TS4 are more homoge-
nous and 16O-poor. Exceptions include small but sys-
tematic Δ17O decreases (~5‰) at the outermost edge of 
Ef-1 (Fig. 3a) and possibly within the interior of TS4 
(Fig. 3b). Spinels from interiors of all studied CAIs are 
16O-rich (Δ17O≤-20‰). The O-isotopic composition of 
fassaite in TS4 is similar to spinel, and that of anorthite 
in TS4 is similar to its melilite. Sodalite in the margin 
of TS4 has planetary-like, 16O-poor compositions. 

WL rims on Ef-1 and TS4 are thinner than on A37. 
Yet, a similar isotopic stratigraphy exists within rims 
of all three CAIs: (1) spinel is 16O-rich (Δ17O≤-15‰); 
(2) pyroxene becomes relatively 16O-poor towards the 
interior; and (3) olivine, where present, is variable. 

Discussion: The mineral textures and compositions 
of the studied CAIs indicate crystallization from a melt 
(e.g., [6-7]). At issue, are the differences found be-
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tween the O-isotope zoning profiles among the studied 
CAIs (Fig. 3a,b,c). The O-isotopic zoning of A37, 
which cannot be explained by igneous processes and is 
likely secondary in origin [3] is useful to consider 
when investigating CAIs like Ef-1 and TS4 that exhibit 
distinct mineral specific O-isotopic zoning profiles. 
The O-isotopic compositions of spinel from the interi-
ors of Ef-1 and TS4 are similar to the 16O-rich melilites 
in the interior of A37. The difference between the 16O-
poor compositions (Δ17O~0‰) of melilites in the inte-
riors of Ef-1 and TS4 and their spinel (±fassaite) 
(Δ17O~-20 to -25‰) likely reflects their differing 
amounts of O-isotopic exchange with 16O-poor nebular 
gas. Additionally, the new data on spinel (Δ17O=-30‰) 
from A37 that match the solar value of [4] imply that 
the 16O-rich interior spinel data from Ef-1 and TS4 and 
the 16O-rich melilite of A37 also reflect some exchange 
with a 16O-poor reservoir.  

Comparing the degree of 16O depletion of the stud-
ied CAIs reveals a progressive trend (Ef-1>TS4>A37) 
of exchange that is decoupled from their mineralogical 
evidence of alteration. The possibility that spinel in the 
interiors of Ef-1 and TS4 has undergone some isotopic 
exchange (as seen by their relative depletion in 16O and 
the Δ17O=-30‰ defined by spinel in A37) has implica-
tions for temperature-time estimates based on calcula-
tions [5] that we previously used to place an upper 
limit of 1600 K (and thus a lower limit of ~500 years) 
for the integrated reaction period of diffusive exchange 
of CAIs. More sophisticated solid (±melt)-gas ex-
change models are being evaluated. Nevertheless, the 
additional WL rim and interior data strongly support 
the idea that CAIs were transported between at least 
two nebular reservoirs with distinct O-isotopic compo-
sitions, probably multiple times during this time in 
their history.  

Figure 1. Oxy-
gen three-isotope 
plot for Efre-
movka CAI Ef-1. 
Most data fall 
along the slope 
~0.94 CCAM 
line. Terrestrial 
mass fractiona-
tion (TMF) line 
(slope=0.52) and 
primordial mix-
ing line 

(slope=1.00) are shown for reference. Error ellipse represents 2σ 
external reproducibility. 

Figure 2. Oxy-
gen three-
isotope plot for 
Allende CAI 
TS4. Most data 
fall along the 
slope ~0.94 
CCAM line. 
Reference lines 
and error ellipse 
as in Figure 1. 
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Figure 3. O-isotope zoning profiles across the WL rims and interiors 
of Ef-1, TS4, and A37, obtained by NanoSIMS. New data on spinel 
from A37 match the O-isotope composition of [4] and likely repre-
sent the primordial protosolar gas composition. Vertical arrows show 
the varying magnitudes of mineral-gas exchange in the studied CAIs. 
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