Stardust (Comet) Samples and the Meteorite Record

* Weisberg, M (mweisberg@kbcc.cuny.edu), Kingsborough College CUNY, 2001 Oriental Blvd., NY, 11235, United States
Connolly, H, NASA/JSC, KT, Houston, 77058, United States
Zolensky, M, NASA/JSC, KT, Houston, 77058, United States
Bland, P, Imperial College, Earth Science Engineering, London, SW& 2AZ United Kingdom
Braerley, A, UNM, Earth Planet. Sci., Albuquerque, 87131
Bridges, J, Open U., Planet Space Sci, Milton Keynes, MK7 6AA
Brownlee, D, U. Washington, Astronomy, Seattle, 98195
Butterworth, A, UC Berkeley, Space Sci. Lab., Berkeley, 94720
Ebel, D, AMNH, Earth Planet. Sci., NY, 10024
Genge, M, Imperial College, Earth Science Engineering, London, SW& 2AZ United Kingdom
Gounelle, M, MNHM, USM 205, Paris, 75231
Grossman, J, USGS, Mail Stop 954, Reston, 20192
Grossman, L, U. Chicago, Geophysical Sci., Chicago, 60637
Harvey, R, Case Western Reserve, Geological Sci., Cleveland, 44106
Kearsley, A, NHM, Mineralogy, London, SW7 5BD
Keller, L, NASA/JSC, KT, Houston, 77058, United States
Krot, A, U. Hawaii, HIGP/SOEST, Honolulu, 96822
Langenhorst, F, Inst. fur Geowissenschaften, Fredrich-Schiller U., Jena, 07749
Lanzirroti, A, Brookhaven Nat. Lab., NSF, Upton, 11973
Leroux, H, U. Sciences et Technologies de lille, Lab Structure et Proprietes de lEtat Solide, Villeneuve dAscq, 59655
Messenger, K, NASA/JSC, KT, Houston, 77058, United States
Mikouchi, T, U. Tokyo, Earth Planet. Sci, Tokyo, 113-0033
Nakamura, T, Kyushu U., Earth Planet. Sci., Fukuoka, 812-81
Ohsumi, K, KEK, Inst. Materials Structure Science, Ibaraki, 305-0080
Okudaira, K, JAXA, ISAS, Kanagawa, 229-8510
Perronnet, M, NASA/JSC, KT, Houston, 77058, United States
Simon, S, U. Chicago, Geophysical Sci., Chicago, 60637
Stroud, R, Naval Res. Lab., Code 6361, Washington, 20375
Taheri, M, Naval Res. Lab., Code 6361, Washington, 20375
Tomoeoka, K, Kobe U., Faculty Science, Kobe, 657-8501
Tsou, P, JPL, CALTECH, Pasadena, 91125
Tsuchiyama, A, Osaka U., Earth Space Sci., Toyonaka, 560-0043
Velbel, M, Michigan State U., Geo. Sci., East Lansing, 48824
Westphal, A, U. Washington, Astronomy, Seattle, 98195
Yano, H, JAXA, ISAS, Kanagawa, 229-8510
Zega, T, Naval Res. Lab., Code 6361, Washington, 20375

Perhaps the most intriguing aspect of the material collected by Stardust from ï¿_comet Wild 2 is the preponderance of high temperature and reduced crystalline phases, which are characteristic of chondrites thought to derive from the main Asteroid Belt (2-4 AU) [1]. Here we compare the mineralogy of Stardust samples to that of chondrite groups. Results: Investigation by the Preliminary Examination Team (PET) of particles from Wild 2 shows a mineral assemblage typical of chondrites, with olivine, pyroxene, FeNi-metal and sulfide as common components. Olivine and low-Ca pyroxene have a range of mg# (Fa0.5-41 and Fs0-48, respectively), which indicates that the material is unequilibrated, similar to types 2 and 3 chondrites. Some forsterite with <1 wt% FeO has up to 6.4 wt% MnO and 1.4 wt% Cr2O3. Other silicates observed are Ti-bearing aluminus diopside and rare melilite, typical of some calcium, aluminum-rich
inclusions (CAIs) in carbonaceous (C) chondrites. Additionally, FeNi-metal and sulfides including pentlandite [(FeNi)9S8] and Fe-Ni-Cu and Fe-Zn sulfide, phases observed in C and enstatite (E) chondrites, are present in some particles. V-bearing osbornite (TiN), a phase also observed in some C and E chondrites, occurs associated with unidentified Zr-rich phase(s). Discussion: The observations by the PET are based on work done in a short period of time on a limited number of particles less than several microns in size, and, hence, conclusions based on these data are tentative. Many C chondrite groups have the wide range of ferromagnesian silicate compositions found in the Stardust samples. However, the range of olivine and pyroxene compositions, occurrence of Mn-, Cr-rich olivine, metal and pentlandite are features most consistent with CR and CH chondrites, though a CM-like lithology cannot be ruled out. Mn-, Cr-rich forsterite is found in the matrix and in amoeboid olivine aggregates in CR chondrites [2, 3]; Osbornite-bearing CAIs have been identified in the ALH 85085 CH chondrite [4] and the Isheyevo CH/CB chondrite [5]. Thus, the Stardust samples analyzed thus far have mineral assemblages close to those of CR and CH chondrites, members of the CR chondrite clan. References: [1] Scott and Krot (2005) Chondrules and the Protoplanetary Disk, 15-54. [2] Weisberg et al. (1993) GCA 57, 1567-1586. [3] Weisberg et al. (2004) MAPS 39, 1741-1753. [4] Weisberg et al. (1988) EPSL 91, 19-32. [5] Krot et al. (2006) MAPS #1506.