Methane release on Early Mars by atmospheric collapse and atmospheric reinflation

Edwin S. Kite a,*, Michael A. Mischna b, Peter Gao c,d, Yuk L. Yung b,e, Martin Turbet f,g,1

a University of Chicago, Chicago, IL, 6063, USA
b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
c NASA Ames Research Center, Mountain View, CA, 94035, USA
d University of California, Berkeley, CA, 94720, USA
e Observatoire Astronomique de l’Université de Genève, 51 Chemin des Maillettes, 1290, Sauverny, Switzerland
f Laboratoire de Météorologie Dynamique, IPSL, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, 75005, France
g Laboratoire de Météorologie Dynamique, IPSL, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, 75005, France

A B S T R A C T

A candidate explanation for Early Mars rivers is atmospheric warming due to surface release of H2 or CH4 gas. However, it remains unknown how much gas could be released in a single event. We model the CH4 release by one mechanism for rapid release of CH4 from clathrate. By modeling how CH4-clathrate release is affected by changes in Mars’ obliquity and atmospheric composition, we find that a large fraction of total outgassing from CH4 clathrate occurs following Mars’ first prolonged atmospheric collapse. This atmosphere-collapse-initiated CH4-release mechanism has three stages. (1) Rapid collapse of Early Mars’ carbon dioxide atmosphere initiates a slower shift of water ice from high ground to the poles. (2) Upon subsequent CO2-atmosphere re-inflation and CO2-greenhouse warming, low-latitude clathrate decomposes and releases methane gas. (3) Methane can then perturb atmospheric chemistry and surface temperature, until photochemical processes destroy the methane.

Within our model, we find that under some circumstances a Titan-like haze layer would be expected to form, consistent with transient deposition of abundant complex abiotic organic matter on the Early Mars surface. We also find that this CH4-release mechanism can warm Early Mars, but special circumstances are required in order to uncork 10^{17} kg of CH4, the minimum needed for strong warming. Specifically, strong warming only occurs when the fraction of the hydrate stability zone that is initially occupied by clathrate exceeds 10%, and when Mars’ first prolonged atmospheric collapse occurs for atmospheric pressure >1 bar.

1. Introduction

1.1. Causes and effects of methane release on Early Mars

The Mars Science Laboratory’s (MSL’s) investigation of Early Mars sediments has turned up two results which remain a puzzle. The first puzzle is the discovery of a paleolake (Grotzinger et al., 2014). Paleolakes on Mars individually lasted as long as >(10^2–10^3) yr (e.g., Irwin et al., 2015). Such longevity is hard to reconcile with climate models that predict no lakes, or only short-lived lakes (Wordsworth, 2016; Hynek, 2016; Luo et al., 2017; Haberle et al., 2017; Vasavada, 2017; Kite et al., 2019). The second puzzle is the detection by MSL of organic matter (Eisenbrode et al., 2018). The organic matter is found in excess of known instrumental backgrounds. The source could be exogenic (asteroidal dust), or indigenous to Mars (for example, magmatic or biological), but remains unknown.

Both these puzzles – lake-forming climates and organic matter production – could, in principle, be explained by CH4 release. Methane is a greenhouse gas. For one-dimensional calculations of Early Mars climate, CH4–induced warming (due to CH4–CO2 collision-induced absorption) overwhelms CH4–induced cooling (due to CH4 absorption of sunlight) when pCO2 exceeds 0.5–1.0 bar (Wordsworth et al., 2017; Turbet et al., 2019). Indeed, CH4 bursts have been proposed as a cause of early Mars lake-forming climates (Chassefière et al., 2016; Kite et al., 2017a), and as a cause of various Early Mars geologic features (e.g., Skinner and Tanaka, 2007; Kite et al., 2007; Oehler and Allen, 2010; Wray and Ehlmann, 2011; Komatsu et al., 2016; Ivanov et al., 2014; Oehler and Etiope, 2017; Pan and Ehlmann, 2014; Etiope and Oehler, 2019; Broz et al., 2019). Detections of tiny amounts of CH4 in Mars’ present-day atmosphere have been reported (e.g. Webster et al., 2018), although these detections do not all agree with one another and are in tension with models that predict lower methane abundance, and also lower methane abundance.
variability, than has been reported (Zahnle et al., 2011; Mischna et al., 2011; Koroblev et al., 2019; Zahnle and Catling, 2019; Moores et al., 2019). Separate from its potential to warm Mars, methane can also serve as the feedstock for photochemical production of complex organic matter – hazes and soots. Haze-derived soot on Titan today, which is ultimately derived from CH₄, accumulates on Titan’s surface (Lunine and Atreya, 2008; Horst, 2017). A ratio of CH₄/CO₂ > 0.1 is needed for vigorous haze production (Trainer et al., 2006; Haqq-Misra et al., 2008; Kite et al., 2017a).

Here we investigate a new scenario for Mars methane release (Fig. 2). The scenario involves both collapse of the CO₂ atmosphere, and also the reverse process – CO₂-atmosphere reinflation (Gierasch and Toon, 1973; Soto et al., 2015; Wordsworth et al., 2015). Atmospheric collapse on Mars shifts the climate from a state with all CO₂ in the atmosphere, to a state with most CO₂ in the form of surface ice, and atmospheric reinflation is the reverse process. In our model, atmospheric-collapse-triggered depressurization of CH₄ clathrate and subsequent reinflation-induced warming of CH₄ clathrate causes transient outgassing of CH₄.

In order to model these processes, our approach combines the following elements (see Appendix A for details): climate models, obliquity calculations, a parameterization of the photochemical destruction of CH₄ that is fit to a detailed photochemical model, and a model of the (latitude/longitude/depth-dependent) stability of CH₄ clathrate. For simplicity we omit other clathrates such as CO₂ clathrate (and CH₄–CO₂ clathrate hybridization; Sloan and Koh, 2008). We emphasize CH₄ clathrate for the following reasons. Methane clathrates are a candidate driver of past climate change on Titan and Earth (e.g., Tobie et al., 2006; Bowen et al., 2016). Moreover, CH₄ storage in clathrates has been previously proposed for Mars (Chassefière et al., 2016, and references therein), and as a possible source of the CH₄ reported by a team using MSL Sample Analysis at Mars (SAM) Tunable Laser Spectrometer (TLS) data (Webster et al., 2018; but see also Zahnle et al., 2011; Zahnle and Catling, 2019). However, CH₄ has a <10^6 yr photochemical lifetime (Sagan, 1977; Gierasch and Toon, 1973; Chassefière et al., 2016; Lasue et al., 2015; Wordsworth et al., 2017; Kite et al., 2017a). In order to build up the high (≥1%) levels of atmospheric CH₄ that are needed for strong warming on Early Mars, CH₄ supply must overwhelm photolysis, and so outgassing must be swift. In turn, swift outgassing requires a mechanism that (a) efficiently traps CH₄, yet (b) subsequently releases the CH₄, (c) in large quantities (d) at a rate that outpaces photochemical destruction. Here, we show that a suitably vigorous release mechanism is atmospheric collapse and atmospheric reinflation.

1.2. Previous work on Mars atmospheric collapse and atmospheric reinflation

CO₂-atmosphere collapse (a runaway shift from intermediate to very low P_{CO₂}) is distinct from CO₂-atmosphere condensation (which curtails P_{CO₂} at high pressure, ≥3 bars, without involving a runaway shift). The most recent 3D analysis of runaway atmospheric collapse on Mars is by Soto et al. (2015). In their study, which assumed present-day solar luminosity, collapse onto Olympus Mons plays a key role. However, this volcano was probably not very tall at 3.7 Ga (Isherwood et al., 2013). Idealized models have also been used to study atmospheric collapse on Mars (Nakamura and Tajika, 2001, 2002, 2003), and on exoplanets (e.g., Heng and Kopparla, 2012; Wordsworth, 2015; Turbet et al., 2017). All models agree that, for a given P_{CO₂}, the main control on atmospheric collapse is obliquity. The obliquity for atmospheric collapse depends on assumed CO₂ ice cloud grain size (Kitzmann, 2016). Using a 3D model, Kahre et al. (2013) assessed the importance of carbon dioxide ice cap...
albedo and emissivity in setting the boundaries of the atmospheric collapse zone. Manning et al. (2006, 2019) considered atmospheric collapse as part of a study of the long-term evolution of the Mars carbon inventory. There is strong geologic evidence for major changes in P CO2 due to redistribution of CO2 between the atmosphere and CO2 ice caps even in the geologically recent past, within the last 5 Myr (e.g., Krasslovsky and Head, 2005; Phillips et al., 2011; Bierson et al., 2016; Manning et al., 2019).\(^2\) No previous study links Mars atmospheric collapse and reinflation to a warmer-than-pre-collapse climate (Halevy and Head, 2017).

2. Setting the stage for atmospheric-collapse-initiated CH4 release

The atmospheric-collapse-initiated methane release scenario is motivated by evidence for the following: (1) Noachian-age water-rock reactions in the deep subsurface; (2) a \(\geq 0.5\) bar past atmosphere that (3) drove surface H2O ice to high ground; and (4) large-amplitude obliquity variations. Understanding of all four has improved in recent years, as we suspicious it is almost the same. No previous study links Mars atmospheric collapse and reinflation to a warmer-than-pre-collapse climate (Halevy and Head, 2017).
1) Noachian-age hydrothermal minerals record Noachian hydrothermal reactions (e.g., Carter et al., 2013; Ehlmann et al., 2010; Parmentier and Zuber, 2007; Sun and Milliken, 2015). Hydrothermal reactions between Mars’ mafic/ultramafic crust and waters charged with magmatic and/or atmospheric C should yield both H2 and CH4 (e.g., Lyons et al., 2005; Oze and Sharma, 2005; Klein et al., 2019). CH4 is emphasized here (Etiope and Sherwood Lollar, 2013), due to its stability in clathrate hydrates under lower pressures and higher temperatures relative to H2. Although abiogenic reactions can, in principle (stoichiometry + thermonuclears), form ~10^5 bars of CH4, CH4 production by abiogenic reactions faces kinetic barriers (e.g., Oze et al., 2012; Tarnas et al., 2019). These barriers can be overcome by high temperatures in olivine-rich rocks that host catalysts (e.g., Ni; Etiope and Schoell, 2014), and by recycling of fluid by hydrothermal circulation. Both hydrothermal circulation, the hydrothermal reaction-rate, and radiolytic H2 production slackened as the Mars geotherm cooled and Mars’ radionuclide abundances decreased through radioactive decay (Ehlmann et al., 2011; Fassett and Head, 2011; Tarnas et al., 2018). Hydrothermal circulation would transport CH4 that was trapped in the deep subsurface up to the cooling near-surface (e.g., beneath ice sheets or primordial seas), where it would have been trapped as CH4 clathrate hydrate (Fig. 2) (Chastain and Chevrier, 2007; Chassefière and Leblanc, 2011; Mousis et al., 2013). CH4-clathrate is not stable at Mars’ surface (Fig. 4), but is stable in the subsurface. Specifically, CH4-clathrate is stabilized by increasing pressure (stable for $P \geq 21$ bar at 273.15 K, corresponding to a depth of 400 m within 1.5 g/cc regolith), and by decreasing temperature (stable for $P \geq 0.015$ bar at 200 K) (Fig. 4).

Shallow-subsurface CH4 clathrate, once formed, could later be destabilized by orbital forcing (Kite et al., 2017a; Prieto-Ballesteros et al., 2006) or by other mechanisms (Chassefière et al., 2016; this paper) (Fig. 1).

2) Today, $Pco2 = 6$ mbar, too low to permit extensive liquid water (Hecht, 2002). Past $Pco2$ was greater, due to gradual atmospheric loss by hard-to-reverse processes (carbonate formation, polar basal melting and infiltration of CO2) as well as by irreversible escape to space (Kurahashi-Nakamura & Tajiya 2006, Lammer et al., 2013; Jakosky et al., 2018; Manning et al., 2019). Most estimates of $Pco2$ at the time of the valley networks are in the range 0.2–2 bar (Kite et al., 2014; Kurokawa et al., 2017; Cassata et al., 2012; Warren et al., 2019; Kite, 2019 and references therein). Such thick CO2 atmospheres ensure that cold ground is at high elevations (Wordsworth et al., 2013, 2015).

3) Cold ground at high elevations, including most of the Southern hemisphere, would act as a cold trap for H2O ice (Wordsworth et al., 2013). Average H2O ice sheet thickness, assuming ice above +1 km elevation, was ≥ 300 m (e.g., Fastook and Head, 2015; Mahaffy et al., 2015). Three hundred meters of H2O ice on Mars is sufficient to stabilize CH4 clathrate in the regolith pore space beneath the ice sheet.

4) Unlike Earth, Mars is thought to undergo chaotic large-amplitude shifts in spin-orbit parameters; among these variations, the most important are variations in obliquity, ϕ. ϕ varies in the range 0° < ϕ < 70° (Touch and Wisdom (1993), Laskar et al., (2004), Holé et al., (2018), on which are superposed quasi-periodic ϕ variations with period 10^5–10^6 yr and amplitude 0–20° (10 × Earth).

3. How atmospheric collapse can initiate methane release

Here, we summarize the collapse-initiated CH4-release scenario (a more detailed description is given in §3.1). In the atmospheric-collapse...
initiated CH4-release scenario (Fig. 2), atmospheric collapse (Step 1) causes low-latitude surface water ice to sublimate away. This sublimation loss occurs because atmospheric collapse occurs at low obliquity. At low obliquity and low (collapsed) pCO2, the stable location for water ice is at the poles (as on Mars today). Loss of water ice overburden depressurizes and thus destabilizes CH4 clathrate in low-latitude sub-glacial pore space (Step 2). Subsequent atmospheric re-inflation at high obliquity leads to CO2-induced warming that further destabilizes CH4 clathrate (Steps 3/4). If (and only if) the atmospheric collapse is initiated at pCO2 > (0.5–1.0) bar, then CH4 release can cause surface warming. The potential for surface warming is greatest at Step 4. The CH4 pulse is brought to a close by photochemical destruction of CH4. We proceed through each of these steps in greater detail in §3.1.

The collapse-initiated CH4 release mechanism (Fig. 2) is motivated by two separations of timescales:

1. CO2-atmosphere collapse and re-inflation takes ~10^3 yr (Soto et al., 2015). This ~1 mbar/yr pace is set by the need to radiate away (or supply) the latent heat of sublimation for CO2 ice. Both CO2 collapse and CO2 migration are slow relative to H2O ice migration (10^5–10^6 yr, according to our GCM; Appendix). (H2O ice migration is slow because surface water ice is cold on Early Mars, cold ice has a low saturation vapor pressure, and as a result there is not much water vapor in the atmosphere for winds to transport). Since H2O ice overburden pressure is important to CH4 clathrate stability, this separation of timescales allows for H2O ice to be “out of position” when the atmosphere re-inflates. As a result, after re-inflation, CH4 clathrate is at the same temperature, but a lower pressure, than in the pre-atmospheric-collapse state. Because CH4 clathrate is destabilized at lower pressure (and destabilized at increasing temperature), CH4 clathrate is destabilized after re-inflation relative to pre-collapse conditions.

2. The time lag between surface warming and release of CH4 to the atmosphere is the sum of time for the subsurface to be warmed by thermal conduction, the decomposition time for unstable clathrate (which is fast; Gainey and Elwood Madden, 2012), and the time lag between clathrate breakdown and release of CH4 to the atmosphere. This sums to ≤10^7 yr, much less than the timescale for photochemical destruction of CH4 (~10^5 yr). Thus, CH4 can build up to high levels before decaying.

3.1. Steps in the scenario

Step 1. Collapse of an initially thick CO2 atmosphere. We assume an initially thick (P_{CO2} > 1 bar) atmosphere. As the atmosphere is slowly thinned by escape to space and other processes, the remaining atmospheric CO2 becomes increasingly vulnerable to collapse (Fig. 3). Collapse is triggered if polar CO2 ice caps undergo year-on-year growth. Growth of polar CO2 ice caps occurs below a critical polar temperature. Polar temperature is set by insolation, which increases with obliquity, and by heating from the CO2 atmosphere (both the greenhouse effect and equator-to-pole heat transport increase with P_{CO2}). Given secular atmospheric-pressure decline, obliquity variations will eventually lower insolation below the threshold for perennial CO2-ice caps (e.g., Forget et al., 2013). Once year-on-year cap growth begins, the caps trap 90–99% of the atmospheric CO2 within 10^2–10^4 yrs (Soto et al., 2015). Why is this collapse so rapid, and (almost) complete? The cause of the rapid runaway is the positive feedback between polar cooling and ice-cap sequestration of CO2. Post-collapse, P_{CO2} is in equilibrium with polar CO2 ice cap surface temperature - i.e., it is very low (Fig. 3) (Sagan et al., 1973). CO2 ice cap thickness, assuming caps poleward of 80°, is ~1200 m/bar CO2 (or lower if the caps flow; Mellon, 1996).

Low-obliquity atmospheric collapse involves a hysteresis (Fig. 3, Fig. A2), but is ultimately reversible. Eventually, obliquity rise will trigger rapid re-sublimation of CO2 condensed at low obliquity. Thus, CO2 trapped as CO2 ice is only sequestered temporarily.

Theory predicts that collapse/re-inflation cycles should have occurred in Mars history. There is sedimentological evidence for P_{CO2} < 1 mbar at ~3.7 Ga (Lapoire et al., 2016), in which case the first collapse occurred >3.7 Ga. There is also indirect evidence from isotopes in Mars meteorite ALH 84001 that collapse (i.e., a very thin atmosphere) did not occur prior to ~4 Ga (Kurokawa et al., 2017).

P_{CO2} reduction leads to loss of most of the greenhouse effect. The corresponding surface cooling (tens of K) helps to stabilize CH4-clathrate,
far outweighing the destabilizing effect of loss of the weight of the atmosphere. Therefore, no CH4 release occurs at Step 1. Furthermore, cold post-collapse conditions are very unfavorable for liquid H2O on Early Mars (Hecht, 2002; Turbet et al., 2017).

Step 2. H2O ice unloading of low latitudes triggers some CH4 release. Following atmospheric collapse, the collapsed <100 mb atm can no longer supply much heat to the poles. Lacking atmospheric heating, and with obliquity low in the aftermath of atmospheric collapse, the cold poles are now the stable cold-trap location for water ice. Water ice condenses at the poles, and sublimates away from low-latitude highlands. The sublimation rate is slow, due to the Faint Young Sun: ~0.1 mm/yr for water ice albedo = 0.45 (according to our general circulation model, which is a modified version of that in Mischna et al., 2013; Appendix A), rising to ~1 mm/yr for a dust-like ice albedo. Thus, the sublimation timescale for removal of the low latitude H2O-ice depends on the initial H2O thickness. For a thickness of 300 m, removal/unloading time is 3 x 10^5–3 x 10^6 yr. On this timescale the absolute distance traveled by H2O ice via solid-state glacial flow is small (Kite and Hindmarsh, 2007; Fastook and Head, 2015).

This slow latitudinal shift in H2O ice overburden pressure depressurizes and thus destabilizes CH4 clathrate in subglacial pore space (Figs. 4-5). Unloading-induced destabilization eventually exceeds cooling-induced stabilization. In other words, the top of the clathrate hydrate stability zone (HSZ) will deepen, so the hydrate stability zone will shrink. The deepening HSZ boundary will cause clathrate stranded above it to decompose in <1 kyr (Stern et al., 2003; Gainey and Elwood Madden, 2012). Decomposition will release CH4 (Figs. 4-5). This CH4 is assumed in our model to be swiftly outgassed to the atmosphere, in part because of fracturing induced by the large volume change involved in clathrate decomposition.

The CH4 release to the atmosphere is proportional to the fraction of surface area initially shrouded by H2O-ice. This fraction is ≈ 50% according to the model of Wordsworth et al. (2015). The initial CH4(g) flux is also proportional to f, the fraction of the not-yet-degassed HSZ volume occupied by clathrate. The clathrate is charged up with CH4 produced by water-rock reactions over >10^8 yr (Fig. 2). It is released <10^3 yr after destabilization (Stern et al., 2003; Gainey and Elwood Madden, 2012), possibly via explosive blow-outs or mud volcanism (Andreassen et al., 2017; Komatsu et al., 2016; Brož et al., 2019).

PCH4 on Mars is < 1 mbar during Step 2. As on today’s Mars, the outgassing source is swamped by photochemical sinks during Step 2 (Krasnopolsky et al., 2004). Moreover, what little CH4(g) exists is radiatively ineffective during Step 2. This is because CH4-CO2 collision-induced absorption (CIA) is weak when the collapsed-atmosphere P CO2 is low (Wordsworth et al., 2017; Turbet et al., 2019).

Step 3. CO2 atmosphere re-inflation and further CH4 release. Mars atmospheric collapse occurs at low obliquity (Soto et al., 2015). During the interval of atmospheric collapse, P CO2 is set by vapor pressure equilibrium with polar temperature. Most CO2 is sequestered as ice (Fig. A2). Obliquity can fall further after collapse is triggered, but obliquity will eventually rise. As obliquity rises, the collapsed atmosphere is still too thin to warm the poles – a hysteresis effect (Fig. A2). Although H2O ice shields CO2 ice from peak summer temperatures, H2O ice insulation raises annual-mean polar temperatures, which also increase with obliquity (Fig. 3). When obliquity rises to the point where no value of pressure yields a polar temperature below the condensation point, the CO2 ice caps are no longer stable. As a result, the remaining polar CO2 ice caps rapidly (10^3 yr) and completely sublimate (Fig. 6). As a result, the CO2 greenhouse effect rapidly increases planet-wide.

Our scenario assumes that the CO2 in the ice caps is not irreversibly entombed or otherwise irreversibly sequestered. However, if CO2 ice is deposited on top of H2O ice, then it can be buried by gravitational instability for some parameter choices (Turbet et al., 2017). In our model H2O ice is deposited on top of CO2 ice, which also acts to shield the CO2 ice. Finally, basal melting can lead to sequestration of CO2 as liquid in the crust. On the other hand, although stiff H2O ice may enshroud the CO2 ice, flow of thick, soft CO2 ice (Mellon, 1996) opens crevasses, which
over time will allow CO₂ to return to the atmosphere. There is no evidence for large subsurface reservoirs of liquid CO₂. Therefore this assumption, while not proven, is reasonable. We also neglect the adsorbed CO₂ reservoir in our calculations, because its estimated size (~35 mbar or less; Jakosky, 2010) is much less than the ~1 bar needed for a warm climate in our model.

At this point, the low-latitudes have lost some or all of the H₂O ice overburden (much of it migrated away in Step 2). This H₂O ice overburden had the effect of stabilizing CH₄ clathrate. H₂O ice returns to the low latitudes slowly: the wait time for all H₂O ice to return to the low latitudes is >10⁶ yr. The atmosphere fully reinflates in a time much shorter than this: ~10⁵ yr. So, without the clathrate-stabilizing effect of H₂O ice overburden, clathrate is now exposed to the CO₂ greenhouse warming associated with re-inflation. This CO₂ greenhouse warming is strong: for example, ~30 K for a 2 bar atm (Forget et al., 2013; Mischna et al., 2013). As a result, clathrate irreversibly decomposes, releasing CH₄.

The quantity of CH₄ release depends on the duration of the atmospheric collapse, the prior unloading history of the CH₄ clathrate reservoir, and the volume of the shallow-subsurface CH₄ clathrate reservoir. These have the following effect:

- In the collapse-initiated CH₄-release scenario, CH₄ release is maximal for the first atmospheric collapse in Mars’ history that lasts for ≥1 Myr (i.e., a collapse so deep that the peaks of individual 10⁵ yr obliquity cycles are not enough to trigger atmospheric re-inflation). This is because such a prolonged collapse gives time for substantial unloading of the CH₄-stabilizing water ice overburden from the highlands. For a prolonged collapse, much of the remaining CH₄-clathrate reservoir is destabilized upon re-inflation. Inspection of an ensemble of long-term obliquity integrations (Kite et al., 2015), combined with our GCM-derived collapse thresholds (Fig. 3), suggests that the first prolonged collapse happens geologically soon (<10⁵ yr) after Mars’ first-ever atmospheric collapse. By contrast, a large CH₄-burst does not result from <10⁵ yr collapses. For such brief collapses, unloading is so incomplete (according to the low sublimation rates computed using our general circulation model) that most of the highlands clathrate is still stabilized by the highlands H₂O ice that is still in-place at the time of re-inflation.

- In our model, once degassed, pore space is not recharged with CH₄, because diffusion of CH₄ through cold clathrate is slow. Thus, build-up of mbar of CH₄ in the atmosphere by the collapse-initiated CH₄ release mechanism is only plausible during the first <1 Gyr of Mars’ atmospheric-collapse history. (This point presumes that CH₄ comes from deep hydrothermal alteration of ultramafic rock. However, if pore space is filled with some amount of liquid H₂O, olivine-hosted fluid inclusions can form abiotic CH₄ from H₂ produced via fluid-inclusion-scale serpentinization as well as radiolysis over relatively short (sub-Gyr) timescales.

- The initial (pre-collapse) fraction of the hydrate stability zone that is occupied by CH₄ clathrate is unknown. We define f as the fraction of the not-yet-degassed portion of the HSZ that is initially occupied by clathrate, f/θ, where θ is porosity, gives the volume of pore space that is occupied by clathrate. For f > 6%, the atmosphere contains 2–10% CH₄ at the end of Step 3. This mix can allow CH₄–CO₂ collision induced absorption (CIA) to provide climate warming. In order for CIA-warming to exceed the surface cooling caused by CH₄ absorption of sunlight, it is a requirement that the atmosphere has >0.5–1.0 bar CO₂ (Turbet et al., 2019). Throughout this paper, we use the CH₄–CO₂ Collision Induced Absorption warming appropriate to the experimental measurements of Turbet et al. (2019). (Qualitatively similar experimental results are reported by Godin et al., 2019) We do this because the warming calculations of Wordsworth et al. (2017) are based on calculations, not experiments. If we instead adopt the warming calculated by Wordsworth et al. (2017), then we would predict warming that is about twice as strong (Fig. 6, Fig. A3). Therefore, our choice is conservative, in that it minimizes the effects of CH₄ bursts and the positive feedbacks of CH₄ outgassing on further CH₄ release.

Step 4. Possible warming due to CH₄-enhanced greenhouse effect? The cocktail of circumstances enabled by Mars’ first prolonged atmospheric collapse (a massive CH₄ pulse, a thick CO₂ atmosphere, low-latitude H₂O ice) can potentially warm Mars (Fig. 6, Fig. A3), but special circumstances are required. H₂O snow falling on the equator (plus any H₂O ice that did not have time to sublimate) encounters high insolation (due to lower latitude) and potentially increases greenhouse forcing. The >255 K mean annual temperature threshold, highlighted by the thick green lines in Fig. 6, is important because it is approximately the lower limit for seasonal meltwater runoff to form valleys that drain into perennial ice-covered lakes, as in modern Antarctica; e.g., McKay et al., 1985; McKay et al., 2005). In Fig. 6 the annual mean temperatures are shown for the ±40° latitude, –2 to +3 km elevation zone (valley network zone; Hynek et al., 2010), which is warmer than the global average.

However, CH₄-induced warming will only occur if atmospheric collapse is initiated at >0.5–1.0 bar pCO₂. Currently available models of atmospheric collapse (Appendix A) do not show atmospheric collapse at such high values of pCO₂ (for Early Mars luminosity). On the other hand, collapse occurs at higher CO₂ partial pressure if the surface ice/ snow cover is extensive, raising significantly the planetary albedo of Early Mars (Ramirez, 2017). Moreover, other GCMs return different results (Fig. A2), and the threshold pressure for atmospheric collapse is sensitive to parameters (e.g., Kitzmann, 2016). Therefore, although the hypothesis of Early Mars warming due to atmosphere-collapse initiated CH₄ release is not ruled out by our study, it requires special circumstances.

We did photochemical calculations to find the lifetime of quickly-released CH₄ (Appendix A). We found that CH₄ can remain in the atmosphere at radiatively important levels for 10⁵–10⁶ yr. If CH₄ permits warming, then this is long enough for frozen ground under lakes to unfreeze, linking lake water to deep aquifers. Such connections might help to reconcile a generally cold Early Mars climate with evidence for groundwater flow through fractures within sedimentary rocks on Mars (e.g., Yen et al., 2017; Frydenvang et al., 2017; Grasby et al., 2014; Ward and Pollard, 2018).

The end of the methane pulse: CH₄ destruction (10⁵–10⁶ yr). Photochemical processes destroy atmospheric CH₄ (Fig. A7). Eventually, the atmosphere will again collapse (Fig. 6). The newly collapsed atmosphere can retain many mbar of CH₄. That is because at the temperature where nearly all the CO₂ has condensed, none of the atmospheric CH₄ has condensed. As a result, the atmosphere CH₄/CO₂ ratio can transiently exceed the threshold for Titan-like photochemistry, haze, and soot (McKay et al., 1991; Haqq-Misra et al., 2008). This sooty phase is brief, because CH₄ destruction is rapid when CH₄/CO₂ is high (Fig. A7). If all CH₄ is converted to soot while CH₄/CO₂ > 0.1, then the soot layer column mass can be > 100 kg/m². This is sufficient to contaminate the crust at the organic matter levels reported by Eigenbrode et al. (2018) to a depth of ~7 km, or to 300 m depth for the ~0.1 wt% levels suggested by analysis of the temperature spectrum of the SAM EGA (Sutter et al.,
4. Discussion

4.1. Sensitivity tests show that special conditions are needed for collapse-initiated CH$_4$ release to cause warming

One key control for determining whether atmospheric-collapse-initiated CH$_4$ release can cause surface warming is the fraction of HSZ volume occupied by clathrate, f (Fig. 8, Fig. A4). For $f < 0.01$, strong surface warming is precluded. For $f > 0.1$, warming can be so strong that snowmelt can feed lakes. Methane is released by the warming triggered by prior CH$_4$ release. This feedback CH$_4$ release increases with f. The positive feedback on CH$_4$-induced warming can be large when $f > 0.1$ (Fig. 8).

For the calculations underlying Fig. 8, we find the runaway clathrate breakdown threshold by comparing direct CH$_4$-induced warming to the feedback warming (induced by the CH$_4$ release driven by direct warming). If the indirect, feedback warming exceeds the direct warming, then the system will run away (i.e., all CH$_4$ clathrate will be destroyed). This only occurs for $f > 0.3$, which exceeds plausible porosity and so is unlikely. Otherwise the asymptotic warming gain (G) is given approximately by

$$G \approx \frac{1}{1-R}$$ \hspace{1cm} (1)

(terminizing the feedback), where R is the feedback factor (Roe, 2009). Fig. A5 shows results including nonlinear feedbacks.

In our GCM, atmospheric collapse can be avoided (even for zero obliquity) down to initial pressures <0.6 bar. This is unfavorable for collapse-initiated CH$_4$-CO$_2$ climate warming. The collapse trigger atmospheric pressure has to be $>0.5-1.0$ bar, otherwise surface warming from CH$_4$ is weak or even net-negative (Turbet et al., 2019, Figs. 8 and 7).

CH$_4$ release increases strongly with initial T. This is because of the nonlinearity of the CH$_4$ clathrate decomposition curve (Fig. 4, Fig. A5).

The maximum size of a CH$_4$ burst is reduced if the HSZ partially outgasses prior to the main burst. Pre-warm-climate outgassing can occur due to obliquity variations (Kite et al., 2017a), or as the result of ice unloading during pre-main-burst atmospheric collapses. We used an ensemble of long-term obliquity simulations (Kite et al., 2015) to explore these effects. In these calculations, we made the simplifying assumption that CH$_4$ release was proportional to the volume of H$_2$O ice removed, but with CH$_4$ release suppressed from depths that had previously been degassed. This simplifying assumption allowed us to carry out >30 long-term simulations. We determined the fraction of runs for which at least 100 m of H$_2$O ice first-time unloading occurs during a single atmospheric collapse interval, and the dependence of this fraction on the obliquity for re-inflation and on the ice sublimation rate. The 100 m first-time ice-unloading value was chosen as a threshold for strong CH$_4$ outgassing. The “first-time” qualifier refers to the high probability that
the CH₄-clathrate reservoir is not recharged by hydrothermal circulation. Because of the lack of recharge by this mechanism, repeated ice unloading will only yield CH₄ gas from a given latitude-longitude-depth volume element for the first time that volume element is unloaded (considering only the hydrothermal-circulation mechanism for CH₄ production; other mechanisms are possible, e.g. Klein et al., 2019). We found that the fraction of runs with a strong CH₄ burst increases steeply when the difference between the obliquity for collapse and the obliquity for re-inflation increases (i.e. when the “height” of the hysteresis loop in Fig. 5 increases). However, the fraction of runs with a strong CH₄ burst is insensitive to the ice unloading rate.

Consistent with the results of GCM simulations (e.g., Soto et al., 2015), the scenario assumes that CO₂-atmosphere collapse occurs only when ϕ < 40°. Otherwise, no major H₂O ice shift will occur at collapse, because H₂O ice is stable at low latitudes for low P_C when ϕ > 40°.

Overall, our conclusion is that special circumstances are required in order to uncork >10¹⁷ kg of CH₄, the minimum needed for strong warming.

4.2. Predictions

If atmospheric collapse initiated a methane burst on Early Mars, then this would have consequences for Mars geology. These consequences lead to testable predictions. For example, diameter <50 m impact craters that predate the methane burst should be very rare or absent (Kite et al., 2014; Warren et al., 2019; Vasavada et al., 1993). This is because if P_C was high before the methane burst as required to avoid atmospheric collapse, then small impactors would have been screened by the atmosphere, and so small hypervelocity impact craters would not form. In addition, pre-methane-burst large wind ripples (Lapotre et al., 2016) should be absent, because these only form at low atmospheric density.

Clathrate destabilization on Mars has been proposed to explain both chaos terrain and also mounds interpreted as mud volcnoes (e.g., Milton, 1974; Baker et al., 1991; Komatsu et al., 2000; Skinner and Tanaka, 2007; Kite et al., 2007; Komatsu et al., 2016; Ivanov et al., 2014; Oehler and Etiope, 2017; Pan and Ehlmann, 2014; Etiophe and Oehler, 2019; Broz et al., 2019). Clathrate destabilization has also been proposed as a trigger for the formation of chaos terrain.

If methane bursts occurred on Early Mars, that could also entail new interpretations of Mars geochemistry. One possibility is deposition of >100 kg/m² of photochemical soots. Such soots can indicate a reducing past atmosphere (CH₄/CO₂ ≥ 0.1) (Trainor et al., 2006; Haqq-Misra et al., 2008). CH₄/CO₂ ≥ 0.1 is predicted to occur immediately following atmospheric recollapse. Other mechanisms for rapidly delivering CH₄ to the Mars atmosphere, such as large-amplitude changes in mean obliquity (Kite et al., 2017a) or impact delivery (Haberle et al., 2018), might also produce photochemical soots. This prediction is testable using the SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) instrument on the Mars 2020 rover (Beegle et al., 2015). Soots (complex abiotic organic matter) within ancient sediments are a potential life detection false positive (Sutter et al., 2017; Neveu et al., 2018; Eigenbrode et al., 2018).

4.3. Implications

Our collapse-initiated CH₄-release scenario, which considers only CH₄ produced by serpentinization, only works if serpentinization occurred on Mars (Lasue et al., 2015). However, the fraction of the crust that must undergo serpentinization is small (<0.1%). Indeed, although serpentine is detected on Mars, these detections are overall uncommon (Ehlmann et al., 2010; Amador et al., 2018; Leask et al., 2018). This is not surprising, because serpentinization may be mostly restricted to rocks too deep for subsequent exhumation to the surface (Carter et al., 2013; Sun and Milliken, 2015). Moreover, radiolysis + fluid-inclusion-scale serpentinization can produce H₂+CH₄ and not leave behind a mineralogic byproduct that would be detectable by CRISM (Klein et al., 2019). Regardless of production depth and process, CH₄-charged waters may be swept to the near-surface by hydrothermal circulation (Parmentier and Zuber, 2007).

The collapse-initiated CH₄-release scenario tends to produce, at most, one methane spike. If this occurred >0.5 Gyr after Mars formation, then the warm climate could be associated with valley network formation (Fig. 9). Previously proposed triggers for warm climates on Mars may supplement the mechanism discussed here and are not inconsistent with it (e.g., Kite, 2019 and references therein).

In the collapse-initiated CH₄ release scenario, a CH₄-induced warm climate (if it occurs at all) is preceded and postdated by a cold climate with a thin atmosphere. This has broadly negative implications for Mars surface astrobiology. For astrobiology rovers, fluvio-lacustrine deposits ascribed to the Noachian/Hesperian boundary represent candidate landing sites with good potential for organic preservation and habitability (Summons et al., 2011; Ehlmann et al., 2008). Indeed, the delta in Jezero crater is the planned landing site for the Mars 2020 rover (Fassett and Head, 2005; Ehlmann et al., 2008; Goudge et al., 2018). However, in the collapse-initiated CH₄-release scenario, Mars’ surface is sterilized (temperatures ~200 K and >1 mrad surface radiation doses; Hassler et al., 2014) just before the lakes are filled. The lakes might nevertheless be inoculated with life from hot-spring or subsurface refugia.

5. Conclusions

We investigated a mechanism in which rapid and massive (>30 mbar) degassing of CH₄-clathrate occurs consequent to atmospheric collapse and atmospheric reflation. In this collapse-initiated CH₄-release scenario, atmospheric collapse causes low-latitude surface water ice to sublimate away, depressurizing and thus destabilizing CH₄ clathrate in
subglacial pore space. Subsequent atmospheric re-inflation leads to warming that further destabilizes CH₄ clathrate, leading to more outgassing. The CH₄ bloom is brought to a close by photochemical destruction of CH₄ (potentially accelerated by a new atmospheric collapse). During the CH₄ bloom, in some of our model runs, CH₄/CO₂ transiently exceeds the threshold for haze and soot – a “Titan-like” blip in Early Mars history. Drawdown of the CH₄-clathrate reservoir ensures that the first CH₄ spike is also the most intense.

Currently-available models indicate that special circumstances would have been required for CH₄-induced warming to occur and attain mean annual temperatures >255 K (consistent with perennial ice-covered lakes; McKay et al., 2005). Specifically, the fraction of the not-yet-degassed portion of the clathrate hydrate stability zone that is occupied by clathrate (f) must exceed 0.1, and atmospheric collapse must occur for P_CO₂ > 0.8 bar. Our warming model output is also sensitive to the choice of CH₄–CO₂ CIA opacities: experimentally derived parameters (Turbet et al., 2019) lead to colder outcomes than the parameters included in HITRAN (Wordsworth et al., 2017; Karman et al., 2019).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Methods

A.1. Overview

In order to model CH₄ release initiated by atmospheric collapse and subsequent atmospheric re-inflation, we use simulated obliquity forcing to drive a model of surface temperature evolution (Fig. A1). Temperature is calculated as a function of latitude, longitude, and depth beneath the surface. The model uses a GCM-derived parameterization of atmospheric collapse and re-inflation (Fig. A2). For the surface temperature boundary condition, a GCM-derived look-up table is used. Changes in surface temperature and overburden pressure cause subsurface CH₄-clathrate to decompose and outgas. Once outgassed, CH₄ can be destroyed by photochemical processes. CH₄ can either warm or cool the surface, depending on P_CO₂. Different assumptions about long-term escape-to-space of volatiles can be incorporated by varying initial conditions. Once initialized, the total surface-exchangeable H₂O and CO₂ inventories (i.e., sum of the atmosphere + ice caps + shallow ground ice reservoirs) are held constant for the duration of a model run (10⁷–10⁸ yr). In effect, we assume that neither escape-to-space of H₂O and CO₂, nor geologic sequestration of H₂O and CO₂, cause a large fractional change in the H₂O and CO₂ inventories during the model run (10⁷–10⁸ yr).

The total CH₄ outgassed due to Mars atmospheric collapse and re-inflation can be decomposed into:

- Prompt CH₄ release from atmospheric collapse (reduction in P_CO₂, combined with planetwide cooling). This is always zero, because the large stabilizing effect of cooling defeats the small destabilizing effect of the loss of the weight of the atmosphere.
- Minor CH₄ release from H₂O ice unloading following atmospheric collapse (Step 2 in Fig. 2).
- Major, re-inflation CH₄ release: from warming during re-inflation (Steps 3–4 in Fig. 2).
- CH₄ release (if any) due to warming feedbacks (Steps 3–4 in Fig. 2).

Direct CH₄ release is proportional to the fraction of the not-yet-degassed portion of the HSZ that is initially occupied by clathrate (f). Feedback CH₄ release increases nonlinearly with f.

CRediT authorship contribution statement

Edwin S. Kite: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Software, Visualization, Writing - original draft, Writing - review & editing.

Michael A. Mischna: Investigation, Methodology, Software, Writing - review & editing. **Peter Gao:** Investigation, Methodology. **Yuk L. Yung:** Software. **Martin Turbet:** Investigation.

Acknowledgements

We thank Jesse Tarnas, and an anonymous reviewer, for helpful reviews that led to an improved manuscript. We thank Alan Howard, Colin Goldblatt, Ross Irwin, Bob Craddock, Alejandro Soto, John Armstrong, Peng Tian, Itay Halevy, Alex Pavlov, Tom McCollom, Curtis Manning, Sarah Stewart, and Chris Oze for discussions, and Robin Wordsworth for sharing model output. The MATLAB scripts and GCM summary output used to make the figures in this paper may be obtained for unrestricted further use by contacting the lead author. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 832738/ESCAPE. M.T. and E.S.K. acknowledge support from the France And Chicago Collaborating in The Sciences (FACCTS) program. E.S.K. acknowledges funding from NASA (NNX16AG55G).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
A.2. Atmospheric Collapse and Surface Temperature Modeling

To calculate atmospheric collapse as a function of obliquity and P_{CO_2} (Fig. A2), we used the Mars Weather Research and Forecasting general circulation model (MarsWRF GCM; Mischna et al., 2013; Richardson et al., 2007; Toigo et al., 2012) to build a look-up table for Mars annual-mean surface temperatures as a function of obliquity, log of P_{CO_2}, and latitude, for a solar luminosity 75% of modern (corresponding to 0.7 Ga after Mars formation according to the standard solar model; Bahcall et al., 2001). Four P_{CO_2} values were investigated: 6 mbar, 60 mbar, 600 mbar, and 1200 mbar. Five obliquities were investigated 0°, 5°, 15°, 25° and 35°. Other values of P_{CO_2} and obliquity were obtained by extrapolation and interpolation from this grid of $5 \times 4 = 20$ runs. In each scenario, we began with a dry atmosphere, and a water ice north polar cap ranging from 1 to 10,000 kg/m² thickness depending on the simulation. There is no CO₂ ice on the surface to begin with. We assumed a spatially and temporally uniform atmospheric dust opacity of 0.3. This is a modest amount of dust, and ignores the complicating factors of seasonality and strength that are unknowns for different obliquities and surface pressures. For comparison, we also investigated a second scenario with zero dust. All cases contain radiatively active H₂O and CO₂ ice clouds where saturation is reached. We used a polynomial fit to these results to determine the boundary of atmospheric collapse (i.e., coldest temperatures at the CO₂ condensation point). Radiatively active CO₂ ice aerosol is included. CO₂ ice grain size radius is assumed to be 100 μm. This choice is based on the argument of Forget et al. (1998) that these larger particles would be appropriate in a CO₂-rich atmosphere. Results are likely sensitive to this assumption (Kitzmann, 2016). The GCM runs used for this study use a dust scenario that is derived from Mars Global Surveyor data for a year without a planet-encircling dust storm and used in the LMD Mars Climate Database. In the vertical, a Conrath-ν dust profile is used.

Collapse rate is set to ~1 mbar/yr (Soto et al., 2015). We use the same rate for re-inflation (Soto et al., 2015). We force the model with $\varphi(t)$ from realistic obliquity histories. We vary φ, but leave the eccentricity and the longitude of perihelion set to present-day values. We do this because φ is the dominant control on polar insolation (Schorghofer, 2008). Collapse takes ~1 kyr and is followed by a collapsed interval of 10^3–10^4 yr duration and then by ~1 kyr of re-inflation (Fig. 6). We adopt $\varphi_e = 16.5^\circ$.

Fig. A2. Atmospheric-collapse phase portraits for a collapse-triggering obliquity of ~16.5°, for two different climate models. Results from the GCM of Mischna et al. (2013), with dust, are shown in orange. Loop fit to output of the GCM of Forget et al. (2013) shown in yellow. The hysteresis loops that are highlighted by thick lines are examples of climate system trajectories for a total CO₂ inventory of 1.66 bar (orange) and 0.74 bar (yellow) – different conditions are required for the different models. The part of the orange curve that closes the loop from arrow 2 to arrow 3 occurs at very low atmospheric pressure (~0.1 mbar). The thin lines correspond to pressure-temperature combinations on the polar–CO₂ condensation curve that are unstable on 10^2–10^3 yr (CO₂ condensation) timescales, so are not physically realizable. The high-P_{CO_2} low-obliquity vertical “stalk” in the thick orange line corresponds to atmospheres that stay inflated due to CH₄–CO₂ collision-induced absorption (CIA). These solutions are stable on 10^3–10^4 yr (CO₂ condensation) timescales, but decay on 10^3–10^4 yr (CH₄ photolysis) timescales.

A.3. Clathrate modeling and CH₄–CO₂ warming

The collapse-initiated CH₄-release scenario assumes the existence of shallow CH₄-clathrate on Mars, with CH₄ produced abiotically in association with deep water-rock reactions (Kite et al., 2017a; Etiope and Sherwood Lollar, 2013; Mousis et al., 2013). The P-T pathway forming CH₄-clathrate is shown in Fig. 4.

Guided by the GCM output, we calculated T and P as a function of depth within the regolith, latitude, and longitude, using T_{surf} from the GCMs, and assumptions about H₂O ice distribution motivated by the water-cycle output of previously published GCMs (e.g., Mischna et al., 2013; Wordsworth et al., 2015). Spatial resolution is $(2°$ latitude) \times $(2°$ longitude) \times (1 m depth). T_{surf} decreases with elevation, more so as P_{CO_2} increases (Wordsworth, 2016). The initial H₂O ice distribution is set by allocating 1.4 10^7 km3 of H₂O ice (Mahaffy et al., 2015) uniformly across land with elevations >1 km (using modern topography). Where H₂O ice rests on top of the regolith, we model the corresponding overpressure and thermal insulation (assuming thermal conductivity, $k_{ice} = 2$ W m$^{-1}$ K$^{-1}$). The grid is truncated at 300 m depth-within-regolith. This is because destabilization of clathrate to depths
>300 m requires annual-mean 8surf > 273 K, much warmer than the climate model. For 300 m, the vertical thermal conduction timescale is 1 kyr – much shorter than the other timescales affecting atmospheric 8CO2. In particular, the CH4 destruction timescale (when the atmosphere is inflated) is 105–106 yr. This separation of timescales holds even when the low thermal diffusivity of CH4 clathrate and the latent heat of clathrate decomposition are considered. Therefore, we approximate geotherm adjustment as rapid.

Assuming rapid geotherm adjustment, we calculate the depth-to-HSZ. We express this depth as meters below the top of the regolith, so a depth-to-HSZ of 100 m below an ice sheet of 200 m thickness means that clathrate is stable 3–300 m below the surface. We use the phase diagram of Sloan and Koh (2006, their Table 4.1), as shown in Fig. 4. We set porosity = 0.3 (high values of porosity are supported by rover gravimetry; Lewis et al., 2019), assume 120 kg CH4/(m2 clathrate), lithospheric heat flow Q = 0.03 W m−2, regolith thermal conductivity kreg = 2.5 W m−1 K−1, and regolith density ρreg = 2000 kg m−3. For the purpose of modeling the effect of H2O ice overburden on CH4-clathrate stability, we consider both a case with H2O ice on high ground and a case without H2O ice on high ground. The resulting “depth to Hydrate Stability Zone” look-up tables are passed to the main driver.

The main driver uses the following inputs. (1) The depth-to-HSZ look-up tables (Fig. 5). (2) The phase portraits for atmospheric collapse from the GCMs (Fig. A.2). (3) A CH4 destruction look-up table (described below) (Fig. A.7). (4) A parameterization of greenhouse warming due to CH4-CO2 collision-induced absorption (CIA) that is based on the experimental results reported in Turbet et al. (2019) (Fig. A.4). (5) A simulated obliquity time series obtained using the N-body code of Chambers (1999) and an obliquity wrapper script (Armstrong et al., 2004); see Kite et al. (2015) for details. To save computer time, we shift the obliquity time series up and down as needed to trigger collapse relatively early in the run (the likely true wait times for atmospheric collapse depend on the initial obliquity of Mars, and range from only a few Myr if Mars’ obliquity was initially low, to hundreds of Myr if Mars’ obliquity was initially high).

Fed by these inputs, the main driver first calculates the depth-to-HSZ for four key states (shown in Fig. 5), as follows: (1) pre-collapse state (H2O ice on highlands, inflated atmosphere – before Step 1 in Fig. 2); (2) immediately post-collapse (H2O ice on highlands, collapsed atmosphere – end of Step 1 in Fig. 2); (3) fully unloaded but collapsed state (negligible H2O ice on highlands, collapsed atmosphere – end of Step 2 in Fig. 2); and (4) immediately after re-inflation (negligible H2O ice on highlands, re-inflated atmosphere – Step 3 in Fig. 2). For some atmospheric collapses, the duration of collapse is too brief for complete unloading of H2O ice from the highlands. Therefore, we computed compute depth-to-HSZ following re-inflation for a range of time intervals that are too short for complete unloading of H2O ice. We assume that unloading is steady and uniform (we explored nonuniform unloading specifications, but found only trivial differences). Next, based on a HSZ occupancy fraction, f, we compute the volume of CH4 clathrate that decomposes on CO2-atmosphere re-inflation for complete H2O-ice unloading of the highlands. Methane decomposition is rapid (Stern et al., 2003; Gainey and Elwood Madden, 2012). CH4 clathrate breakdown involves a >14% reduction in solid volume, and we assume fractures allow methane gas released at <100 m depth to reach the surface in <105 yr. The greenhouse warming (if any) corresponding to this CH4 outgassing is calculated (Fig. 7, Turbet et al., 2019). The corresponding maximum CH4 release, including CH4-warming-induced CH4 release, is obtained by iteration. For incomplete H2O ice unloading of the highlands, we linearize both the direct CH4 release in response to re-inflation, and also the CH4-warming-induced feedback CH4 release. Linearization is invalid for the most extreme warming (see Fig. A5), but is reasonable for determining whether or not a warm climate can occur.

Fig. A3. Example warming map showing geographic distribution of rivers and lakes, at peak warming, for the optimistic climate evolution shown in Fig. 6. Special circumstances are required for conditions this warm. Colored contours show topography in meters (present-day topography is used). Before CH4 release, conditions warmer than lakeshore weather stations in Taylor Valley, Antarctica only occur for the lowest elevations (inside thick black contour line), far from mapped valley networks (light gray dots; Hynek et al., 2010). However, with 17 K of uniform CH4-induced warming (Fig. 6), the area warmer than lakeshore weather stations in Taylor Valley Antarctica expands to cover (thick red line) most of the planet (45° S-85° N). Dark gray area is obscured by young lavas.

For large f, clathrate decomposition and outgassing can runaway (Fig. A5). Runaway outgassing can produce a Mars climate (Fig. A5) with Tave > 273 K – a temperate climate (Halevy et al., 2011; Bishop et al., 2018). A temperate Mars climate lasting ~1 Myr might explain the surface leaching event apparently recorded by aluminous clays overlying Fe/Mg clays at many globally-distributed locations (Carter et al., 2015; Bishop et al., 2018). Runaway clathrate breakdown depends on f, the pre-release temperature, and 8P202. For cooler pre-release temperatures, the minimum f for runaway clathrate breakdown increases, due to nonlinearity in the clathrate phase diagram (Fig. A5).
Fig. A4. Climate evolution model output. As Fig. 6, but showing sensitivity to a reduction in f. Solid lines are for $f = 0.06$, dashed lines are for the value ($f = 0.15$) used in Fig. 6. For $f = 0.06$, the CH$_4$-induced warm climate lasts about half as long, and the peak CH$_4$-boosted annual-average temperatures in the valley network zone do not exceed 253K (horizontal black line in lower panel). Because of these lower peak temperatures, collapse triggered methane outgassing for $f = 0.06$ is unlikely to explain Mars’ valley networks.

Fig. A5. Showing the (narrow) range of conditions under which CH$_4$ outgassing on Mars can lead to runaway warming and outgassing from an $f = 0.15$ clathrate reservoir. Colored dashed lines correspond to CH$_4$-induced warming (Turbet et al., 2019). Solid lines show the corresponding CH$_4$ release. The arrows labeled 1–3 give an example of how to read the diagram. Supposing (1) an initial collapsed initiated CH$_4$ release of 30 mbar CH$_4$ in a 1000 mbar P_{CO_2} atmosphere, the warming (2) is \sim4K. For an initial surface temperature $T_{init} = 220$K, this is sufficient to release (3) a further 18 mbar of CH$_4$, which will lead to further warming and thus more CH$_4$ release. When the warming (dashed line) for a given P_{CO_2} plots above a CH$_4$ release line (solid line), runaway outgassing occurs. When the warming for a given P_{CO_2} plots below a CH$_4$ release line, there is no runaway, but positive feedback still occurs. These results are for a simplified model using a single column of clathrate-charged regolith.

The time-stepping loop in the main driver uses the phase portraits in Fig. A2, as well as warming due to CH$_4$ (if any), to track atmospheric collapse and re-inflation. Water ice net sublimation rate, i, is set to $i = 0.15$ mm/yr for migration from high ground to poles. This low value (based on MarsWRF GCM results) is due to the low vapor pressure of H$_2$O in the \sim200 K collapsed atmosphere. Movement of ice from poles back to high ground under the warm re-inflated atmosphere should be faster; we use $i = -1.5$ mm/yr. Our results are qualitatively unaffected by reasonable changes in i. The overpressure due to polar ice caps is not explicitly modeled. This is acceptable because polar cap area is small, and, as a result, the fraction of clathrate protected by the polar cap overburden is, likewise, small. For collapse duration $\Delta t \geq (\sim 300)$ m$/i$, the H$_2$O ice is completely removed from the highlands. If $\Delta t < (\sim 300)$ m$/i$, we use a look-up table to find the partial CH$_4$ release. We also track release of CH$_4$ from previous re-inflations and collapses to ensure that the same portion of the regolith cannot release CH$_4$ twice (Fig. A6). Finally, we track inhibition of orbitally paced atmospheric collapses by CH$_4$ warming, if any warming occurs (Fig. 6).
Fig. A6. Methane inventory history for one run with $f = 0.15$. We track release of CH$_4$ from previous re-inflations and collapses to ensure that the same portion of the regolith cannot release CH$_4$ twice.

Relative to climate models that include CO$_2$ and H$_2$O alone, the amount of warming needed to bring Early Mars valley network locations to temperatures sufficiently high for rivers and lakes is 10 K–20 K. For warming exceeding 10K–20K, temperatures over most of the Mars Southern Highlands exceed measured temperatures in Taylor Valley Antarctica on the shores of ice covered perennial lakes (Fig. A3) (Doran et al., 2002). Lakes overspill to form regionally integrated valley networks. In Antarctica, a melt-fed lake-overspill river incises into bedrock (Shaw and Healy, 1980). High lake-bottom temperatures destabilize sub-lake CH$_4$ clathrates (Fig. 5). Another possible positive feedback, not included in our model, is H$_2$ production by aqueous weathering of olivine at Mars’ surface during warm climates (Tosca et al., 2018). H$_2$ is a strong greenhouse gas via H$_2$–CO$_2$ CIA (Ramirez et al., 2014; Ramirez, 2017; Turbet et al., 2019).

A.4. Methane destruction parameterization

We used the Caltech/JPL 1-D Mars photochemistry code, modified to include CH$_4$ (and C$_2$H$_6$, and C$_2$H$_2$, etc.) (Summer et al. 2002; Nair et al. 1994, 2005; Nair et al., 1994), to build a look-up table for CH$_4$ destruction by photochemical processes. The CH$_4$ destruction model is the same as that in Kite et al. (2017a), except for the use of a UV flux appropriate for the Sun 3.8 Ga (Claire et al., 2012). Boundary conditions include surface burial of O$_2$, O$_3$, H$_2$O$_2$, and CO. Water vapor is set to saturation at the surface; results are insensitive to H$_2$O concentration. As in Kite et al. (2017), we found that the main control on CH$_4$ destruction rate is the CH$_4$/CO$_2$ ratio, so we fit a curve to the CH$_4$ destruction rate as a function of the CH$_4$/CO$_2$ ratio for use in the climate-evolution model (Fig. A7).

Fig. A7. CH$_4$ destruction rate. Both calculations adopt a UV flux appropriate for the Sun 3.8 Ga (Claire et al., 2012), and a high H$_2$O vapor mixing ratio. Because a high H$_2$O vapor mixing ratio tends to speed the destruction of CH$_4$ in our photochemical calculations, our use of a high H$_2$O vapor mixing ratio is conservative in that it will tend to underestimate the duration of CH$_4$-induced warming.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pss.2019.104820.

References

