The dependence of chemical weathering rates on fluid residence time

K. Maher

Department of Geological and Environmental Sciences, Braun Hall #118, 450 Serra Mall, Stanford University, Stanford, CA, 94305, USA

ARTICLE INFO

Article history:
Received 13 August 2009
Received in revised form 5 March 2010
Accepted 7 March 2010
Available online 9 April 2010

Editor: M.L. Delaney

Keywords:
weathering
dissolution kinetics
transport-limited erosion
climate change feedback

ABSTRACT

In order to evaluate the importance of hydrologic processes in controlling chemical weathering rates, a reactive transport analysis is used to interpret chemical weathering rate data for a range of systems. An analysis of weathering rates for granitic material shows that weathering rates depend most strongly on fluid residence times and fluid flow rates, and depend very weakly on material age. Over moderate fluid residence times from 5 days to 10 yr, characteristic of soils and some aquifers, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than material age. For fluid residence times greater than 10 yr, characteristic of some aquifers, saprolites, and most marine sediments, a purely thermodynamic-control on chemical weathering rates sustains chemical weathering—this control may be due to clay precipitation, which can drive weathering of primary minerals, or microbial processes which alter the fluid chemistry via the oxidation of organic matter. In addition, this analysis suggests that the apparent time dependence of chemical weathering rates commonly used to model the evolution of Earth's landforms may be attributable to transport-controlled weathering and the evolution of hydrologic properties over time. If hydrologic processes are the primary control on chemical weathering rates, the nature of the temperature dependence of chemical weathering rates is also altered.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The slow progress towards chemical equilibrium is primarily responsible for the long-term habitability of Earth. Slow kinetics of silicate mineral dissolution enables the development of soils and the growth of both vascular plants and vital microorganisms. Slow dissolution of minerals on land and formation of biogenic calcite in the oceans also maintains atmospheric CO₂ concentrations and therefore plays an important role in maintaining global temperatures at levels optimal for the presence of liquid water (Berner, 1992). In Earth's past, major changes in rock weathering have coincided with periods of mass extinction (Algeo and Scheckler, 1998; Sheldon, 2006) and reorganization of global biogeochemical cycles (Raymo, 1994; Vance et al., 2009).

Although the driving forces behind Earth's weathering engine have been studied extensively for a number of decades, there are at least a few observations of large scale chemical weathering behavior that have not been completely explained, largely because of limited data sets. One behavior of chemical weathering rates that has been particularly enigmatic is the inverse dependence of chemical weathering rates on time (Bain et al., 1993; Taylor and Blum, 1995; White and Brantley, 2003; Maher et al., 2004; Fantle and DePaolo, 2006). A second behavior has been the strong correlation between chemical weathering rates and physical erosion, rates and a weaker correlation between climate and chemical weathering rates (Riebe et al., 2001a; Jacobson et al., 2003; West et al., 2005; Hren et al., 2007). Hydrology is also potentially an important factor in chemical weathering rates as the removal of weathering products by aqueous transport can drive departure from thermodynamic equilibrium (e.g. transport-controlled weathering). In addition, preferential flow paths may reduce the mineral surface area available to react, or result in a range of chemical conditions along the flow path (Velbel, 1993; Malinstrom et al., 2000; Ganor et al., 2005). In general, chemical weathering rates are expected to accelerate in tandem with flow rates up to a particular threshold where aqueous transport, and by extension the proximity to equilibrium, are no longer limiting and rates are surface reaction-controlled (Berner, 1978; Lasaga et al., 1994; Steefel and Maher, 2009). The distinction between transport-controlled and surface reaction-controlled weathering was perhaps first shown mathematically by Berner (1978) who approximated the weathering system as a well-mixed batch reactor. Observations of etch-pit development in minerals and high degrees of chemical disequilibrium in rivers relative to the rocks they drain have been interpreted as evidence that feldspar weathering rates in natural systems are often surface reaction-controlled, or far enough from equilibrium that intrinsic effects at mineral surfaces control silicate weathering (e.g. Table 1 Berner, 1978; Velbel, 1989). A number of studies have thus investigated the kinetics of aluminosilicate dissolution under a range of far-from-equilibrium conditions. However, the importance of transport-controlled weathering as an underlying factor in the general behavior and apparent time dependence of chemical weathering rates not been thoroughly tested.
using soil data from a range of different climates and flow regimes, although a number of studies have now demonstrated the importance of close-to-equilibrium weathering in natural systems (Maher et al., 2006b; Kampman et al., 2009; Maher et al., 2009; White et al., 2009).

1.1. Transport-controlled weathering

Many weathering systems show gradients in solutes and mineral abundances over different characteristic length scales as fluids equilibrate with the solids, characteristic of transport-controlled weathering (Brimhall and Dietrich, 1987; Taylor and Blum, 1995; White et al., 1996; Anderson et al., 2002; Riebe et al., 2003; Nezat et al., 2004; Green et al., 2006; Yoo et al., 2007; Brantley et al., 2008; White et al., 2008; Yoo and Mudd, 2008; Maher et al., 2009; White et al., 2009). In the presence of solute gradients, the well-mixed flow-through reactor approximation has limited interpretive power. Solute gradients are better approximated as flow-through systems, where equilibration of the fluids along a flow path results in a moving reaction front as illustrated by the soil profile model of Fig. 1.

<table>
<thead>
<tr>
<th>Flow rate (m/yr)</th>
<th>Equilibration lengths scale (L_{eq}) at 13 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K-feldspar</td>
</tr>
<tr>
<td>0.01</td>
<td>0.9 ± 0.4</td>
</tr>
<tr>
<td>0.1</td>
<td>2.0 ± 0.7</td>
</tr>
<tr>
<td>1.0</td>
<td>15.5 ± 2.8</td>
</tr>
<tr>
<td>10.0</td>
<td>160 ± 34.4</td>
</tr>
</tbody>
</table>

The change in overall reaction rate for a given mineral (R_{eq}) as a function of the linear approach to equilibrium along a flow path is commonly defined as (Lasaga, 1984):

$$R_{eq} = -kA\left(1 - \frac{Q}{K_{eq}}\right) = -kA\left(1 - \exp\left(-\Delta G_{r}/RT\right)\right)$$ (1)

where A is the mineral surface area (m^{2}/m^{3}), k is the kinetic rate constant (mol/m^{2}/s), and (1 − Q/K_{eq}) describes the departure from equilibrium, and Q/K_{eq} is the saturation state of the mineral with respect to the fluid. An alternative formulation is provided that makes clear the dependence on reaction affinity (∆G_{r}) and temperature (T). Over time, the measured and modeled solute in Fig. 1 reaches equilibrium with the reacting mineral at increasingly greater depths in the soil (L_{obs}), while the overall reaction rate, and thus the distance over which the fluid equilibrates with the solid (L_{eq}), do not change appreciably with time. Clearly, if the solute concentration is measured at a distance greater than L_{eq}, the weathering flux or chemical denudation will be proportional to the flow rate (q) by the equilibrium concentration. Importantly, increases in the intrinsic rate constant and/or mineral surface area will sharpen the profile as L_{eq} decreases, but will not appreciably change the total amount of mass removed (e.g. chemical denudation). Thus, intrinsic mineral kinetics and mineral surface area are only important over relatively short time and length scales and become irrelevant once the system has reached the “local equilibrium limit”, or the limit in which the rate constant approaches infinity and the chemical affinity approaches zero (Lichtner, 1993). This condition was originally considered numerically by Lichtner (1993) and was recently validated using a well-studied natural system (Maher et al., 2009). Additional evidence and supporting data has been gathered from system-specific observations (Lasaga, 1984) to support the transport-controlled model of Fig. 1.

Fig. 1. A) Schematic of transport-controlled weathering showing the evolution of feldspar abundance over time and as a function of depth. B) The corresponding bulk reaction rates [mol/(L porous media)/s] as a function of depth for the profiles in (A). Rates and rate laws used in simulation are experimentally determined laboratory values.

The relationship between flow rates and chemical weathering rates has also been explored in a number of studies and variable liquid saturation and preferential flow are the most commonly cited reasons for variability in natural rates due to hydrologic processes (Velbel, 1993; Clow and Drever, 1996; Blum et al., 1998; Malmstrom et al., 2004; Canor et al., 2005; Hillery and Porder, 2009). However, the relationship between flow rates (q) and the departure from equilibrium (ΔG_r) has not been well studied because most natural systems cannot be characterized in sufficient detail. If natural systems are transport-controlled, the bulk reaction rate measured using mass depletion, solute profiles or isotopic approaches should be roughly proportional to the flow rate. The following discussion combines data from natural systems with theoretical considerations to explore evidence for the transport-control of natural systems, and the implications of transport-control for the time dependence of chemical weathering rates and for the role of climate (temperature and rainfall) and tectonics in moderating chemical weathering rates.

2. Materials and methods

2.1. Weathering rates, length scales and fluid residence times in non-eroding environments

Data for chemical weathering rates for granitic alluvial materials were assembled from previous published compilations (White and Brantley, 2003; Maher et al., 2004) or directly from the source articles. No catchment-based data is considered due to the complicated nature of inferring fluid residence times. Because not all studies reported the same physical data, to maintain uniform units (g/g/yr^{-1}) all weathering rate values were converted to original bulk weathering rate units of Maher et al. (2004) using measured surface areas and known formula weights. The relationship between the time constant for weathering R_{eq} (g/g/yr^{-1})
and the Eq. (1) model units of R_q [mol/L$_{bulk}$/yr] is: R_q[g/g/yr$^{-1}$] \approx 1–2R_d [mol/L$_{bulk}$/yr]. Both surface normalized rates and bulk rates were checked against each parameterization and no change in behavior was observed. All data were fit using the curve fit package of Kaleidagraph™.

Fig. 2A shows the decrease in weathering rates as a function of fluid residence time. Fluid residences times (τ_f) are calculated as L_{obs}/v_f (where L_{obs} is the length scale of observation and v_f as the advective velocity). The reported value for L_{obs} reflects the depth to the base of the weathering zone where the mineral abundances in the profile nominally equal the concentration of the soil protolith (cf. Fig. 1) or, for solute flux measurements such as groundwater systems and soils, either groundwater ages or the measurement distance divided by advective flow rate. In order to convert between the percolation flux (q) and the advective velocity, the porosity or volumetric water contents (θ) (unsaturated flow) were used. The uncertainty in converting between flow rates and velocities is not likely to be greater than 20% given the range of porosities and water contents typical of soil systems. A plot of measured fluid flux versus weathering rates suggests that no substantial bias was introduced in the conversion from percolation flux to advective velocity. The data were fit using an exponential function that assumes experimental data represent far-from-equilibrium rates and that the increase in fluid residence time (or decrease in flow rate) reflects the approach to chemical equilibrium (e.g. $E = \exp(-\Delta G/RT)$) in Eq. (1)).

2.2 Reactive transport approach for equilibrium length scales and 1-D erosion

The reactive transport code CrunchFlow (Steefel and Lasaga, 1994; Maher et al., 2006b; Maher et al., 2009) was used to estimate the mineral equilibration length scales (L_{eq}). The model simulations were run at 13 °C and 1 atm. The model domain consisted of a one dimensional soil column with a flux boundary condition at the base of the profile, and a Dirichlet boundary condition for aqueous species at the land–atmosphere interface. The simulations infiltrated dilute rainwater at pH 5.13 into a water-saturated column of minerals with a porosity of 0.25. Rate constants, surface areas and mineral solubilities for albite, K-feldspar and kaolinite and the relevant aqueous complexes are from Maher et al. (2009), while the equilibrium constant value for anorthite is from Arnorsson and Stefansson (1999). The rate constant and surface area for kaolinite will impact the equilibration length because the removal of primary mineral dissolution products by secondary minerals influences the departure from equilibrium (Maher et al., 2009). As a value representative of a natural system, the kaolinite rate constant value determined by Maher et al. (2009) for kaolinite at the Santa Cruz, CA site was used ($10^{-19.20}$ mol/m2/s, 10 m2/g). The equilibration length scales were calculated once the profiles had reached a steady-state geometric evolution. The equilibration lengths are not sensitive to the initial amount of mineral present, but do vary as a function of the solubilities of other minerals present and the assumed rate constant. For example, the experimental dissolution rate constants for albite and K-feldspar are nominally the same, while the two solubilities are quite different. The result is that K-feldspar equilibration length scale is shorter than for albite or anorthite. In order to address this, one set of simulations was conducted for a monomineralic profile and a second set of simulations with a starting composition approximating granodiorite (64wt.% plagioclase, 23wt.% K-feldspar and 13wt.% quartz) was used to assess the uncertainty on the equilibration length scale as a result of more realistic bulk compositions. Values are summarized in Table 1.

To calculate the L_{eq} values without assuming a large number of arbitrary parameters (soil PCO$_2$, liquid saturation, etc.) also introduces uncertainty. The assumption of a liquid saturated profile affects the calculated length scales because under field-weathering conditions soil water pH would be strongly impacted by the soil PCO$_2$. However, under saturated flow conditions the only source of acidity in the model is the rainwater equilibrated with atmospheric CO$_2$. However, the modeled K-feldspar dissolution rates are based on an 1 atm CO$_2$ partial pressure, and the dissolved CO$_2$ will be higher closer to the soil surface. In this study, the model assumes a soil CO$_2$ partial pressure of 0.0088 bar. The mineral dissolution rates and precipitation rates are as determined by Maher et al. (2009). To simulate erosion, material is removed at the surface of the fixed reference frame at the specified erosion rate which was assumed to be equal to the weathering advance rate at the site (22.3 mm/kyr). The model was run forward until the profile reached steady state (the mineral profiles remained stationary over time).

![Fig. 2. Bulk weathering rates for feldspar (mostly albite) as a function of fluid residence time in soils. (A) Data from soil and groundwater only - - - - $R_0 = 10^{-2.2}(1 - \exp(-0.006 \times \tau_f))$, $R^2 = 0.98$; Solid: Burch et al. (1993); ▫ Clow and Drevier (1996); ○ Jin et al. (2008); ◇ Kenoyer and Bowser (1992); ▪ Kim (2002); ◆ Maher et al. (2004); △ Maher et al. (2006a); ◊ Sowooda-Colberg and Drevier (1993); ♦ White and Brantly (2003); □ White et al. (2001); ● White et al. (2005); ◆ White et al. (2008). (B) Fit to extreme weathering systems using composite rate law (see Eq. (7)) and including additional outlying data from: + Navarre-Stitcher and Thyne (2007); ● Wallmann et al. (2008).]
3. Results and discussion

3.1. Interpretive model for transport-limited weathering

Assuming that the change in concentration with time at a given location is minimal relative to the change in concentration along the flow path (quasi-steady state), the change in the concentration of an aqueous component \([c, \text{mol/L}]\) along a flow path \((z)\) as a function of the bulk weathering rate \(\left(R_d, \text{mol/L/bulk porous media}/\text{yr} \right)\), porosity \((\phi)\) and flow rate, \((q, [\text{m/yr}])\), can be written as:

\[
\frac{dc}{dz} = -\frac{dc}{dz} + R_d \left(1 - \frac{c}{c_{eq}} \right) \tag{2}
\]

where porosity can be replaced with the volumetric water content for unsaturated zone flow. \(R_d\) in this simple case of a one-component system is expanded to account for the moderating effect of chemical equilibrium where \(c_{eq}\) is the equilibrium concentration or solubility \([\text{mol/L}]\). The product of these terms is what is commonly calculated for field systems. If Eq. (2) is rearranged, \(dc/dz\) is proportional to the balance between the dissolution rate and the flow rate \((\text{Johnson and DePaolo, 1997; Maher et al., 2003; Maher et al., 2006a; White et al., 2009})\) and is moderated by the approach to chemical equilibrium:

\[
\frac{dc}{dz} = \frac{R_d}{q} \left(1 - \frac{c}{c_{eq}} \right). \tag{3}
\]

If we assume that the solute concentration gradient is approximately linear, then the differential term can be approximated as \(dc/dz = \left(c_{eq} - c_0 \right)/\tau_f\), where \(c_0\) is equivalent to the equilibrium length scale (cf. Fig. 1) and \(c_0\) is the initial concentration. The parameter of \(\phi c_{eq}/q\) is representative of the fluid residence time \((\tau_f)\). Incorporating these substitutions and assuming that \(c_0\) is nominally zero, at distances shorter than \(L_{eq}\) the field measured rate is proportional to the product of the flow rate and the concentration:

\[
R_d \left(1 - \frac{c}{c_{eq}} \right) = \frac{q c_{eq}}{\tau_f} = \frac{\phi c_{eq} \tau_f}{\tau_f}. \tag{4}
\]

This formulation differs from the original statement of transport-controlled weathering derived by Berner (1978) primarily in terms of the expressed dependence on the length scale. Importantly, at distances greater than \(L_{eq}\), where \(c = c_{eq}\), weathering rates are by definition zero and chemical denudation or flux \((c_{eq}/q)\) conveys no information on the actual weathering kinetics or available surface area. At distances less than the equilibrium length scale, actual rates may vary between the full surface reaction-control and transport-control, depending on the distance along the flow path. The equilibrium length scale is an important parameter because it apparently controls the rate at which a weathering front advances for a given rate constant and surface area: long equilibrium length scales result in faster weathering advance rates and greater mass loss from the profile (Navarre-Sitchler and Brantley, 2007). Thus, in conjunction with biotic and physical disaggregation, the equilibrium length scale determines the thickness of soils in a landscape. Equilibrium length scales for major rock forming minerals as a function of flow rate are provided in Table 1. These distances, which are on the order of several meters at typical flow rates, suggest that the approach to equilibrium is likely to be important in most water–rock systems encountered at the Earth’s surface.

3.2. Evidence for transport-control of natural systems

While the importance of transport-control is generally recognized, the implications have not been explored in light of weathering rates across a broad range of environments. According to Eq. (4), transport-controlled weathering should result in a relationship between advective transport \((\tau_f)\) and the characteristic time for reaction rates \(\left(dc_{eq}/R_d \right)\). This relationship is likely to be exponential according to the rate law of Eq. (1). The relative importance of these factors can be evaluated using a common dimensionless parameter, the Damköhler number \((Da)\) (Johnson and DePaolo, 1994; Steefel and Maher, 2009):

\[
Da = \frac{\tau_f R_d}{\phi c_{eq}}. \tag{5}
\]

For large Damköhler numbers \((Da > 1)\), reaction is more important than advection and thus the local equilibrium effect is important. Fig. 2AB shows a strong dependence of bulk weathering rates on fluid residence time, suggesting that many rates for natural systems incorporate the effects of the approach to equilibrium. If laboratory values represent surface reaction-control, then almost all field weathering appears to be transport-controlled. In addition, the data suggest that most natural systems have approximately the same Da number due to overarching thermodynamic effects.

In general, rates should decrease exponentially as a function of \(\Delta G_f\), if the departure from equilibrium term of Eq. (1) is the dominant term impacting natural weathering due to gradual equilibration along a flow path, then the decrease in weathering rates can be described in terms of a rate law that depends on fluid residence time rather than purely \(\Delta G_f\). An exponential formulation similar to that of Eq. (1) is thus used because it allows rates to reach a plateau where rates no longer depend on transport and are equivalent to the laboratory rate constant of \(10^{-23} \text{yr}^{-1}\):

\[
R_d \left(\text{yr}^{-1} \right) = 10^{-23} \left[1 - \exp \left(-0.006 \pm 0.001 \frac{1}{\tau_f} \right) \right]. \tag{6}
\]

This rate law would apply only in systems where the flow rate is constant, and would have to be altered to apply at the catchment scale to account for the distribution of fluid residence times. This model provides some advantages over the empirical fits to the age dependence of weathering rates as it incorporates a modest mechanistic interpretation of the variability in natural weathering rates arising from the effect of transport on chemical equilibrium. The mechanism is the link between the removal of weathering products by flushing and the decline in the overall rate as a system approaches equilibrium. It also provides clear evidence for transport-control of natural weathering rates.

3.3. Weathering in extreme environments

Other mechanisms remove weathering products aside from aqueous transport, thus at long fluid residence times other driving forces for mineral weathering may exist. The change in dissolution behavior from transport-control to a distinct zone of thermodynamic-control is apparent for systems with long fluid residence times (Fig. 2B). Systems with surprising degrees of chemical weathering include deep-sea sediments (Maher et al., 2004, 2006b; Wallmann et al., 2008), saprolites (White et al., 2001; Price et al., 2005) and aquifers (Zhu, 2005). The alternative driving forces in these systems, which may be partly to entirely dominated by diffusive transport, are: 1) the precipitation of secondary minerals (Maher et al., 2006b; Maher et al., 2009; White et al., 2009); and 2) the capacity of microbial activity to sustain departures from equilibrium via reaction networks (Alonso et al., 2004; Maher et al., 2006b; Wallmann et al., 2008). The potential to drive weathering processes by clay mineral precipitation depends on both the kinetics of clay mineral precipitation relative to the rate of feldspar dissolution (Maher et al., 2006b; Zhu and Lu, 2009), and the role of more soluble pre-cursor minerals (Steefel and
Van Cappellen, 1990). Both processes are challenging to quantify in a natural system. Also, microbial processes that occur in early diagenetic settings produce CO₂ that can be consumed by calcite precipitation and silicate weathering (Maher et al., 2006b; Wallmann et al., 2008; Wu et al., 2008). The effectiveness of this weathering process appears to depend on the organic matter flux to the sediment, which accounts for the difference between weathering rates in deep-sea sediments from Maher et al. (2006a,b) and rates in continental margin sediments from Wallmann et al. (2008). CO₂ consumption by weathering processes along continental margins may rival global continental silicate weathering as a sink for CO₂ (Wallmann et al., 2008). Also shown in Fig. 3B are plagioclase weathering rates calculated from waters draining an active hydrothermal field characterized by high magmatic CO₂ fluxes (Navarre-Sitchler and Thyne, 2007). These data points lie off the general trend of the data but are close to the laboratory values, suggesting surface reaction-control. The difference between this study and other field data may be due to either a strong catalytic effect of CO₂ or uncertainty in surface area determinations.

Despite some variability and the relatively few data points, a pronounced break in the slope of the data in Fig. 3B is apparent. The change in slope most likely defines a region where thermodynamic-control due to either secondary mineral precipitation or microbial processes becomes the dominant driving force for mineral dissolution. A second rate law is assigned to this region, although the rates in sedimentary columns may depend more strongly on organic carbon fluxes than on fluid residence times. If this rate law is combined with the fit to the soils data, a composite rate law can be created:

\[
R_{b} (\text{yr}^{-1}) = 10^{-23} \left[1 - \exp \left(-0.006 \pm 0.001 \frac{1}{T_f} \right) \right]
\]

\[
+ 10^{-62} \left[1 - \exp \left(-46.300 \frac{1}{T_f} \right) \right].
\]

3.4. Implications for the temperature dependence of chemical weathering rates

Accelerated chemical weathering rates and enhanced removal of atmospheric CO₂ during periods of increased global temperatures is also thought to be an important feedback in the global climate system over million-year timescales (Berner, 1992). However, if a weathering system is controlled by fluid transport, the effect of temperature on weathering rates is due largely to changes in the solubility of minerals. For instance, the difference between rates of albite dissolution at 13 °C and 25 °C is a factor of 3 (using an activation energy of 65 kJ/mol suggested by Palandri and Khara (2004)). This change in rate is insignificant due to the local equilibrium effect. The change in albite solubility over the same temperature range is about 20%. This may explain in part why it has been challenging to fit Arrhenius-style relationships to describe chemical weathering rates at the catchment scale (e.g. White and Blum, 1995; Kump et al., 2000; Riebe et al., 2004; von Blanckenburg, 2005). If most weathering systems are transport-limited, global models that use the Arrhenius relationship to correct for temperature may be inadequate because the main temperature effect would occur in response to changes in mineral solubility and not mineral kinetics.

In transport-controlled weathering systems, flow rates and solubility by definition will be the dominant control on mass removal. The global average continental runoff is 250 mm/yr corresponding to total rainfall of 740 mm/yr. Assuming the runoff values are broadly representative of infiltration rates through the soil, the global average L₄/₅ for weathering of albite and K-feldspar at 13 °C is 7.8 m and 4.8 m respectively (Table 1). In a more tropical climate such as the Rio Icacos, Puerto Rico watershed, with average runoff of 3680 mm/yr and average temperature of 22 °C, the equilibrium length scale for albite is on the order of 120 m. Total chemical denudation rates should thus be a minimum of 15 times higher in terrains with greater runoff and higher temperatures. From this simple dimensional analysis, which ignores the effects of the bedrock-soil boundaries and seasonality of precipitation, it is likely that many catchments reflect waters that have variably to mostly equilibrated with the local rocks, consistent with the observation that Si fluxes are correlated with annual rainfall (e.g. White and Blum, 1995) and that concentrations remain constant with increasing discharge within a catchment (Goodsey et al., 2009).

3.5. Implications for the time dependence of chemical weathering rates

A number of studies have associated the apparent decrease in chemical weathering rates with increasing material age (White and Brantley, 2003; Maher et al., 2004). This relationship is depicted in Fig. 3, along with the previous power law fits to the data and an exponential model that assumes material age only becomes limiting beyond a certain age as a wide array of laboratory experiments generally result in the same maximum rate. Although there are more data points in this compilation (n = 63) relative to Fig. 2A, the correlation between material age and weathering rates is considerably weaker (R² = 0.19) than the correlation between fluid residence time and weathering rates (R² = 0.98). In order to understand the potential relationship between the time dependence of weathering rates and transport-controlled weathering, the role of time must be examined.

There have been a number of explanations offered for the time dependence shown in Fig. 3 (e.g. Velbel, 1989; 1993; White and Brantley, 2003; Maher et al., 2004). However, no singular extrinsic or intrinsic mechanism or combination of mechanisms seems to provide a satisfactory explanation for the overall behavior of chemical
weathering rates through time. Mineral surface areas are known to play a role in the apparent time dependence (Anbeek, 1993; Brantley et al., 1993; Macinnis and Brantley, 1993; White and Brantley, 1995; Hodson et al., 1998b; Hodson et al., 1998a; White and Brantley, 2003). The bulk weathering rates \(R_b \) (yr\(^{-1}\)) shown in Figs. 2 and 3 reflect directly measured field rates. Field rates are typically normalized using some parameterization of mineral surface area. Mineral surface areas have been shown to increase with time due to increases in surface roughness (White, 1995). However such changes are commonly small—approximately a factor of 10 to 20 over 1 million years of soil weathering (White and Brantley, 2003). Conversely, the effective reactive surface area may decrease over time due to the development of passivating layers, as dissolution consumes mineral defects and step dislocation sites, or as a function of secondary mineral coatings, although it is unclear to what extent the decrease in reactive surface area is offset by the increase in surface area. In general, if the time dependence of chemical weathering rates still exists when mineral surface area is accounted for, and the known effects of time on mineral surface area are expected to be small relative to the five orders of magnitude variation in rates in Fig. 3, then surface area ageing effects can only be a minor contribution to the observed behavior. In addition, a modeling study of chemical weathering found contemporary rates to be equivalent to long-term rates and that laboratory rates could be used to describe the long-term evolution if the non-linear approach to equilibrium was considered (Maher et al., 2009).

The model presented above (e.g., Eq. (6)) includes a potential dependence on time through the use of observational length scales \(l_{\text{obs}} \) used to calculate fluid residence times. This was necessary because very little data exists for \(l_{\text{obs}} \) aside from that of Table 1. To remove the effect of “time”, weathering rates are plotted as a function of purely the flow rate \(q \), although this greatly reduces the number of data points. Fig. 4 shows the decrease in chemical weathering rates with decreasing flow rates expected for transport-control. A rate law similar to that of Eq. (6) was fit to the data again assuming that a threshold flow rate exists where transport is no longer limiting.

\[
R_b \ (\text{yr}^{-1}) = 10^{-2.3} \left[1 - \exp(-0.06 \pm 0.008^{*}q) \right] \tag{8}
\]

The threshold flow rate above which plagioclase dissolution rates become surface reaction-controlled is approximately 16 m/yr, similar to the value predicted from Eq. (6). Thus, in order to attribute the time dependence to transport-control, either flow rates/hydraulic properties or rainfall must be correlated with surface age. Shown in Fig. 5A and B is the correlation between flow rate and surface age and rainfall and surface age, respectively. The correlation is best for flow rates, although rainfall may not have been accurately measured at each site as suggested by the clustering of sites. There are a number of explanations for the apparent correlation. First, many chronosequence studies use terraces that vary in elevation. If younger (and higher) terraces receive more rainfall with approximately the same evapotranspiration, then transport-limited weathering would result in the apparent decrease in weathering rates with time. Seasonality may also play a role (Ganor et al., 2005), although this effect is not well investigated in natural systems. Secondly, a sampling bias may also be present because greater fluid fluxes would be required to produce observable weathering on younger surfaces. Thirdly, a decrease in flow rate with time could also result from increasing preferential flow and lower effective hydraulic conductivity as a soil ages and accumulates secondary minerals (Lohse and Dietrich, 2005). Preferential flow would create zones of rapid flow while the matrix fluid may spend longer contact with the grains thus limiting overall dissolution rates. Time dependent changes in flow rate combined with transport-controlled weathering would result in the apparent time dependence of weathering rates, and explain the strong correlation between weathering and material age observed for individual chronosequences. A negative feedback between weathering age and flow rates provides a mechanistic explanation for the apparent time dependence. In contrast, if the correlation is due to a combination of sampling artifacts, then the “age dependence” is entirely an artifact.

3.6. Implications of transport-controlled weathering in active tectonic environments

Accelerated chemical weathering and enhanced removal of atmospheric CO\(_2\) in active tectonic areas has been attributed to the supply of fresh mineral surfaces to the weathering zone through erosion (Stallard and Edmond, 1983; Riebe et al., 2001a; Millot et al., 2002; Jacobson and Blum, 2003; Riebe et al., 2004; von Blankenburg, 2005; Waldbauer and Chamberlain, 2005; West et al., 2005; Hren et al., 2007). Although long-term CO\(_2\) consumption by silicate weathering due to mountain building may be significantly offset due to substantial carbonate weathering (Jacobson and Blum, 2003), a relationship between chemical fluxes and denudation rates is commonly observed (West et al., 2005; Hren et al., 2007; Gabet and Mudd, 2009). Much of the debate surrounding the capacity of erosion to accelerate chemical weathering rates has focused on the role of mineral supply and mineral surface area while the importance of transport has not been fully evaluated. Under transport-controlled weathering, increasing mineral surface area results in a sharper reaction front, but does not change the equilibrium fluid concentration or the rate at which the weathering front propagates downward (Lichtner, 1993; Bolton et al., 2006; Brantley et al., 2008; White et al., 2008; Maher et al., 2009). Given that mountain belts often experience increased rainfall, and that most weathering rates in the absence of erosion appear transport-controlled, the effect of erosion on chemical weathering rates may also be a result of shorter fluid residence times. The prior discussion has focused on stable (non-eroding) alluvial soils primarily because the majority of weathering rate data for natural systems has been collected in these environments. However, the observed decrease is chemical weathering rates with position down slope (Green et al., 2006; Yoo et al., 2007) is generally consistent with transport-control as fluids move downslope.

Many actively eroding environments are composed of an active or mobile soil zone, underlying saprolite and a bedrock interface. A steady-state geomorphic landscape is one where the rate of soil production is equal to the total chemical and physical denudation
rates, resulting in constant soil thickness \((L_{\text{obs}})\) (Heimsath et al., 1997; Riebe et al., 2003). As a simple case, the rate of soil production can be assumed to equal the chemical weathering velocity \((\omega)\) depicted in Fig. 1 (Brantley et al., 2008; Buss et al., 2008; White et al., 2008). Biotic and physical factors may also lower the soil–saprolite–bedrock interface at depths greater than the mobile weathering zone, thus in reality the weathering velocity must be less than or equal to the erosion rate in a steady-state landscape. To relate \(R_d\) to \(\omega\), an expression for the weathering advance rate is required. The change in the volume fraction of mineral, \(M\) \((m^3/m^3)\) due to chemical weathering as a function of time and depth is equal to (Lichtner, 1993):

\[
\frac{dM}{dt} = \omega \frac{dM}{dz}.
\]

(9)

The weathering rate controls the change in mass over time. However in the context of a transport-controlled system, the mass removal is controlled by the solute flux and the equilibrium concentration according to Eqs (1) and (2):

\[
\frac{dM}{dt} = V_m R_d \left(1 - \frac{c}{c_{eq}}\right) = \frac{q C_{eq} V_m}{L_{eq}}
\]

(10)

where \(V_m\) is the molar volume of the mineral. The change in mineral volume fraction with depth is approximately linear and could be treated similarly to the solute gradient:

\[
\frac{dM}{dz} \approx \frac{M_p - M_f}{L_{eq}}
\]

(11)

where \(M_p\) is the volume fraction of mineral in the protolith and \(M_f\) is the residual amount in the soil \((M_f \approx 0)\). The weathering advance rate can be calculated as:

\[
\omega = \frac{q C_{eq} V_m}{M_p - M_f}.
\]

(12)

This derived expression is similar to that developed and applied by White et al. (2008). Clearly for soil production to equal the weathering velocity requires an extremely finite balance between the hydrology, geochemistry and erosion rate. In general, the residence times of minerals in a soil are much longer than the residence times of fluid in the soil profile \((10^3\) of 1000s of years compared to years, respectively). Based on Eq. (7), fluid residence times would have to be less than approximately 2 days (or flow rates on the order of 16 m/yr) for weathering to be surface reaction-controlled and thus dependent purely on the supply of fresh mineral surfaces. Thus, even at high erosion rates equilibration still appears likely. If so, the flux of water should also partly determine weathering rates in eroding terrains due to thermodynamic effects. However, for granitic catchments, no strong correlation between chemical weathering rate and average annual precipitation has been observed, while a correlation between chemical depletion fraction (the mass loss relative to an immobile element) and average annual precipitation has been shown (Riebe et al., 2001b; von Blanckenburg, 2005). The correlation between the chemical weathering rates and denudation rate calculated at the hillslope scale may be due to the effect of erosion on the weathering length scale. Fig. 6 shows a 1-D reactive transport model for steady-state weathering in a stable and eroding soil with no input from upslope (e.g. close to a ridge top). The model confirms that erosion will shorten the equilibration length scale \((L_{eq})\) and thus the length scale of observed weathering \((L_{obs})\) relative to a stable soil profile. The

![Fig. 5. Correlation between (A) surface age and flow rate \((q)\) and (B) surface age and rainfall \((RF)\), sites shown previously.](image)

![Fig. 6. Reactive transport model (CrunchFlow) simulation of steady-state 1-dimensional erosion for the soil profile from Maher et al. (2009). The light stippled line shows the profiles corresponding to a non-eroding profile under the same conditions \((q = 0.088 \text{ m/yr})\) and the temperature is 12.5 °C). Other minerals included in the simulation are albite, quartz, smectite and kaolinite (not shown) using rates from Maher et al. (2009).](image)
steady-state profile ($e = e_0$), would correspond to $L_{eq} = L_{obs} = 0.85$ m and the soil residence time (τ_1) would be approximately 38 ka (Fig. 6). The depth of weathering for a 38 ka non-eroding soil is the same. However, the weathering rate is a factor of two greater for the eroding soil because the overall profile is both farther from equilibrium and surface area is greater, while the chemical flux leaving both the stable and eroding profiles is identical. This suggests that the chemical depletion fraction would be less likely to correlate with denudation rates and more likely to correlate with net infiltration or potentially rainfall, as observed (Riebe et al., 2001a). At the same time, the model confirms that weathering rates should decrease with decreasing erosion rate and increasing soil thickness (Waldbauer and Chamberlain, 2005). Currently there is insufficient data available to test the above hypothesis regarding transport-control in eroding systems, so a simple model is developed to compare the effect of erosion on the weathering length scale to the fluid flux. Because weathering and soil production are inhibited if fluids are at equilibrium, L_{obs} must be less than or equal to the theoretical distance required for the fluid to equilibrate with the solid (L_{eq}). Mathematically this could be stated as $e \leq q C_{18}/C_{19}/C_{20}/C_{21} V_{fl}/(M_p - M_i)$. For a given q, as erosion increases and L_{obs} decreases, the weathering rate will increase only once the soil thickness becomes less than the equilibration length scale because the weathering system will be fixed at points farther from thermodynamic equilibrium (e.g. fluid residence time is shorter). Thus Eq. (6), which depends on the fluid residence time should still be operative in an eroding terrain. As the flow rate must be evaluated in conjunction with the erosion rate, the interaction between erosion and climate (via q) on chemical weathering rates can be substituted into Eq. (7) assuming that $L_{eq} = L_{obs} = e \tau_1$;

$$R_b (\text{yr}^{-1}) = 10^{-2.3} \left[1 - \exp\left(-0.006 \frac{q}{\tau_1 L_{obs}}\right)\right]$$

(13)

where R_b is at maximum when $\tau_{fl} (L_{obs})$ is $\leq 0.006 q$, $10^{-2.3}$ (g/m2/yr) is the far-from-equilibrium rate constant suggested for non-eroding soils. The potential relationship between soil thickness and weathering rate is shown for different flow rates in Fig. 7. Based on this analysis there are very few soil-mantled regions where granitic weathering is likely surface reaction-controlled and thus dependent purely on mineral surface area (Fig. 7). In general, the model suggests that weathering rates in soils will increase as erosion rates increase and soils thin, and that weathering rates at a given erosion rate will also depend strongly on flow rate. The conceptual formulation may be related to the observation that soil production decreases exponentially with increasing soil thickness (Heimsath et al., 1997), and that chemical denudation rates decrease with increasing soil thickness and position downslope (Burke et al., 2007; Yoo et al., 2007).

The implications of this model are that in eroding terrains with appreciable soil development that lie under the envelope of transport-controlled weathering, deciphering the controls on chemical weathering rates at the catchment scale may be challenging because of the critical role that fluid residence time plays in regulating the chemical weathering rate. Fluids that have equilibrated with soil and saprolite minerals reflect chemical fluxes but do not provide a measure of the role of fresh mineral surfaces. Transport-limited weathering would suggest that enhanced chemical fluxes in actively eroding areas are partly due to faster flushing rates and the weak response of mineral solubilities to temperature, implying that other aspects of mountain building, in addition to the production of fresh mineral surfaces through erosion, may drive accelerated chemical weathering.

4. Conclusion

An analysis of the relationship between flow rates, fluid residence times and chemical weathering rates suggests that the time dependence may result from the ubiquity of transport-controlled weathering. Typical hydrologic fluxes at the Earth’s surface are slow enough that transport-controlled weathering is likely to characterize the weathering of most granitic sediments. Transport limitation appears to begin as fluid residence times exceed approximately 2 days and flow rates exceed 16 m/yr. While the effects of aqueous transport on chemical weathering rates may not be purely a result of the departure from chemical equilibrium, the effect of transport clearly plays a critical role in moderating chemical weathering rates at the Earth’s surface, as hypothesized by previous studies (Berner, 1978; White and Blum, 1995; Kump et al., 2000). At fluid residence times on the order of several hundred years consistent typical of diffusion-dominated environments, a second controlling factor appears to exist. Weathering in this thermodynamically-limited zone may be controlled by other chemical driving forces such as Ostwald ripening and clay precipitation, or by microbial processes and the flux of organic carbon to a site. This region of chemical weathering occupies large fractions of the Earth’s surface and is capable of playing a substantial role in moderating the global CO$_2$ budget, but is not sufficiently well characterized to allow for global-scale predictions.

The predominance of transport-limited weathering implies that 1) chemical weathering rates are more strongly dependent on fluid flow, pH and mineral solubility than mineral surface area and mineral kinetics; 2) the temperature dependence of silicate weathering rates will not be well characterized by Arrhenius-style rate laws, but rather by the temperature dependence of mineral solubilities, which dampens the response of chemical weathering rates to temperature, and 3) erosion will accelerate chemical weathering but this effect will be strongly moderated by the flow rate and other factors that impact the departure from thermodynamic equilibrium.

Acknowledgments

This work was supported by NSF grant EAR-0921134. M. Delaney, A. Jacobsen and an anonymous reviewer are acknowledged for their helpful reviews and constructive comments. S. Moon and C. P. Chamberlain are acknowledged for their thoughtful comments on an earlier version of this manuscript.

