How large is the subducted water flux? New constraints on mantle regassing rates

R. Parai⁎, S. Mukhopadhyay
Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, United States

1. Introduction

Exchange of water between the Earth’s interior and the exosphere (defined here as the atmosphere, ocean and crust) is critically dependent on water systematics at subduction zones. Water is outgassed from the mantle in association with volcanism at mid-ocean ridges, ocean islands, arcs and back-arc basins. Water is removed from the exosphere at subduction zones, carried as pore water and chemically-bound water in sediments, altered oceanic crust and serpentinized lithospheric mantle within the downgoing slab. At a given subduction zone, some amount of subducted water is released from the slab due to break-down of hydrous minerals at high pressure and temperature; this slab-derived water flux drives melting in the mantle wedge and is ultimately outgassed to the exosphere via arc and back-arc volcanism. Any water retained within the subducting slab beyond depths of magma generation constitutes a return flux of water to the interior, often referred to as the post-arc subducted water flux (Fig. 1). A quantitative assessment of the long-term water cycle is critical to our understanding of a wide variety of solid Earth phenomena: the abundance and distribution of water in the Earth’s interior have dramatic effects on mantle melting (e.g., Hirschmann, 2006; Inoue, 1994), rheology (e.g., Hirth and Kohlstedt, 1996; Karato and Jung, 2003; Mei and Kohlstedt, 2000), structure and style of convection (Crowley et al., 2011), and a return flux of exospheric water to the deep interior may affect cycling of other volatiles, such as the noble gases (Holland and Ballentine, 2006). Here we present new constraints on water exchange between the mantle and exosphere over the past 542 Ma.

Previous estimates of the deep Earth water return flux are based on calculations of the equilibrium stability of hydrous phases at subduction zone pressures and temperatures (e.g., Hacker, 2008; Rüpke et al., 2004; Schmidt and Poll, 1998, 2003; van Keken et al., 2011). Assuming an initial slab lithology and estimated pressure-temperature (P–T) conditions for a particular subduction zone, the water content of the equilibrium phase assemblage is determined as a function of depth. Thus, the amount of water retained in the slab past depths of magma generation is estimated by tracking the breakdown of hydrous phases along a given P–T path of subduction. However, in order to obtain an estimate of the global return flux of water to the deep Earth, initial slab lithologies and P–T profiles at individual subduction zones around the world must be established (Hacker, 2008; van Keken et al., 2011). Thus, such estimates of the deep Earth water return flux are subject to significant uncertainty, particularly with respect to the serpentine content of the lithospheric mantle. While serpentinitized lithospheric mantle could be generated by

⁎ Corresponding author.
E-mail address: parai@fas.harvard.edu (R. Parai).

Contents lists available at SciVerse ScienceDirect
Earth and Planetary Science Letters
journal homepage: www.elsevier.com/locate/epsl

Estimates of the subducted water (H2O) flux have been used to discuss the regassing of the mantle over Earth history. However, these estimates vary widely, and some are large enough to have reduced the volume of water in the global ocean by a factor of two over the Phanerozoic. In light of uncertainties in the hydration state of subducting slabs, magma production rates and mantle source water contents, we use a Monte Carlo simulation to set limits on long-term global water cycling and the return flux of water to the deep Earth. Estimates of magma production rates and water contents in primary magmas generated at ocean islands, mid-ocean ridges, arcs and back-arc are paired with estimates of water entering trenches via subducting oceanic slab in order to construct a model of the deep Earth water cycle. The simulation is constrained by reconstructions of Phanerozoic sea level change, which suggest that ocean volume is near steady-state, though a sea level decrease of up to 360 m may be supported. We provide limits on the return flux of water to the deep Earth over the Phanerozoic corresponding to a near steady-state exosphere (0–100 meter sea level decrease) and a maximum sea level decrease of 360 m. For the near steady-state exosphere, the return flux is $1.4-2.0 \times 10^{13}$ mol/yr, corresponding to 2–3% serpentinization in 10 km of lithospheric mantle. The return flux that generates the maximum sea level decrease over the Phanerozoic is $3.5-4.2 \times 10^{13}$ mol/yr, corresponding to 5% serpentinization in 10 km of lithospheric mantle. Our estimates of the return flux of water to the mantle are up to 7 times lower than previously suggested. The imbalance between our estimates of the return flux and mantle output flux leads to a low rate of increase in bulk mantle water content of up to 24 ppm/Ga.

© 2011 Elsevier B.V. All rights reserved.
water output at the outer rise (Nedimovic et al., 2009; Ranero
2006) use an approximation of the spatial distribution of faults
and fractures in oceanic lithosphere and an estimated lateral extent of ser-
pentinization, slab descent becomes problematic. Alternately, Li and Lee
(2006) use an approximation of the spatial distribution of faults and
fractures in oceanic lithosphere and an estimated lateral extent of ser-
pentinization around faults or fractures (based on the diffusivity of
water). We focus on establishing limits on the trench water input fluxes at
trenches is given in Table 2. We note that most of the flux magnitudes
are in broad agreement, with the exception of Schmidt and Poli (1998).

We take an alternative approach to assess long-term cycling of
water between the exosphere and the mantle. We use independent
constraints on (a) mantle water output fluxes and (b) global sea
level change over time to provide limits on the initial slab water
input flux, as well as the return flux of water to the deep mantle. A
statistical (Monte Carlo) approach is used to efficiently search the pa-
rameter space (which is based on literature estimates of water input
at subduction zones and output at ocean islands, mid-ocean ridges,
arc and back-arc) for water cycling scenarios that best satisfy con-
straints on Phanerzoic sea level change. We do not track the break-
down of hydrous phases or make assumptions regarding whether the
water return flux circulates within the upper mantle or is injected
into the lower mantle. Rather, we focus on estimating limits on the magnitudes of global fluxes across the mantle–exosphere boundary to
provide key constraints on the following questions:

1. How much water is subducted into the mantle at trenches?
2. What fraction of the water subducted into the mantle is
recycled past the arcs into the deep Earth?

2. Model

Fig. 1 shows the fluxes considered in our model of the global water cycle. Based on literature estimates, we define upper and lower limits
for ten model parameters (Table 1). Total magmatic water output fluxes
are computed by coupling literature estimates of magma production rate
to primary magmatic water contents at each tectonic setting. Input
fluxes at trenches are drawn from literature estimates of the amount of
chemically-bound water carried in subducting slabs, and a Monte Carlo
technique is used to explore the entire parameter space. A successful
run meets two criteria: (1) the global slab-derived arc and back-arc
water output does not exceed the global water input at trenches; and
(2) the imbalance between mantle input and output fluxes is consistent
with reconstructions of Phanerzoic sea level change.

2.1. Defining the model parameter space

Mantle output fluxes are quantified based on magma production
rates (Table 1) and the range of measured magmatic water contents
at individual tectonic settings (Table 1; see the full compilation in
Supplementary Table S1). We assume that over the Phanerzoic, sec-
cular variation in mid-ocean ridge magma production rates has not
exceeded 20% of present day rates (Table 1). There is no evidence
for secular change in seafloor spreading rates over the past 180 Ma
(Parsons, 1982; Rowley, 2002), and our assumption is further sup-
ported by studies indicating limited change in mantle potential tem-
perature of ~50–100 K per Ga (Abbott et al., 1994; Labrosse and
Jaupart, 2007; Vlaar et al., 1994), as well as geodynamic models indi-
cating a change in heat flow of only ~10% in the past Ga (van Keken et
al., 2001). We double the upper limit OIB magma production rate of
Crisp (1984) in order to capture possible elevated long-term mean
production rates associated with flood basalt volcanism.

The trench water input flux is carried as pore water and
chemically-bound water in sediments, altered oceanic crust and, poten-
tially, serpentinized lithospheric mantle. Pore water is thought to be
entirely expelled from the slab at shallow levels and returned to the
exosphere (Jarrard, 2003) and so we do not discuss it further. A
summary of literature estimates of the chemically-bound water flux
into trenches is given in Table 2. We note that most of the flux magni-
tudes are in broad agreement, with the exception of Schmidt and

Table 1 Model Parameter Space.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>min</th>
<th>max</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magma production rate at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean islands</td>
<td>1.8</td>
<td>4.8</td>
<td>Crisp (1984)</td>
</tr>
<tr>
<td>Mid-ocean ridges</td>
<td>17</td>
<td>25</td>
<td>Reymer and Schubert (1984)</td>
</tr>
<tr>
<td>Arcs</td>
<td>1.1</td>
<td>8.6</td>
<td>Reymer and Schubert (1984);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crisp (1984)</td>
</tr>
<tr>
<td>Fraction N-MORB:</td>
<td>0.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Primary magmatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O contenta in:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean island basalt</td>
<td>0.3</td>
<td>1.6</td>
<td>Simons et al. (2002)</td>
</tr>
<tr>
<td>N-MORB</td>
<td>0.04</td>
<td>0.26</td>
<td>Almev et al. (2008);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pineau et al. (2004)</td>
</tr>
<tr>
<td>E-MORB</td>
<td>0.26</td>
<td>0.92</td>
<td>Michael (1995);</td>
</tr>
<tr>
<td>Arc basalt</td>
<td>1.0</td>
<td>6.0</td>
<td>Standish et al. (2008)</td>
</tr>
<tr>
<td>Back-arc basinal</td>
<td>0.1</td>
<td>2.8</td>
<td>Benjamin et al. (2007);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ruggenzack (2001)</td>
</tr>
<tr>
<td>Trench input flux:</td>
<td>4.1</td>
<td>16</td>
<td>Jarrard (2003);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schmidt and Poli (1998)</td>
</tr>
</tbody>
</table>

* Full compilation of measured magmatic water contents by tectonic setting in
supplement: Table S1. The compilation shows that measured values fill the ranges
listed above.
Polli (1998), who estimate an altered igneous crust lower limit flux that by itself exceeds some of the other total bound water flux estimates. The bulk of the Schmidt and Polli (1998) altered igneous flux is carried by 3.5 km of water-saturated basalt, which may be considered as a carrying capacity. Total estimates of the chemically-bound water flux into trenches vary from 4.1 to 16 × 10^{13} mol/yr.

2.2. Model setup

A single Monte Carlo realization of the global water cycle draws a random value from the allowed range to represent the global mean for each of the ten model parameters: magma production rate at ocean islands, mid-ocean ridges, and arcs; proportion of N-MORB out of total MORB production; primary magmatic water content in ocean island basalt, N-MORB, E-MORB, arc basalt and back-arc basin basalt; and lastly, trench water input flux. Since back-arc spreading occurs at rates comparable to mid-ocean ridge spreading, the back-arc production rate is computed by scaling the selected MORB production rate by the present-day ratio of back-arc to mid-ocean ridge length (~10%, Balzer and German, 2004). Mantle water output fluxes are computed by multiplying magmatic water content by magma production rate at each tectonic setting, assuming a density of 2.9 g/cm^3 for OIB, MORB and back-arc production, and 2.8 g/cm^3 for arcs (Plank, 2005). The total water flux into the trench is drawn from literature estimates for initial chemically-bound water content in the subducting slab, and the fraction of trench input flux that is returned to the exosphere is determined from H_2O–Ti systematics in arc and back-arc basalts (Section 2.3.1). Thus, all fluxes across the mantle-exosphere boundary are specified (Fig. 1). The mantle return flux is the difference between the trench input flux and the slab-derived arc and back-arc water fluxes. Finally, the net flux across the mantle-exosphere boundary is defined as the difference between the mantle output flux and return flux.

2.3. Model constraints

For a given Monte Carlo realization to be classified as a success, the two criteria discussed below must be satisfied:

2.3.1. Model success criterion 1: the global slab-derived arc and back-arc water output must not exceed the global water input at trenches

The combined arc and back-arc magmatic water output flux is derived from two sources: slab fluids released by dehydration reactions, and ambient water in the mantle wedge (Fig. 1). For a given realization, the slab-derived fractions of arc and back-arc output fluxes cannot exceed the trench input flux; i.e., water cannot be created at arcs. This first success criterion requires a method to estimate the fraction of arc and back-arc water output that derives from the slab. The fraction of the arc water flux derived from the slab fluid, \(f_{\text{slab}} \), is:

\[
f_{\text{slab}} = \left(1 - f_{\text{mantlewedge}}\right) \left[\frac{(H_2O)_{\text{arc}} - (H_2O)_{\text{mantlewedge}}}{(H_2O)_{\text{arc}}}\right]
\]

where \(f_{\text{mantlewedge}} \) is the fraction of arc water derived from the mantle wedge, \((H_2O)_{\text{arc}}\) is the primary magmatic water content of arc magmas, and \((H_2O)_{\text{mantlewedge}}\) is the amount of water in the arc magma that is derived from the mantle wedge. The expressions for back-arc water are analogous. Given \((H_2O)_{\text{arc}}\) or \((H_2O)_{\text{back-arc}}\), if \((H_2O)_{\text{mantlewedge}}\) can be determined, then \(f_{\text{slab}} \) can be calculated.

We use water–titanium \((H_2O)_{Ti}\) systematics observed in a global compilation of arc and back-arc basalts to calculate \((H_2O)_{mantlewedge}\) and thereby estimate the slab-derived component of arc and back-arc water output fluxes in the simulation. Ti is a relatively immobile element and is not expected to migrate with fluids released due to slab dehydration (Kelley et al., 2006, 2010; Ryerson and Watson, 1987). Thus, Ti in arc and back-arc magmas should be derived primarily from the ambient mantle wedge. Previous work has established that magmatic Ti concentrations are controlled by the degree of partial melting (F) and the Ti concentration in the mantle source (Kelley et al., 2006, 2010; Lee et al., 2005; Stolper and Newman, 1994).

Fig. 2 shows primary magmatic H_2O vs. TiO_2 in a global compilation of arc and back-arc data. A broad negative correlation between H_2O and TiO_2 is evident in the global arc and back-arc data set, though least-squares regression yields distinct slopes for the arc data (\(\text{slope} = -0.079, R = 0.77 \)) and back-arc data (\(\text{slope} = -0.29, R = 0.81 \)). At a given magmatic H_2O content, the observed ~15–25% scatter in magmatic TiO_2 content is likely due to variations in source Ti concentration and the potential temperature of the mantle wedge. However, the broad negative trend in the global data set is consistent with the hypothesis that higher H_2O contents lead to a higher degree of the melting and thus a lower magmatic TiO_2 content, supporting the use of Ti as a proxy for the degree of melting at arc and back-arc environments (Kelley et al., 2006, 2010; Lee et al., 2005; Stolper and Newman, 1994).

While in detail, each arc and back-arc environment is likely to have a slightly different relationship between H_2O and TiO_2 contents, we use the broad correlation in the global data set to model the relationship between arc magmatic H_2O content and degree of melting. We note that the mantle wedge beneath arcs may be heterogeneous and/or depleted with respect to average MORB mantle (e.g., Kelley et al., 2010). To model this, the global average mantle wedge source concentrations of H_2O and Ti are allowed to co-vary between 43 and 320 ppm H_2O (such that 10% melting will produce magmatic H_2O contents between the most depleted N-MORB and a slightly-enriched MORB magmatic H_2O content) and 500 and 1200 ppm Ti (Kelley et al., 2006). The fraction of arc (or back-arc) H_2O output derived from the slab is computed for each realization as follows: once the arc primary magmatic H_2O content has been randomly selected, TiO_2 content in the primary magma is calculated using the best fit slopes for arc H_2O vs. TiO_2, and a ±25% random variation is added to the calculated Ti concentration (±20% for the back-arc) to simulate the scatter observed in the global data set (Fig. 2). Mantle wedge H_2O and Ti concentrations are then drawn from the ranges specified above, and using the batch melting equation and D_{Ti} between 0.04 and 0.10 (Kelley et al., 2006 and references therein), we solve for the degree of melting, F. Since we explore a very large parameter space in D_{Ti} and source Ti concentrations, some realizations

Table 2

<table>
<thead>
<tr>
<th>Reference</th>
<th>Water flux (× 10^{13} mol/yr) carried in:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sediment</td>
</tr>
<tr>
<td>Schmidt and Polli</td>
<td>0.15–0.30</td>
</tr>
<tr>
<td>(1998)</td>
<td></td>
</tr>
<tr>
<td>Jarrard et al.</td>
<td>0.71</td>
</tr>
<tr>
<td>(2003)</td>
<td></td>
</tr>
<tr>
<td>Rüpke et al.</td>
<td>0.90</td>
</tr>
<tr>
<td>(2004)</td>
<td></td>
</tr>
<tr>
<td>Hacker et al.</td>
<td>0.83</td>
</tr>
<tr>
<td>(2005)</td>
<td></td>
</tr>
<tr>
<td>van Keken et al.</td>
<td>0.39</td>
</tr>
<tr>
<td>(2011)</td>
<td></td>
</tr>
</tbody>
</table>

* Schmidt and Polli (1998) model the slab as 200–400 m sediment, 3.5 km of H_2O-saturated basalt, 3.5 km of hydrated gabbro (20–30% hydration by volume) and 5 km of 5–20% serpentinitized mantle. Assuming 2.7 km^2 of convergence per year (Hacker, 2008; Rüpke et al., 2004), this corresponds to a total H_2O flux of 12–18 × 10^{13} mol/yr. However, Schmidt and Polli (1998) report a total flux into trenches at 20 km of 11–16 × 10^{13} mol/yr, 10% lower than the numbers discussed above, possibly reflecting shallow dehydration reactions. We use their preferred total input at 20 km to constrain our trench input flux parameter, and scale the fluxes of sediment, altered crust and serpentinite specified above down to reflect the smaller flux in Fig. 4.
yield non-physical values of F and are excluded. Non-physical F values indicate that certain combinations of DTi and source Ti concentrations, cannot characterize a real system (also see Kelley et al., 2006).

Once F for a given realization is determined, we use the mantle wedge source H2O concentration and DTi, between 0.007 and 0.012 (Aubaud et al., 2004; Hauri et al., 2006; Kelley et al., 2006) to calculate the amount of magmatic water derived from the mantle wedge, (H2O)mantlewedge. The fraction of arc water that is derived from the slab is thus determined (Eq. (1)). The same calculation is carried out for back-arc. The first criterion for success is now tested: if the combined arc and back-arc water demand on the slab exceeds the trench water input flux, then the model realization constitutes a Failure 1 scenario.

2.3.2. Model success criterion 2: net flux must satisfy constraints on Phanerozoic sea level change

We assume that the net flux between the mantle and exosphere is accommodated by the ocean, since it is the dominant exospheric reservoir and hydration of subducting slabs draws water directly from the ocean. Therefore, a long-term sustained imbalance between water supplied to the exosphere by volcanism and water subducted back into the mantle would generate secular global, or eustatic, change in sea level. However, eustatic sea level change may also arise from variation in the volume of the ocean basin, attributed to ~100 Ma-timescale plate tectonic processes such as changes in mid-ocean ridge spreading rates and super-continent cycles (tectono-eustasy; e.g. Hays and Pitman, 1973; Schubert and Reymer, 1985), as well as from oscillations in the volume of continental ice sheets on timescales of tens of ka to several Ma (glacio-eustasy; e.g. Miller et al., 1991, 2005; Zachos et al., 2001). Furthermore, variations in dynamic topography in response to mantle convection may both contribute to ocean basin volume changes, as well as affect local measurements of sea level by vertically displacing the continental platforms on which sediments are deposited (e.g. Conrad and Hussen, 2009; Moucha et al., 2008; Muller et al., 2008). Thus, the sedimentary record of long-term sea level reflects a combination of dynamic effects, changes in the volume of the ocean basin, and changes in the volume of water in the oceans.

Continental freeboard studies indicate that sea level has varied by approximately 500 m since the end of the Archean (Galer, 1991; Kasting and Holm, 1992; Windley, 1977; Wise, 1974). However, detailed eustatic sea level reconstructions are only available for the Phanerozoic (e.g., Hallam, 1984, 1992; Haq et al., 1987; Haq and Schutter, 2008; Hardenbol et al., 1981; Vail et al., 1977; Fig. 3). Therefore, we limit our simulation of the water cycle to the Phanerozoic, although we will discuss some implications of our results for water cycling into deep time. The amount of secular eustatic sea level change that may have occurred over the Phanerozoic is estimated by linear regression on the available reconstructions.

Based on the spatial distribution of marine sedimentary facies on continents, Hallam (1984) generates a sea level curve by assuming that present-day continental hypsometry is representative of the entire Phanerozoic. Hallam's sea level curve yields 360 m of secular decrease over 542 Ma (Fig. 3a). Rüpeke et al. (2004) adopted ~500 m as the net decrease in Phanerozoic sea level based on Hallam (1984). However, 500 m represents the peak-to-trough variation associated with oscillations in sea level, rather than the magnitude of secular decrease. Furthermore, Algeo and Wilkinson (1991) pointed out that present-day continental hypsometry in the Phanerozoic has not been constant over time, as the continents were widely dispersed during the early Paleozoic. Accordingly, Hallam (1992) reduced the magnitude of the Paleozoic high stand from ~600 m to ~400 m relative to present-day sea level (Fig. 3b). This modification would reduce the secular trend to yield ~230 m of sea level decrease (Fig. 3b). Therefore, we suggest that Rüpeke et al.'s (2004) 500 m overestimates Phanerozoic sea level decrease. While Hallam's reconstruction can support an upper limit of 360 m of sea level decrease (Hallam, 1984), 230 m of secular decrease appears to be more realistic (Hallam, 1992).

Hallam's reconstructions generate the largest secular eustatic sea level decrease out of all available studies. Reconstructions based on seismic reflection data on maritime depositional sequences by Vail et al. (1977), Haq et al. (1987) and Haq and Schutter (2008) show more limited variations (Fig. 3). While Vail et al. (1977) provide only relative eustatic variations in sea level over time (Fig. 3c), Haq et al. (1987) and Haq and Schutter (2008) give absolute variations in sea level with peak-to-trough variations of ~250 m (Fig. 3d). Linear regression yields a secular decrease in sea level equal to 7.8% of the total amplitude for Vail et al. (1977), and a secular increase in sea
level of 35 m over the Phanerozoic for Haq et al. (1987) and Haq and Schutter (2008). We note that if the total amplitude of sea level variability is taken as 400 m, then Vail et al. (1977) yields ~30 m of sea level decrease over the Phanerozoic, significantly less than the 230 m estimate based on Hallam (1992).

While the above studies disagree on the precise timing and relative magnitude of specific transgressions and regressions, they share a number of common features. All studies agree in terms of overall shape: sea level rose throughout the Cambrian, broadly fell until ~200 Ma ago, rose and peaked ~100 Ma ago, and then fell to the present day level. The three sea level curves (Fig. 3b–d) all indicate that secular change in sea level, if present, was limited (~230 m for the corrected Hallam curve, ~30 m for the Vail curve, and +35 m for the Haq curve, yielding an average of ~100 m). Hence, we suggest that the sedimentary record is most compatible with a secular decrease of 0–100 m for sea level over the Phanerozoic, which constitutes our preferred scenario ("near steady-state ocean;" Section 4). We cannot rule out a secular increase in long-term sea level from the Phanerozoic record (Fig. 3d); however, since we are interested in setting upper limits on mantle regassing, we will focus on secular sea level decrease. We note that there is no requirement for any portion of the observed sea level record to reflect a change in the water budget of the exosphere. For example, previous studies quantitatively ascribe the ~200 m amplitude of sea level change over the past ~60 Ma to changes in ridge volume (Fig. 3; Muller et al., 2008; Xu et al., 2006) dynamic topography (Conrad and Husson, 2009; Moucha et al., 2008) and ice volume (Harrison, 1990). However, if we assume for our simulation that the entire Phanerozoic secular trend reflects the water budget of the exosphere, we can set limits on the imbalance between mantle water input and output fluxes. To an extent, ridge volume and dynamic topography effects may obscure the magnitude, and potentially the sign, of a secular eustatic signal from changes in the exospheric water budget. However, in order to mask a large net inward flux of water into the mantle, ridge volume must increase, or dynamic topography must raise sea level over time. Ridge volume is unlikely to have increased over the Phanerozoic as seafloor spreading rates should generally decrease over long timescales. Furthermore, the age distribution of the ocean floor has either been constant since ~200 Ma (Parsons, 1982; Rowley, 2002) or has increased over the past ~60 Ma (Xu et al., 2006). Dynamic topography is expected to produce sea level changes on order ±100 m in association with a full Wilson cycle (Conrad and Husson, 2009). We therefore use the 360 m decrease of the original Hallam (1984) reconstruction in our model to place an upper limit on the net inward water flux imbalance, despite the fact that it most likely overestimates the magnitude of secular Phanerozoic sea level change. An imbalance between mantle output and input may therefore be tolerated in our model, as long as the net inward flux does not exceed 2.1×10^{13} mol/yr, which is the flux required to reduce sea level by 360 m over 542 Ma (using present-day hypsometry; after Harrison, 1990). We also set a net outward flux limit at 1.9×10^{13} mol/yr, corresponding to a sea level increase of 35 m (Fig. 3d). The second criterion for success can now be assessed: if the net flux is outside the sea level limits, then the realization is classified as a Failure 2 scenario.

Fig. 3. Reconstructions of Phanerozoic sea level. The magnitude of secular variation that may have occurred is determined by linear regression. (a) Hallam (1984) gives absolute estimates of sea level based on the spatial distribution of marine sedimentary facies on continents, assuming present-day continental hypsometry represents the entire Phanerozoic. Linear regression yields a secular decrease of 360 m over 542 Ma. (b) Hallam (1992) revised his estimated Paleozoic high stand from 600 m to 400 m above present-day, as continental hypsometry likely changed over time and continents were widely dispersed during the early Paleozoic (Algeo and Wilkinson, 1991). We apply a linear scaling to the corrected Hallam’s (1984) curve to reflect the revision, and find a decrease in sea level of 230 m over 542 Ma. The ~500 m secular decrease in sea level inferred from Hallam’s curve by Rüpeke et al. (2004) overestimates the secular change that can be supported by the reconstruction. (c) Vail et al. (1977) give relative estimates of eustatic sea level over the Phanerozoic. Linear regression yields a secular decrease equivalent to 7.8% of the total amplitude. (d) Haq et al. (1987) and Haq and Schutter (2008) give absolute estimates of sea level, yielding a secular increase in sea level of 35 m over the Phanerozoic. All reconstructions argue for limited long-term secular variation in sea level.
3. Results

The Monte Carlo approach allows us to quantify the global water fluxes with associated 68% confidence intervals. A simulation of the global water cycle with 10^7 model realizations was performed based on the input parameters given in Table 1. Repeat simulations were performed to ensure that the results had converged. A summary of model results is presented in Table 3. A striking aspect of the simulation is that 86% of the realizations resulted in failure, where one or both of the criteria were violated (Section 2.3). A parameter sensitivity test indicates that arc water output and trench water input exert primary control over the global water cycle, as these two fluxes are significantly larger than the MORB, OIB and back-arc fluxes (Table 3). The total mantle-derived water output flux is $1.4 \pm 0.3 \times 10^{13}$ mol/yr (Table 3). The outgassing flux of water at arcs is $3.2 \pm 0.1 \times 10^{13}$ mol/yr. While the mean arc output flux is a factor of two higher than the estimate of 1.7×10^{13} mol/yr by Wallace (2005), the two estimates are consistent at the 68% confidence limit.

Fig. 4 shows model success rate contoured across trench water input flux and arc magmatic water content parameter space. Contours indicate the fraction of successful realizations at the specified arc and trench values, given independent random variation in all other parameters, including arc magma production rate. We emphasize that the simulation does not directly provide information about which successful scenarios are most likely to reflect reality—the simulation only determines what regions of parameter space are allowed given the observational constraints. Thus, an area of arc-trench parameter space with low (but non-zero) success rates is not necessarily unrealistic, but it does require very specific tuning of the remaining parameters to satisfy observational constraints.

The most striking aspect of Fig. 4 is that approximately two-thirds of the arc-trench parameter space is devoid of successful realizations. The upper limit trench intake (Schmidt and Poli, 1998) results in zero successful realizations. The highest trench input flux with a success rate $>0.1\%$ is 12×10^{13} mol/yr. The trench input flux estimates of Rüpke et al. (2004), Hacker (2008) and van Keken et al. (2011) result in maximum success rates of ~20, 40, and ~55% at global mean arc H$_2$O contents of ~6.0, 4.5 and 3.0 wt.%, respectively. Success rate is maximized at low trench inputs and a global mean arc magmatic H$_2$O of ~2 wt.%; in this region of parameter space, the model is least

<table>
<thead>
<tr>
<th>Statistics for all successful realizations:</th>
<th>Mean</th>
<th>Mean Conf. Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean island flux</td>
<td>0.52</td>
<td>± 0.35 -0.23</td>
<td>0.09</td>
</tr>
<tr>
<td>Mid-ocean ridge flux</td>
<td>0.75</td>
<td>± 0.25 -0.24</td>
<td>0.18</td>
</tr>
<tr>
<td>Total arc flux</td>
<td>3.2</td>
<td>± 2.3 -1.4</td>
<td>0.17</td>
</tr>
<tr>
<td>Slab-derived arc flux</td>
<td>3.1</td>
<td>± 2.3 -1.4</td>
<td>0.13</td>
</tr>
<tr>
<td>Total back-arc flux</td>
<td>0.44</td>
<td>± 0.25 -0.28</td>
<td>0.02</td>
</tr>
<tr>
<td>Slab-derived back-arc flux</td>
<td>0.38</td>
<td>± 0.26 -0.31</td>
<td>0</td>
</tr>
<tr>
<td>Trench input flux</td>
<td>6.0</td>
<td>± 2.6 -1.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Total mantle-derived output flux</td>
<td>1.4</td>
<td>± 0.4 -0.3</td>
<td>0.38</td>
</tr>
</tbody>
</table>

$\times 10^{13}$ mol/yr

Net flux and return flux to the mantle:

<table>
<thead>
<tr>
<th>Net flux</th>
<th>Return flux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Net flux</td>
</tr>
<tr>
<td>0 m over 542 Myr</td>
<td>0</td>
</tr>
<tr>
<td>100 m over 542 Myr</td>
<td>0.56</td>
</tr>
<tr>
<td>Maximum permissible sea level change:</td>
<td>360 m over 542 Myr</td>
</tr>
</tbody>
</table>

a Net flux is the difference between mantle return and output fluxes, and is accommodated by a corresponding change in sea level. Statistics for the return flux are calculated based on realizations with a net flux within 10^{11} mol/yr of the net flux for specified sea level change scenarios. Means are given with 68% confidence limits ("conf.").
sensitive to variations in the remaining parameters. Failure rates increase at high magmatic water contents as the simulation becomes sensitive to arc magma production rate.

To better understand model sensitivity to arc magma production rate, we ran simulations at three magma production rate intervals (Fig. 5): low (1.1–3.5 km³ per year), medium (3.5–6.0 km³ per year) and high (6.0–8.6 km³ per year). At low magma production rates (Fig. 5a), high success rates occur over arc magmatic H₂O contents of 2–5 wt.%, but success is limited to the very lowest trench inputs, and Failure 2 dominates most of the space. Higher arc magma production rates (Fig. 5b, c) enable success at higher trench inputs, but inhibit success at low trench inputs since resulting arc output fluxes are too high to be supported by the trench intake (Failure 1 in the upper left corners of Fig. 5b, c). Fig. 5 also illustrates why maximum model success rate in Fig. 4 occurs near 2 wt.% arc magmatic H₂O and low trench input: this region of parameter space maintains moderate-to-high success rates over all three arc magma production intervals.

4. Discussion

We now explore the implications of our Monte Carlo simulation for water exchange between the mantle and exosphere. We discuss two water cycling scenarios over the past 542 Ma. The first, our preferred scenario based on the available data, is a near steady-state ocean where the return flux of water to the mantle generates between 0 and 100 m of sea level decrease (Section 2.3.2 discusses the evidence supporting this scenario). In the second scenario, the mantle return flux generates the maximum-supported sea level decrease of 360 m over 542 Ma.
4.1. The hydration state of subducting slab

Total trench input fluxes are poorly estimated, as illustrated by the large number of failures for most of trench parameter space (Fig. 4). However, estimates of the global trench input flux differ primarily due to varying estimates of the poorly-constrained serpentinized lito-
ospheric mantle water flux; that is, studies agree on the flux of water carried in sediments and altered igneous crust (4.4–5 GPa or 120–150 km; Hacker, 2008; Schmidt and Poli, 1998) and Rüpke et al. (2004), are ~50% lower than estimates by Hacker (2008) and more than 20 times lower than the estimate given by Li and Lee (2006).

We now use the above limits on trench input flux to explore the spatial extent of serpentinization in slabs. Hydration of lithospheric mantle is thought to occur along deep faults formed at the outer rise. We assume a fault spacing of 3 km (Ranero et al., 2003), fault depth of 10 km, and 45,000 km of trench (Jarrard, 2003). If serpen-
tinization reactions begin at fault surfaces and propagate laterally, we calculate a lateral extent of serpentinization of 51–55 m and 73 m from each fault surface (for the near-steady-state and 360 m sea level decrease scenarios, respectively; based on pure 13 wt% H2O ser-
pentinite, 2.6 g/cm3 density). We note that a laterally continuous serpen-
tinite layer would not form unless the depths of serpentinization were limited to 340–360 m and 480 m, respectively.

4.2. Previous estimates of the return flux of water to the mantle

Previously-estimated return fluxes range from 3.5–9.4 × 1013 (Rüpke et al., 2004), 4.7 × 1013 (Hacker, 2008), and 3.8 × 1013 (van Keken et al., 2011) mol/yr (Fig. 6). Return fluxes are taken as the authors’ estimates of bound water flux beyond depths of arc magma generation (~4–5 GPa or 120–150 km; Hacker, 2008; Schmidt and Abers, 2006). Rüpke et al. (2004) provide water release curves with depth; we use these to calculate the range of bound water at 120 km depth (after Hacker, 2008); van Keken et al. (2011) estimate that ~1/3 of their initial slab water input is released above 100 km depth and constitutes the flux supplying global arc volcanism. Ano-
er 1/3 of the initial flux is retained beyond 230 km depth and is dis-
cussed as the deep mantle return flux. The fate of the remaining 1/3 (released between 100 and 230 km) is unspecified, but since it is largely released below depths of magma generation and the authors do not include it in their arc magmatic flux (van Keken et al., 2011), it is considered here as part of the return flux.

All literature return fluxes exceed the total mantle-derived output flux given by our model (Table 3; Fig. 6), indicating net mantle regas-
sing. Fig. 6 shows the decrease in sea level if the imbalance between the return fluxes and mantle output fluxes are sustained over the en-
tire Phanerzoic. All literature estimates generate sea level change in excess of our preferred limit (0–100 m). Furthermore, most of the esti-
mates also violate the upper limit (360 m) sea level decrease: the estimates of van Keken et al. (2011) and the lower limit of Rüpke et al. (2004) are only compatible with a sea level decrease of 360 m if mantle output is high (Fig. 6). Thus, the vast majority of literature return fluxes are too large to reflect long-term water cycling between the mantle and exosphere. If sustained, they would reduce the amount of exo-
spheric water by an amount inconsistent with reconstructions of

4.3. Mantle regassing rates

The sea level reconstructions discussed in Section 2.3.2 indicate that long-term secular decrease in sea level over the Phanerzoic was limited to ~0–100 m. Accordingly, the near steady-state ocean scenario described above yields our preferred return flux range of 1.4–2.0 × 1013 mol/yr to the mantle (Table 3). The upper limit of 360 m of sea level decrease over the Phanerozoic yields a return flux of 3.5–4.4 × 1013 mol/yr into the mantle (Table 3). All of these fluxes are low compared to previous estimates (Fig. 6). If the entire re-
turn flux is distributed uniformly throughout 10 km of lithospheric mantle as serpentine, the above fluxes correspond to 2.2–3.1 1013 serpen-
tinite and 5.4–6.5% serpentinization, respectively, assum-
ing 2.7 km2 of convergence per year and 3.3 g/cm3 density for litho-
spheric mantle. These numbers are in some cases higher than the initial serpentinized mantle input fluxes to trenches estimated in Section 4.1, suggesting that up to 70% of the return flux is carried in the igneous crust, in minerals such as lawsonite and phengite (e.g., Hacker, 2008; Schmidt and Poli, 1998; van Keken et al., 2011). It is also possible that all of the previous studies have overestimated the flux of water carried in sediments and altered igneous crust (Fig. 4; Section 4.1), which would allow the initial serpentinized mantle input flux to the trench to be larger.

Our preferred and upper limit return fluxes over the Phanerzoic correspond to preferred and upper limit net mantle regassing rates of 0–5.6 × 1013 mol/yr and of 2.1 × 1013 mol/yr, respectively (Table 3). While we have discussed water cycling only over the Phanerzoic, as observational constraints are strongest for this period of time, we note that the Phanerozoic upper limit of 2.1 × 1013 mol/yr for the net mantle
regassing rate cannot reflect conditions into deep time. Continental freeboard arguments suggest that sea surface height with respect to continents has remained within 500 m of the present value since the end-Archean (Galer, 1991; Kasting and Holm, 1992; Windley, 1977; Wise, 1974), suggesting that the upper limit net flux might only be sustained for up to ~750 Ma; if sustained since the end-Archean, the upper limit would generate ~1600 m of sea level decrease. In contrast, our preferred net regassing flux for the Phanerozoic (0.5–6 × 10\(^{12}\) mol/yr) would be consistent into deep time as it would generate a sea level decrease of up to ~0–500 m since 2.5 Ga. The preferred net mantle regassing rate would lead to at most a 60 ppm increase in bulk mantle water content since 2.5 Ga, which is a factor of 3.5 less than van Keken et al.'s (2011) estimate of 200 ppm (370 ppm over 4.5 Ga). However, the factor of 3.5 difference is readily explained by the fact that van Keken et al. (2011) neglect any mantle-derived water output flux in computing the net mantle regassing rate, resulting in an unrealistically high increase in mantle water content.

4.4. Implications for the evolution of mantle volatile budgets

Our preferred and upper limit return fluxes of water to the mantle correspond to bulk water contents in a 100 km-thick slab of 280–400 ppm and 700 ppm H\(_2\)O, respectively. Since some part of the return flux may be stored in nominally anhydrous minerals in the mantle wedge without being returned to the exosphere, the bulk slab water contents are upper limits. Convective stirring and assimilation of recycled slabs with our preferred slab water contents of 280–400 ppm into the MORB source could account for the MORB source water, as source concentrations are between 50 and 230 ppm (Saal et al., 2002; Simons et al., 2002). Furthermore, the MORB source may be getting wetter: since water concentrations in the slab are higher than the MORB source, mixing and assimilation should enrich the mantle source. In contrast, convective stirring of recycled slabs is not likely to account for all of the OIB source water (Table 1), particularly for the high \(^{3}He/He\) FOZO plumes that have ~750 ppm water in their source (e.g. Dixon et al., 2002). Thus, we suggest that a source of juvenile water is required for OIB magmatism, consistent with the inference of Dixon et al. (2002) based on H\(_2\)O/He ratios. Furthermore, mixing and assimilation of slabs with 280–400 ppm water may be diluting the OIB source water over time; i.e., the OIB source may be getting drier. It is conceivable that if subducted slabs have the upper limit 700 ppm H\(_2\)O, then all of the water in the OIB source could be associated with recycling of subducted water. However, the residence time of material in the OIB source region is on order ~1–2 Ga (Allegre, 2002; Goemmermann and Mukhopadhyay, 2009; Kawabata et al., 2011) and the upper limit slab water content cannot be sustained much further back than 750 Ma.

The relatively low magnitude of our preferred total trench input flux and return flux estimates is significant in light of suggestions that the return flux of water to the mantle affects cycling of other volatiles, such as the noble gases. Since heavy noble gases (e.g., Ar and Xe) have been used to place constraints on mantle structure and dynamics, it is especially important to understand the origin of noble gas signatures. For example, based on apparent similarities in the noble gas abundance patterns of the mantle and seawater, Holland and Ballentine (2006) argue that differences in OIB and MORB source noble gases reflect preferential recycling of seawater-derived atmospheric noble gases into the OIB source. Such a conclusion has important ramifications for mantle geodynamics, as it implies that differences between MORB and OIB noble gases are related to recycling of atmospheric gases, rather than the preservation of a less-degassed mantle source. However, the Holland and Ballentine (2006) hypothesis specifically requires unfractoned atmospheric noble gases dissolved in seawater to be carried as pore water trapped within subducting slabs. Given the difficulty in retaining significant amounts of pore water beyond depths of magma generation, Sumino et al. (2010) propose that the noble gases may be carried by unfractoned seawater trapped in fluid inclusions. To account for the mantle Ar budget, 0.37 × 10\(^{13}\) mol/yr of unfractoned seawater trapped within pores or in fluid inclusions must return to the mantle (Holland and Ballentine, 2006). Unless a surprisingly large percentage of the preferred mantle return flux (~20–30%) is carried as pore water or within fluid inclusions, preferential transport of unfractoned noble gases in seawater to the lower mantle to generate the OIB heavy noble gas signature is problematic. We are not aware of any studies that independently document such a large percentage of the return flux to the mantle to be associated with pore water or fluid inclusions. Therefore, a lower degree of degassing for the OIB source remains a viable explanation for differences in MORB and OIB heavy noble gas compositions.

5. Conclusion

We used a Monte Carlo simulation of global water exchange between the mantle and exosphere to constrain the magnitudes of the flux of water (1) into trenches and (2) beyond depths of magma generation, based on reconstructions of Phanerozoic sea level change. We find that previous estimates of both of the above fluxes are frequently too large to reflect long-term water cycling. We estimate trench input fluxes from 5.7 × 10\(^{13}\) mol/yr and 6.5 × 10\(^{13}\) mol/yr (near steady-state and upper limit sea level statistics, respectively), which suggest a limited extent of serpentinitization of subducting lithospheric mantle. Our preferred return flux to the mantle, based on 0–100 m of sea level decrease over the Phanerozoic, is between 1.4 × 10\(^{13}\) and 2.0 × 10\(^{13}\) mol/yr. The associated net flux would also be compatible with sea level change since the end-Archean based on continental freeboard, and would lead to an increase in bulk mantle water content of up to 60 ppm since 2.5 Ga. Furthermore, our study indicates that while water in the MORB source may be accounted for by recycling of chemically-bound water in subducted slabs, recycled salt water contents may not be high enough to support all of the OIB source water, such that a juvenile source is required for some fraction of OIB water.

Supplementary materials related to this article can be found online at doi:10.1016/j.epsl.2011.11.024.

Acknowledgments

We thank Jerry Mitrovica and Ved Lekic for discussions, and Rick Carlson for editorial handling. Katherine Kelley and an anonymous reviewer provided comments that helped to improve the manuscript. This work was funded in part by NSF grants OCE 0929193 and EAR 0911136.

References

Vail, P.R., Mitchum, R.M., Thompson, S., 1977. Seismic stratigraphy and global changes of sea level, Part 4: global cycles of relative changes of sea level. In: