Lecture 5
GEOS24705

Thermodynamics of heat engines
What is a “heat engine”?

A device that generates converts thermal energy to mechanical work by exploiting a temperature gradient

• **Makes something more ordered:** random motions of molecules → ordered motion of entire body

• **Makes something less ordered:** degrades a temperature gradient (transfers heat from hot to cold)
The two technological leaps of the Industrial Revolution that bring in the modern energy era

1. "Heat to Work"
 Chemical energy \rightarrow mechanical work via mechanical device
 Use a temperature gradient to drive motion
 Allows use of stored energy in fossil fuels
 Late 1700’s: commercial adoption of steam engine

2. Efficient transport of energy: electrification
 Mechanical work \rightarrow electrical energy \rightarrow mech. work
 Allows central generation of power
 Late 1800s: rise of electrical companies
First true steam engine:

Thomas Newcomen, 1712, blacksmith

Copy of Papin’s engine of design of 1690, with piston falling as steam cooled, drawn down by the low pressure generated

First *reciprocating engine*: force transmitted by motion of piston

Can pump water to arbitrary height.

Force only on downstroke of piston

Very low efficiency: 0.5%

Intermittent force transmission

Newcomen’s design is state of the art for 60+ years
First true steam engine:

Thomas Newcomen, 1712, blacksmith

Copy of Papin’s engine of design of 1690, with piston falling as steam cooled, drawn down by the low pressure generated

First reciprocating engine: force transmitted by motion of piston

Can pump water to arbitrary height.

Force only on downstroke of piston

Very low efficiency: 0.5%

Intermittent force transmission

Newcomen’s design is state of the art for 60+ years
First modern steam engine:

James Watt, 1769 (patent), 1774 (prod.)
Higher efficiency than Newcomen by introducing separate condense
Reduces wasted heat by not requiring heating and cooling entire cylinder
First modern steam engine:

James Watt, 1769 (patent), 1774 (prod.)
Higher efficiency than Newcomen by introducing separate condenser
First modern steam engine:

James Watt, 1769 patent
(1774 production model)

Like Newcomen engine only with separate condenser
Higher efficiency: 2%

Force only on downstroke of piston

Intermittent force transmission

No rotational motion
Improved Watt steam engine:

James Watt, 1783 model
Albion Mill, London

Separate condenser
Higher efficiency: ca. 3%

Force on both up- and downstroke

Continuous force transmission

Rotational motion
(sun and planet gearing)

Engine speed regulator
Steam engines got more powerful AND more efficient over time.

Figure 5.3 The rising power and improving efficiency of the best steam engines, 1700–1930. Sources: Plotted from data in Dickinson (1939) and von Tunzelmann (1978).

From V. Smil
How were both accomplished?

POWER
• More pressure
• Bigger cylinders
• More cylinders

EFFICIENCY
• Removing obvious losses
• Higher temperatures

Pressure and temperature are related for steam
Prince Consort Beam engine (world’s largest steam engine)

Prince Consort Beam engine

Beam engine train (see 6:20)
Double-action steam engine:

Why use suction to pull the piston down – why not just push it down with another injection of steam?

Piston pushed by steam on both up- and down-stroke.

No more need for a condenser. Steam is simply vented at high temperature.
Double-action steam engine:
Double-action steam engine:

primary use: transportation
Indicator diagrams told engineers how much work a cylinder put out on each stroke.