ONTOGNMY, SYSTEMATICS, AND EVOLUTION OF THE EFFACED EALY CAMBRIAN TRILOBITES PEACHELLA WALCOTT, 1910 AND EOPEACHELLA NEW GENUS (OLENELLOIDEA)

MARK WEBSTER

Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, <mwebster@geosci.uchicago.edu>

ABSTRACT—Although used in biostratigraphy and in studies of early Cambrian trilobite evolution, the olenelloid genus Peachella has received little research attention. The ontogenetic and evolutionary origins of its derived features—an effaced cephalon and grossly inflated genal spines—have remained mysterious. Based on examination of new and existing collections, P. iddingsi and P. brevispina are here described in detail, including aspects of their respective ontogenies and the first description of the thorax of P. iddingsi. A new monotypic genus, Eopeachella, is also described from recently collected material from the Delamar Member of the Pioche Formation, Nevada. Eopeachella angustispina n. gen. n. sp., is less derived and stratigraphically older than both Peachella species and bridges the morphological gap between Peachella and typical olenelloids. The study reveals that cephalic effacement was progressively attained during both ontogeny and phylogeny in the Eopeachella + Peachella clade. Comparative ontogeny with other olenelloids reveals that progressive effacement was a trend superimposed upon and independent of a conserved pattern of ontogenetic shape change in the glabella and did not represent a permorphic “extension” of glabellar ontogeny. Genal spine inflation was also achieved progressively (in a proximal-to-distal direction) through both ontogeny and phylogeny in the Eopeachella + Peachella clade. Genal spine inflation that convergently arose in later trilobite groups may have been similarly ontogenetically dynamic. Discovery of E. angustispina and P. brevispina in the Delamar Member raises olenelloid diversity in this member to at least 20 species; a higher diversity than in any coeval unit.

INTRODUCTION

With its bizarrely inflated, balloon-like genal spines and generally effaced cephalic features, Peachella Walcott, 1910 represents one of the most distinctive genera of olenelloid trilobites. Although only known from the Laurentian Cordilleran margin in the southwestern United States (Fig. 1), the genus has considerable significance. It has biostratigraphic utility within the Laurentian upper “Olenellus Zone” (upper Dyarian, traditional “Lower Cambrian”): Palmer and Halley (1979) listed it as a characteristic element of their “Lower Cambrian”): Palmer and Halley (1979) listed it as a characteristic element of their Bristolia Zone, and the developing species-level biostratigraphic zonation scheme for the upper Dyarian (Webster, 2003) recognizes a zonule named for and defined by the first appearance of the type species, Peachella iddingsi (Walcott, 1884), Peachella was also included in a cladistic analysis of olenelloid trilobites (Lieberman, 1998, 1999), which has subsequently formed the basis for studies of Cambrian biogeography (Lieberman, 2002, 2003) and evolution (Smith and Lieberman, 1999). The genus represents one of the first to exhibit cephalic effacement and genal spine inflation, features which would subsequently formed the basis for studies of Cambrian biogeography (Lieberman, 2002, 2003) and evolution (Smith and Lieberman, 1999). The genus represents one of the first to exhibit cephalic effacement and genal spine inflation, features which would later convergey evolve in numerous trilobite clades (see below) but which are poorly understood in terms of developmental origin and functional significance. Despite its importance, Peachella has received very little research attention, particularly in terms of the ontogenetic and evolutionary origins of its characteristic and derived morphology.

Recent field collections made by the present author, complemented with examination of previously collected specimens in museums, provide much additional information regarding the morphology and ontogeny of P. iddingsi and P. brevispina Palmer in Palmer and Halley, 1979, the only other species in the genus. They also reveal the existence of a new taxon here described as Eopeachella angustispina n. gen. n. sp., which is stratigraphically older than both Peachella species and which possesses rather more “normal,” tapered, genal spines and shallow but clear glabellar furrows. This new species therefore bridges the morphological gap between the derived Peachella species and their closest non-effaced olenelloid relatives such as Bristolia Harrington, 1956, Nephrolenellus Palmer and Repina, 1993, and Paranephrolenellus Webster, 2007c. This paper presents a comprehensive (re)description of all Peachella and Eopeachella species, including the first detailed documentation of their respective ontogenies, and discusses the origin and evolutionary history of Peachella. Understanding of the ontogeny, morphology, and morphological variation of these species is important given their employment as biostratigraphic zone fossils, and offers insight into the development and evolution of cephalic effacement and genal spine inflation in trilobites.

SYSTEMATIC PALEONTOLOGY

Terminology.—Morphological terminology follows that of Whittington and Kelly (1997), with modifications to cephalic and thoracic terminology proposed by Webster (2007b) and Palmer (1998), respectively. Following Webster (2007c), genal spine advancement is measured by finding the point at which the axial furrow of the glabella is intersected by a transverse line drawn between the genal spine bases (i.e., the adaxial margins of the genal spine bases where they contact the posterolateral cephalic margin). The qualitative location of this point of intersection relative to the contact of glabellar lobes and furrows with the axial furrow is expressed in the species descriptions. The “slot position” of glabellar furrow S2 refers to a location along S2 approximately midway (tr.) between the sagittal axis and the axial furrow. Ontogenetic terminology is discussed below.

Phases of cephalic development.—Articulated specimens of Peachella are rare, and Eopeachella is known solely from disarticulated material. Small, isolated cephalon cannot be unambiguously assigned to a traditional post-protaspid subdivision of the trilobite life cycle (the meraspid and holaspis periods; Beecher, 1895; Raw, 1925; reviewed by Chatterton and Speyer, 1997). In this paper, ontogeny of the Peachella and Eopeachella cephalon is subdivided into the sequential phases of cephalic development previously identified in other olenelloids (Webster et al., 2001; Webster and Zelditch, 2005; Webster, 2007b, c). These phases (summarized below) offer an alternative scheme for subdividing olenelloid cephalic ontogeny without reference to trunk articulation.

Cephalon in phases 1 and 2 of development lack genal spines; the transition from phase 1 into phase 2 is characterized by a shift in the dynamic pattern of distance between the intergenal spine
bases relative to sagittal cephalic length (Webster, 2007b). Entry into phase 3 of cephalic development is defined by the initial differentiation of genal spines, which appear as tiny nubbins located adjacent to the abaxial margin of the intergenal spine bases (Webster, 2007b). Entry into phase 4 is defined by the onset of marked lateral expansion of the third glabellar segment (L3) relative to the second (L2); this expansion is associated with effective isolation of the third glabellar furrow (S3) from the axial furrow in some taxa (e.g., Nephrolenellina; Webster, 2007b) but not in others (e.g., Paraneophronellenia; Webster, 2007c). During subsequent ontogeny in many olenelloids (e.g., Peachella and Eopeachella spp.; here), Olenellina Hall, 1862 and most species of Bristolia [unpublished data]; L2 also underwent marked relative lateral expansion, leading to the merger of the anterolateral portions of L2 with the posterolateral portions of L3 and consequent isolation of the S2 furrow from the axial furrow: this merger defines entry into phase 5 of cephalic development (sensu Webster et al., 2001, pp. 118–119). The pronounced lateral expansion of L2 and isolation of S3 did not occur in some olenelloids (e.g., Nephrolenellina spp.; Webster, 2007b), which terminated their cephalic development in phase 4.

Materials.—Specimens listed below are housed the Field Museum, Chicago (FMNH), the Institute for Cambrian Studies, University of Chicago (ICS), the Natural History Museum of Los Angeles County (LACMIP), the Museum of Comparative Zoology, Harvard (MCZ), the San Diego Natural History Museum (SDNHM), the University of California, Riverside (UCR), the Smithsonian Institution, Washington, D.C. (USNM), and the private collection of N. Brown (NSB). Stratigraphic information (such as distance from marker beds) following ICS and UCR numbers refers to collateral field descriptions deposited at those institutions.

Order REDLICHIID Richter, 1932
Suborder OLENELLINA Walcott, 1890
Superfamily OLENELLOIDEA Walcott, 1890
Family BICERATOPSIDAE Pack and Gayle, 1971
Genus PEACHELLA Walcott, 1910

Type species.—Olenella 1iddingsi Walcott, 1884.
Other species.—Peachella brevispina Palmer in Palmer and Halley, 1979.

Diagnosis.—Biceratopsids of relatively small size (sagittal length of cephalon rarely exceeds 15 mm). Glabella hourglass-shaped, constricted at S1, transverse width of L1 less than width of LO; glabellar furrows very shallow or effaced; preglabellar field present. Ocular lobes short, posterior tips located close to glabella opposite anterior half of L1, S1, or posterior half of L2. Posterior margin of cephalon straight or with distal portion flexing anteriorly by up to 34° relative to proximal portion at rounded adgenal angle. Intergenal spines absent or represented by small dorsal swelling on posterior cephalic border. Genal spines less than half cephalic length (sag.), wide, bulbous and inflated in relief: base opposite or posterior to LO. Lateral cephalic border distinctly broadened laterally and inflated dorsally posterior to point opposite lateral margin of posterior third of LA, L3, L2, or L1, merging into swollen genal spine. Thorax sharply divided into prothorax of 14 segments and opisthothorax of at least nine segments; T3 hyperpleural, dolichospinous.

Occurrence.—Upper Dyeran, Bristolia Zone of Palmer and Halley (1979); U.S.A. (California, Nevada).

Discussion.—The diagnosis above refines and expands upon that provided by previous workers (Poulsen, 1959; Palmer in Palmer and Halley, 1979; Palmer and Repina, 1993, 1997), taking into account the inter- and intraspecific morphological variation documented in the present study. Palmer and Repina (1993, 1997) included a long axial spine on T15 and an opisthothorax of at least 10 segments in their generic diagnosis. However, Peachella 1iddingsi apparently lacks an axial spine on T15, and although eleven opisthothoracic segments are known in P. 1iddingsi the present author has yet to see a specimen of P. brevispina bearing more than nine. The emended generic diagnosis above therefore excludes a T15 axial spine and is based on this more conservative count of opisthothoracic segment number.

The bulbous general spines and generally effaced glabella are easily recognized characteristics of Peachella. The genal spine bases and lateral cephalic border are also inflated in Paraneophronellenia inflata Webster, 2007c, but this taxon differs markedly from both Peachella species in having pointed (rather than bluntly

FIGURE 1—Map of localities in the southwestern United States from which Peachella and Eopeachella specimens have been recovered. Black lines with triangles mark the eastern limit of thrusting (Antler Orogenic Belt in the north, Sevier Orogenic Belt in the southeast; overthrust block to the west in each case). Abbreviations: BL, Big Lime Mountain, Delamar Mountains; CC, Cucamongo Canyon, Last Chance Range; DH, Dublin Hills; DR, Desert Range; EC, Echo Canyon, Funeral Mountains; EM, Eagle Mountain; EP, Emigrant Pass, Nopah Range; GR, Groom Range; HR, Highland Range (Happy Face and Log Cabin Mine sections); JR, Jaybird Ridge, Spring Mountains; MM, Marble Mountains; OS, Oak Spring Summit, Delamar Mountains; PM, Providence Mountains; PP, Prospect Peak; RS, Resting Springs Range; RW, Ruin Wash, Chief Range; TC, Ticonderaga Canyon, Grapevine Mountains; TR, Toiyabe Range.
rounded) genal spines, clearly visible glabellar furrows, and strongly divergent ocular lobes.

The oculo-glabellar morphology of *Peachella*, including the generally effaced glabellar furrows, is also found in *Biceratops nevadensis* Pack and Gayle, 1971 and in a new species (below) from the middle Delamar Member of the Pioche Formation. The new species possesses moderately stout, blunt-tipped, glabellar spines which taper along their length, representing something of an intermediate in form between “typical” olenelloids (such as *Olenella, Nephrolenellus*, and *Bolbootenellus* Palmer and Repina, 1993) and the derived bulbous morphology developed in *P. iddingsi* and *P. brevispina*. The new species is described below as *Eopeachella angustispina* n. gen. n. sp.

Lieberman’s (1998) cladistic analysis found support for a *Peachella + Biceratops* Pack and Gayle, 1971 clade within the Biceratopsidae (see also Palmer and Repina, 1993, 1997). *Biceratops* differs most obviously from *Peachella* in lacking genal spines. A full revision of *Biceratops*, including description of its ontogeny, will be presented elsewhere.

Peachella iddingsi (Walcott, 1884)

Figures 2, 3, 4, 5, 6

Olenella iddingsi Walcott, 1884, pp. 28, 36, 37, 38, 268, pl. 9, fig. 12; Hagle, 1883, p. 256; Marcou, 1885, p. 231; Walcott, 1886, pp. 32, 34, 35, 36, 47, 170, pl. 19, fig. 1; Brogger, 1886, p. 183, 186; Holm, 1887, p. 315; Marcou, 1890, p. 100; Walcott, 1890, p. 636, pl. 84, fig. 2; Voges, 1893, p. 327.

Description (mature morphology).—Cephalon semicircular in outline; proximal portion of posterior cephalic margin angled slightly posteriorly away from axial furrow by 2° to 15° relative to transverse line, straight (*Fig. 3.1, 3.4*) or with distal portion flexing anteriorly by up to 34° relative to proximal portion (*Fig. 4.4*) at rounded adgenal angle located 55% to 90% of distance along posterior cephalic margin from axial furrow to base of glabellar spine (*Fig. 8.2*). Greatest observed cephalic length approximately 15.7 mm (sag.). Genal spines wide, bluntly rounded, bulbous and inflated in relief; posterolaterally oriented; base opposite or posterior to LO; length less than half cephalic length (sag.). Inter- genal spine absent (*Fig. 2.6*) or represented by small dorsal swelling on posterior cephalic border at or distal to adgenal angle (*Figs. 4.5, 5.5*). Cephalic border poorly defined by an extremely weak cephalic border furrow which is virtually absent posterolaterally on some specimens (*Figs. 3.1, 3.4, 3.5*); evenly or acutely rounded dorsally anteriorly, steeply sloping to cephalic margin, gently sloping into cephalic border furrow; width of anterior border opposite genal spines with LA approximately 30% to 80% length (exsag.) of LO; posterior border defined by very weak border furrow, narrows adaxially and poorly defined or absent at base of genal spine. Lateral cephalic border distinctly broadened laterally and inflated dorsally posterior to point opposite lateral margin of posterior third of LA, L3 or L2 (*Fig. 7.4*), merging into swollen glabellar spine. Glabella extends to anterior border furrow, 88% to 96% of cephalic length (sag.), hourglass-shaped, contracted at S1. Maximum width of LA up to 35% wider (tr.) than basal glabellar width. Posterior margin of glabella strongly convex posteriorly. Axial furrow and all glabellar furrows very shallow, rarely entirely effaced (*Fig. 2.8*). SO deepest abaxially, abaxial end slightly anterior to adaxial end. S1 deepest abaxially, oriented strongly anterolaterally abaxially. LO and L1 subtrapezoidal, narrowing anteriorly. S2 deepest in slot position, isolated from axial furrow, abaxial end slightly anterior to adaxial end. L2 and L3 merged distally, widening (tr.) anteriorly until contact with ocular lobes. S3 oriented anterolaterally away from axis until contact with ocular lobes. LA slightly wider (tr.) than long (sag.), 30% to 45% of glabellar length (sag.), slightly inflated dorsally above extraocular area (*Fig. 2.2*), summit slightly higher than posterior glabellar lobes (*Figs. 2.2, 2.4, 4.6*). LA slightly anterior to contact with anterior margin of ocular lobes. Relatively large axial node on LO; L1 rarely with low, broad swelling axially (*Figs. 2.7, 4.1, 4.2*). Ocular lobes divergent from exsagittal axis by 25° to 40° (measured as angle between exsagittal axis and line from posterior tip of ocular lobe to contact of adaxial margin of ocular lobe with abaxial margin of L3; *Fig. 7.1*) or 30° to 45° (measured as angle between exsagittal axis and most anterior point along ocular lobe to contact of abaxial margin of ocular lobe with abaxial margin of LA; *Fig. 7.2*), crescentic, posterior tip close to axial furrow and opposite anterior third of L1 (*Fig. 3.5*), S1 (*Fig. 2.7*), or rarely posterior half of L2 (*Fig. 4.8*), convex dorsally; ocular furrow typically not developed; one specimen shows a very shallow ocular furrow slightly abaxial to midline of ocular lobe (*Fig. 2.9*). Intercocular area sloping down from ocular lobes to axial furrow (*Fig. 3.2*), slightly narrower than width (tr.) of ocular lobes and approximately one-sixth to one-fifth width (tr.) of extraocular area opposite L2. Extraocular area moderately strongly vaulted (*Fig. 3.2*). Posterior ocular line (*Figs. 2.1, 2.6, 2.7, 2.10, 3.1, 4.1, 4.2, 5.5*), anterior ocular line (*Fig. 2.10*), intergenal ridge (*Fig. 3.5*), and genal ridge (*Fig. 4.7*) present on some individuals. Cephalic region of T4 and to progressively lesser extent T5 and T6 tapering, divergent relative to transverse line proximally, curving to more transverse orientation distally. Inner pleural region of T4 and to progressively lesser extent T5 and T6 tapering, divergent relative to transverse line proximally, curving to more transverse orientation distally. Inner pleural region of T6 to T10 transverse, parallel-sided, with straight margins; tips blunt or possibly with miniscule dentate pleural spine. T3 hyperpleural; pleural spine robust, dolichospinous, sharp-tipped. Inner pleural region of T4 and to progressively lesser extent T5 and T6 tapering, divergent relative to transverse line proximally, curving to more transverse orientation distally. Inner pleural region of T6 to T10 transverse, parallel-sided, with straight margins. Inner pleural regions of T11 to T14 increasingly divergent, parallel-sided, margins increasingly curved on more posterior segments. Pleuralae of T4 to T14 blunt-tipped. Pleural furrows rarely extend onto base of pleural spines of T3. Dorsal and ventral surfaces of T3 pleural spines bear terrace lines, grading into Bertillon markings on dorsal surface in places (*Fig. 4.3*). Bertillon markings developed on posterior margin of inner pleural...
FIGURE 2—Morphologically mature cephalons of Peachella iddingsi. 1, 2, holotype cephalon, dorsal (×4) and left lateral (×3) views, USNM 15407a; 3–5, cephalon in dorsal (×4), left lateral (×3) and oblique dorsoanterolateral (×3) views, USNM 177241 (latex replica); 6, cephalon, dorsal view, FMNH PE58078, ×3; 7, cephalon, dorsal view, FMNH PE58080, ×3; 8, cephalon, dorsal view, USNM 177242 (latex replica). ×4; 9, incomplete cephalon, dorsal view, FMNH PE58069, ×4; 10, incomplete cephalon, dorsal view, FMNH PE58107, ×4. 1, 2 from USNM locality 52, Prospect Peak, Eureka County, Nevada; 3–5, 8 from USGS collection 3766-CO, Groom Range, Lincoln County, Nevada; 6, 7 from ICS-1069, Big Lime Mountain section, Delamar Mountains, Lincoln County, Nevada; 9 from ICS-1005, Oak Spring Summit section, Delamar Mountains, Lincoln County, Nevada; 10 from ICS-10091, Jaybird Ridge North Canyon section, Spring Mountains, Clark County, Nevada. See text for stratigraphic details.
region of T3 and on distal tips of inner pleural regions of T6 to T9 (Fig. 4.3).

Opisthothorax of at least 11 segments (Fig. 4.2; possibly shows four more but preservation is too poor to be certain). No evidence of axial structures (nodes or spines) on T15 to T25. Inner pleural regions of T15 slightly curved, tapering, divergent; straight, parallel-sided, and roughly transverse on all more posterior segments; distal extremities of pleurae on T15 to T25 taper to blunt end. Axis poorly defined by very weak axial furrow. Pleural furrows effaced. Rest of opisthothorax and pygidium unknown.

Ontogeny.—The smallest known specimen is approximately 2.2 mm in sagittal glabellar length (Fig. 5.1), but is poorly preserved. Better preserved specimens range from approximately 3.0 mm (Fig. 6) to approximately 15.7 mm (Fig. 4.3) in cephalic sagittal length.

On the smallest known cephalon (Fig. 5.1) the glabellar furrows are well incised, deepest abaxially but crossing the glabellar axis. The abaxial portions of SO and S1 are located slightly anterior to the adaxial portions of the furrows; S2 and S3 are roughly transverse. The glabella is parallel-sided anterior to SO; L3 is not
Figure 5—1–6, cephalon of *Peachella iddingsi* in phases 3 through 5 of ontogenetic development. 1, partially exfoliated and incomplete cephalon in phase 3 of development, dorsal view, FMNH PE58071, \(\times 12 \). 2, partially exfoliated and incomplete cephalon in early phase 4 of development, dorsal view, FMNH PE58074, \(\times 9 \). 3, partially exfoliated and incomplete cephalon in phase 4 of development, dorsal view, USNM 15407c, \(\times 10 \). 5, partially exfoliated cephalon in early phase 5 of development showing a thorn-like tip to an otherwise inflated genal spine and a small dorsal swelling representing the intergenal spine (immediately adjacent to the left genal spine base), dorsal view, FMNH PE58013, \(\times 10 \). 6, partially exfoliated and incomplete cephalon in early phase 5 of development, dorsal view, FMNH PE58019, \(\times 10 \). 7, morphologically mature incomplete cephalon, dorsal view, FMNH PE58095, \(\times 7 \). 1 and 3 from ICS-1005 and ICS-1046 respectively, both Oak Spring Summit section, Delamar Mountains, Lincoln County, Nevada; 2 from ICS-1069, Big Lime Mountain section, Delamar Mountains, Lincoln County, Nevada; 4 from USNM locality 52, Prospect Peak, Eureka County, Nevada; 5 from ICS-10091, Jaybird Ridge North Canyon section, Spring Mountains, Clark County, Nevada; 6 from Emigrant Pass, Nopah Range, Inyo County, California; 7 from ICS-1364, Toiyabe Range, Lander County, Nevada. See text for stratigraphic details.

Figure 4—Morphologically mature specimens of *Peachella iddingsi*. 1–3, articulated specimens showing details of prothorax and opisthothorax. 1, 2, mostly exfoliated part (1) and latex cast of counterpart (2) of LACMIP 11621, \(\times 4 \). The photograph published by Palmer and Repina (1993, fig. 4.2; 1997, fig. 257.2) is a composite of these specimens. 4, dorsal view of mildly tectonized specimen, LACMIP 11622, \(\times 2 \). 4, left side of incomplete and partially exfoliated cephalon, FMNH PE58105, \(\times 4 \). 5, 6, incomplete and partially exfoliated cephalon, dorsal and right lateral views, USNM 177243, \(\times 7 \). 7, incomplete and partially exfoliated cephalon, dorsal view, FMNH PE58097, \(\times 6 \). 8, incomplete cephalon, dorsal view, FMNH PE58076, \(\times 3 \). 1–3 from Emigrant Pass section, Nopah Range, Inyo County, California; 4, 7 from ICS-10091, Jaybird Ridge North Canyon section, Spring Mountains, Clark County, Nevada; 5, 6 from USGS collection 3786-CO, Groom Range, Lincoln County, Nevada; 8 from ICS-1069, Big Lime Mountain section, Delamar Mountains, Lincoln County, Nevada. See text for stratigraphic details.
noticeably wider (tr.) than L2 and the distal portion of S3 is in contact with the axial furrow near the posterior margin of the base of the ocular lobe; S2 is also in contact with the axial furrow. There are no interocular nodes or obvious axial nodes on glabellar lobes anterior to LO, although the condition on L1 cannot be unequivocally determined. The presence or absence of a preglabellar field cannot be determined. The posterior tip of the ocular lobe is located opposite the midlength of L1. A posterior ocular line or intergenal ridge (incomplete proximal preservation renders precise identification of this structure equivocal) is prominently developed abaxially, crossing the posterior border and running onto a small intergenal spine located distal to a very weak adgenal angle. The base of the genal spine is only slightly inflated and the spine tapers along its length. The glabellar morphology and presence of genal spines indicate that this specimen is in phase 3 of cephalic development (see above). The sagittal glabellar length of this specimen (2.2 mm) is within the range of specimens of *Nephrolenellus multinodosus*, *N. genticulatus*, and *Paranephrolenellus losti* also in phase 3 of cephalic development (Webster, 2007b, c).

On slightly larger specimens approximately 3.0 mm in sagittal cephalic length (Fig. 6) the genal spines are more prominently inflated, L3 is slightly wider than L2 (tr.), and S3 is more or less isolated from the axial furrow. The posterior tip of the ocular lobe is still located opposite the midlength of L1. A posterior ocular line crosses the posterior cephalic border onto a small intergenal spine located distal to a weak adgenal angle. A prominent anterior arch is developed. The glabellar morphology indicates that these specimens are in phase 4 of cephalic development (see above). Transition into phase 4 occurred at sagittal cephalic length of approximately 3.2 mm in the two *Nephrolenellus* species (Webster, 2007b).

On cephalas 3.2 to 3.7 mm in sagittal length (Fig. 5.2, 5.3, 5.4) the glabellar furrows are less prominent and weakly incised (particularly over the glabellar axis). S2 still contacts the axial furrow, and the posterior tip of the ocular lobe is located opposite the anterior third of L1. The genal spines are bulbous.

By cephalic length of 3.9 mm (Fig. 5.5) the glabellar furrows are very shallow. The distal margins of L2 and L3 are merged, and S2 is isolated from the axial furrow: the specimen is therefore assigned to phase 5 of olenelloid cephalic development (see above). The genal spines are bulbous but retain a tiny thorn-like projection at the distal tip; the spine is more prominently inflated on the abaxial side. A posterior ocular line terminates in a small dorsal swelling on the posterior cephalic border. A slightly larger specimen 4.4 mm in sagittal cephalic length (Fig. 5.6) has a similar dorsal swelling on the posterior cephalic border but lacks a posterior ocular line. Larger cephalas in phase 5 of development are essentially morphologically mature and are described above.

Considerable allometry is observed over the sampled portion of cephalic ontogeny (phases 3, 4, and 5) of *Peachella iddingsi*. General trends include the following. (1) LA proportionally elongates longitudinally, increasing from 30% up to 45% of sagittal glabellar length and from 60% up to 95% of maximum width of LA. (2) LO proportionally widens (tr.), especially posteriorly, and LO and L1 become subtrapezoidal, narrowing anteriorly. (3) L2 and L3 proportionally widen (tr.) and shorten (their combined exsagittal length decreases from 20% down to 12% of glabellar length) as they merge distally and isolate S2 from the axial furrow. (4) The ocular lobes proportionally shorten from 50% down to 35% of glabellar length (Fig. 7.3), and the angle between a line drawn from the posterior tip of the ocular lobe to the point where the abaxial margin of the ocular lobe contacts the axial furrow of L3 and the exsagittal axis varies between 30° and 45° without a distinct trend over the sampled portion of ontogeny; Fig. 7.2). (5) The extracranial area proportionally widens (tr.). (6) The adgenal angle slightly decreases, although with much variation (Fig. 8.1). (7) The genal spines become increasingly inflated (see below) and their bases become progressively less advanced (Fig. 8.3).

Holotype.—USNM 15407a, designated by Walcott (1884; see also Walcott, 1910, caption to pl. 40, fig. 17). A partially restored illustration of this specimen was provided by Walcott (1884, pl. 9, fig. 12) and subsequently copied in later works (Walcott, 1886, pl. 19, fig. 1; Walcott, 1890, pl. 84, fig. 2 [cites USNM catalog number 14510]; Walcott, 1910, pl. 40, fig. 17; Shimer and Shrock, 1944, pl. 254, fig. 17; Poulsen, 1959, fig. 135.6a). An unretouched photograph of the specimen was provided by Palmer and Halley (1979, pl. 5, fig. 4; see also Fig. 2.1, 2.2 herein).

Material examined.—FMNH PE58016; FMNH PE58069-58071; FMNH PE58074; FMNH PE58076-58084; FMNH...
FIGURE 7—Morphometric data for *Peachella iddingsi* (squares), *P. brevispina* (circles), and *Esopeachella angustispina* (triangles), plotted against sagittal glabellar length (mm).

1. angle of divergence of ocular lobes from exsagittal axis, measured as angle between exsagittal axis and line from posterior tip of ocular lobe to contact of adaxial margin of ocular lobe with abaxial margin of L3. 2. angle of divergence of ocular lobes from exsagittal axis, measured as angle between exsagittal axis and line from most abaxial point along ocular lobe to contact of abaxial margin of ocular lobe with abaxial margin of LA. 3. ocular lobe length. 4. advancement of anteriormost inflation of lateral cephalic border, quantified as the distance along the sagittal axis from the posterior margin of the glabella to a transverse line between the anteriormost point of inflation of the lateral cephalic border.

Other specimens.—Lieberman (1998) assigned LACMIP 4917-5 and UCR 2847.14 to *P. iddingsi*. The former specimen number refers to a fossiliferous platy limestone slab (cataloged as LACMIP 24917-5) bearing many fragments of *Bristolia*? sp. indet., but no *Peachella* specimens, and is here considered a misidentification. The latter specimen could not be located for inclusion in the present study: the catalog number now refers to a small specimen of *Mesonacis fremonti* (Walcott, 1910), and no record could be found of this number having been previously applied to a different specimen (M. A. Kooser, pers. comm., May 2008). Nelson (1976, pl. 8) figured a cephalon of *P. iddingsi* but did not provide a specimen number.

Occurrence.—CALIFORNIA: Marble Mountains, San Bernardino County: LACMIP locality 24870 (thin, dark buff to orange weathering limestone interbeds in upper 5 meters of Latham Shale), UCR 10 (bulk collection), UCR 10001 (shale float from...
section L–4 on western side of range), UCR 10155 (shale 1.28 to 1.46 meters above base of section L–5 on western side of range; 15.80 to 15.98 meters above base of Latham Shale), UCR 10156 (shale 1.50 to 1.63 meters above base of section L–5 on western side of range, 16.02 to 16.15 meters above base of Latham Shale), UCR 7621 (in uppermost Latham Shale on eastern side of range), UCR 9724 (float from upper Latham Shale on eastern side of range, probably from marker bed 20.40 to 20.44 above base of Latham Shale), UCR 10523 (19.87 meters above the base of the Latham Shale in section on eastern side of range; see LaGrange, 2002); all in the Latham Shale (see also Webster et al., 2003).

Providence Mountains, San Bernardino County: UCR 7003 (bulk collection), and upper portion of the Latham Shale (Webster et al., 2003).

Grapevine Mountains, Inyo County: Tita-nothere Canyon section, LACMIP locality 24908, USGS collections 4144-CO and 7183-CO (Palmer and Halley, 1979), in the upper Thimble Limestone Member, Carrara Formation.

Funeral Mountains, Inyo County: Echo Canyon section, USGS collection 4152-CO (Palmer and Halley, 1979; also personal observation), in the Thimble Limestone Member, Carrara Formation.

Nopah Range, Inyo County: Emigrant Pass section, 45 meters to 65 meters above base of Carrara Formation (Fowler, 1999; see also Mount, 1990b), including ICS-10110 and UCR 7914 (bulk collections from the Carrara Formation), LACMIP 11621 (approximately 48 meters above base of Carrara Formation), and LACMIP 11622 (approximately 55 meters above base of Carrara Formation).

Eagle Mountain, Inyo County: 43.5 meters to 47 meters above base of Carrara Formation (E. Fowler, pers. comm., July 2000).

NEVADA: Groom Range, Lincoln County: USGS collections 3694-CO, 3786-CO, and 3787-CO (Palmer and Halley, 1979), ICS-10029 (bulk collection), USNM localities 60h and 11622 (approximately 55 meters above base of Carrara Formation), and LACMIP locality 24908, USGS collections 4152-CO (Palmer and Halley, 1979; also personal observation), in the Thimble Limestone Member, Carrara Formation.

Desert Range, Clark County: USGS collection 7193-CO (Palmer and Halley, 1979), in the upper Thimble Limestone Member, Carrara Formation.

Delamar Mountains, Lincoln County: Big Lime Mountain section, ICS-1069 (bioclastic limestone block from float); Jaybird Ridge North Canyon section, ICS-10091 (bulk collection); Jaybird Ridge main section, ICS-1530 (bioclastic limestone 63.5 meters above top of Zabriskie Quartzite); both in the Thimble Limestone Member, Carrara Formation.

Toiyabe Range, Lander County: ICS-1364 (shaly limestone). Prospect Peak, Eureka County: USNM locality 52, arenaceous shales above the massive-bedded sandstones of the Prospect Mountain Formation (type locality; Walcott, 1910). Also known from USNM locality 22s (exact provenance uncertain).

All constrained occurrences are in a narrow stratigraphic interval in the upper Britsolia Zone. The first occurrence of Britsolia fragilis Palmer in Walcott and Halley, 1979, Britsolia aff. fragilis A (see Webster et al., 2003), Paraneophrolenellus besti Webster, 2007c, Mesonacis fremonti, Olenellus nevadensis (Walcott, 1910), Olenellus aff. terminatus (see Webster et al., 2003), and the top of the ranges of Eo pea chella angustispina and Britsolia anteros Palmer in Walcott and Halley, 1979, Taxonomic co-occurrence data from multi-specimen stratigraphically unconstrained slabs are consistent with this range. The first appearance of Peche ella iddingsi postdates that of Eo pea chella angustispina and predates that of P. brevispina. However, P. iddingsi co-occurs with E. angustispina in collections ICS-1005 and ICS-1046, and Fowler (1999) noted a single occurrence of P. iddingsi above the known range of P. brevispina at Mount Healy Pass.

Discussion.—The preceding text includes information from recently collected specimens and revises and expands upon the descriptions provided by previous workers. It includes the first formal description of the thorax of Peche ella iddingsi, a specimen bearing a thorax (LACMIP 11621; Fig. 4.1, 4.2 herein) that had been figured without description by Palmer and Repina (1993, fig. 4.2; 1997, fig. 257.2).

Peche ella iddingsi is the type species of the genus, and was included as the generic exemplar in a cladistic analysis of olenelloid phylogeny by Lieberman (1998). In that study, the species was apparently coded from examination of 16 specimens (Lieberman, 1998, p. 67; excluding an apparent misidentification [above]). During the course of the present study 116 specimens were examined in detail, representing all museum specimens of which the author is aware plus much newly collected material. This array of specimens yields new insight into the ontology and morphology of the species, and reveals previously undocumented intraspecific morphological variation. As a result, several of Lieberman’s (1998) character state assignments for P. iddingsi must be revised. The ocular lobes gradually decrease in dorso-ventral elevation between the mid-point of the ocular lobes and the axial furrows (character 15, state 0; this had been coded by Lieberman [1998] as being of constant dorso-ventral elevation [state 1]; see Figs. 3.3, 4.6). The ocular lobes are separated from the extraocular area by a prominent shelf (character 16, state 0; this had been coded by Lieberman [1998] as merging smoothly into the extraocular area [state 1]; see Figs. 2.2, 2.4, 4.6). An ocular furrow is
not prominent (character 19, state 1; this had been coded by Lieberman [1998] as being prominent [state 0]; an ocular furrow was seen on just one specimen, and even then was very shallow [Fig. 2.9]). At maturity, the ocular lobes diverge from the glabella (character 20) at 25° to 40° (measured as the angle between the exsagittal axis and a line from the posterior tip of ocular lobe to the contact of the abaxial margin of the ocular lobe with the adaxial margin of L3; Fig. 7.1). These observed data fall between Lieberman’s (1998) states 0 (10° to 20° angle) and 2 (45° angle), and no state listed by Lieberman (1998) is applicable. Lieberman (1998) had coded this character as being parallel to the sagittal line (state 1). The posterior tips of the ocular lobes are developed opposite the anterior third of L1 (Fig. 3.5), S1 (Fig. 2.7), or rarely the posterior half of L2 (Fig. 4.8); character 23, states 2, 3, and 5; this had been coded by Lieberman [1998] as opposite the medial portion of L1 only (state 2). S3 is oriented anterolaterally away from the sagittal axis until it contacts the ocular lobes and is therefore carat-shaped on each side of the glabellar axis (Fig. 3.1), and/or is not prominently incised (Figs. 2.6, 2.8); character 27 is therefore polymorphic [states 2 and 3; this had been coded by Lieberman (1998) as straight (state 0)]. S3 crosses the glabellar axis and is therefore conjoined medially (Fig. 3.1, 3.4), and/or is not prominently incised medially (Figs. 2.6, 2.8); character 28 is therefore polymorphic [states 0 and 2; this had been coded by Lieberman (1998) as not prominently incised medially (state 2) only]. Similarly, the middle sector of S3 is sometimes not prominently incised (Figs. 2.6, 2.8), and character 29 is also polymorphic [states 0 and 2; this had been coded by Lieberman (1998) as linear (state 0) only]. L1, L2, and L3 are gently convex in transverse convexity (character 30, state 0; Fig. 3.2; this had been coded by Lieberman [1998] as strongly convex [state 1]). S2 is sometimes not prominently incised medially (Figs. 2.6, 2.8, 3.5); it is therefore polymorphic for its orientation [character 31, states 1 and 2; this had been coded by Lieberman (1998) as transverse (state 1) only], its depth over the sagittal axis [character 33, states 0 and 2; this had been coded by Lieberman (1998) as conjoined medially (state 0) only], and its medial orientation [character 34, states 0 and 2; this had been coded by Lieberman (1998) as straight (state 0) only]. Extraocular genal caeca, anterior ocular lines, intergenal ridges, and genal ridges were present on some individuals but not on others (see above), and characters 45, 46, 47, and 48 are all therefore polymorphic [states 0 and 1; these had been coded by Lieberman [1998] as absent, not visible, prominent, and visible as a cephalic border furrow (Fig. 9.7, 9.8)]. Cephalic border furrow is defined by its intersection with the posterior cephalic border (intergenal angle of previous authors; see Webster, 2007b) can be located close to the base of the genal spine (character 53, state 0; coded by Lieberman [1998]; Fig. 4.4), but is absent on some specimens (states 3, Fig. 3.1, 3.4); character 53 is therefore polymorphic (states 0 and 3). At maturity, the strength of the adgenal angle ranged from 0° (absent) up to 34° (Fig. 8.1; character 55, equivalent to states 0 and an undefined state between states 1 and 0; this had been coded by Lieberman [1998] as state 0 only). An intergenal spine is either not developed (Fig. 2.6) or is represented by a distinct dorsal swelling or node (Figs. 4.5, 5.5, 5.6; character 54, states 0 and 1; this had been coded by Lieberman [1998] as being a small pointed spine [state 2]). Thoracic segments T5 to T8 are blunt-tipped and pleural spines are not obviously developed (Fig. 4.1, 4.2, 4.3; Lieberman [1998], character 63) coded the length of the pleural spines as extending two thoracic segments back (state 1), but a coding of state 2 (“do not sweep significantly back”) might be more appropriate. Similarly, because thoracic pleural spines are not obviously developed, the pleural furrows terminate on the inner pleural region (character 67, state 0; this had been coded by Lieberman [1998] as extending onto the pleural spines [state 1]). Pleural spines on T5 to T8 (character 72) cannot be determined; neither state for character 72 is appropriate (Lieberman [1998] coded this as state 0 [spine width more than two-thirds length of medial part of inner pleural region]). Whether considered individually or as a group, the lateral margins of the prothoracic axial rings either converge posteriorly or diverge then converge posteriorly (character 65, state 1; this had been coded by Lieberman [1998] as being sub-parallel [state 0]; Fig. 4.2, 4.3). Axial nodes are present on T1 to at least T9 (character 66, state 0; this had been coded by Lieberman [1998]; see also Sundberg, 2000) as absent [state 1]; Fig. 4.3). The effects of these revised character state assignments on Lieberman’s (1998) cladogram topology will be discussed elsewhere in a full systematic revision of the Olenelloidea. The high degree of morphological variation exhibited within P. iddingsi is typical of stratigraphically old, phylogenetically basal trilobites (Webster, 2007a).

Features distinguishing Peachella iddingsi from P. brevispina and E. angustissipina, the two most similar species, are discussed under those species.

Peachella brevispina Palmer in Palmer and Halley, 1979

Figures 9, 10, 11

Description (mature morphology)—Cephalon semicircular in outline; proximal portion of posterior cephalic margin angled slightly posteriorly away from axial furrow, straight (Fig. 9.1) or with distal portion flexing anteriorly by 15° to 25° relative to proximal portion at rounded adgenal angle located three-fifths to four-fifths of distance along posterior margin from axial furrow to base of genal spine (Fig. 9.7, 9.8). Greatest observed cephalic length approximately 15 mm (sag.). Genal spines wide, bluntly rounded, bulbous and inflated in relief; posterolaterally oriented; base opposite or posterior to LO; length less than half cephalic length (sag.). Proximal portion of ventral surface of genal spine not inflated, contiguous with cephalic doublure, clearly demarked from inflated portion of genal spine (Fig. 9.6, 9.10). Intergenal spine typically absent; rarely represented by small dorsal swelling on posterior cephalic border between adgenal angle and base of genal cephalic border furrow, respectively, corresponding to extremely weak cephalic border furrow which is virtually absent posterolaterally on some specimens (Fig. 9.1, 9.9) or by a break in slope only; evenly or acutely rounded dorsally anteriorly, steeply sloping to cephalic margin, gently sloping into cephalic border furrow; width of anterior border opposite junction of ocular lobes with LA approximately half length (exsag.) of LO; posterior border not defined or defined by extremely weak border furrow (Fig. 9.7, 9.10), narrows adaxially and poorly defined or absent at base of genal spine. Lateral cephalic border at base of genal spine distinctly broadened laterally and slightly inflated dorsally posterior to point opposite lateral margin of L2 or L1, merging into swollen genal spine. Glabella extends to anterior border furrow, 88% to 95% of cephalic length (sag.), hourglass-shaped, constricted at S1. Maximum width of LA up to 50% wider (tr.) than basal glabellar width. Posterior margin of glabella strongly convex posteriorly. Axial furrow very shallow. SO effaced or extremely shallow, when evident deepest abaxially, abaxial end slightly anterior to adaxial end (Fig. 9.2). S1 effaced or extremely shallow, when evident deepest abaxially, oriented strongly anterolaterally abaxially (Fig. 9.2). LO and L1 subtrapezoidal, narrow anteriorly, S2 effaced or extremely shallow, when evident deepest in slot position, isolated from axial furrow, abaxial end slightly anterior to adaxial end (Fig. 9.2). L2 and L3 merged distally, widening (tr.) anteriorly until contact with ocular lobes.
Figure 9—Morphologically mature cephalon of *Peachella brevispina*. 1, holotype cephalon, dorsal view, USNM 177236 (latex replica), ×4; 2–4, mostly exfoliated cephalon in dorsal, anterior, and left lateral views, FMNH PES8085, ×3; 5, large, compacted cephalon preserved in siltstone, dorsal view, FMNH PES8114, ×2; 6, incomplete cephalon with doublure at genal spine base exposed, dorsal view, FMNH PES8093, ×3; 7, partial cephalon, dorsal view, FMNH PES8087, ×3; 8, partial cephalon, dorsal view, FMNH PES8089, ×3; 9, cephalon, dorsal view, FMNH PES8088, ×4; 10, fragmentary cephalon showing ventral surface of genal spine and doublure, ventral view, FMNH PES8091, ×3. 1 from USGS collection 4167-CO, Dublin Hills, Inyo County, California; 2–4 and 6–10 from ICS-1073, Ruin Wash section, Chief Range, Lincoln County, Nevada; 5 from ICS-10113, Log Cabin Mine section, Highland Range, Lincoln County, Nevada. See text for stratigraphic details.
Figure 10—Morphologically mature specimens of Peachella brevispina. 1–3, articulated specimens showing details of prothorax and opisthathorax; 1, tectonized specimen, dorsal view, SDNHM 24548 (latex of counterpart), ×4; 2, tectonized specimen, dorsal view, NSB 3931a, ×2; 3, mildly tectonized specimen, dorsal view, NSB 3932c, ×4; 4, isolated left pleura and pleural spine of third thoracic segment, dorsal view, FMNH PE58092, ×3. 1–3 from Emigrant Pass section, Nopah Range, Inyo County, California; 4 from ICS-1073, Ruin Wash section, Chief Range, Lincoln County, Nevada. See text for stratigraphic details.

S3 effaced or extremely shallow, when evident oriented anterolaterally away from axis until contact with ocular lobes (Fig. 9.1, 9.6). LA slightly wider (tr.) than long (sag.), 30% to 45% of glabellar length (sag.), slightly inflated dorsally above extraocular area (Fig. 9.3), summit barely higher than posterior glabellar lobes (Fig. 9.4); widest point slightly anterior to contact with anterior margin of ocular lobes. Small to tiny axial node on LO. Ocular lobes divergent from exsagittal axis by 25° to 32° (measured as angle between exsagittal axis and line from posterior tip of ocular lobe to contact of adaxial margin of ocular lobe with abaxial margin of L3; Fig. 7.1), or 28° to 44° (measured as angle between exsagittal axis and line from most abaxial point along ocular lobe to contact of abaxial margin of ocular lobe with abaxial margin of LA; Fig. 7.2), crescentic, posterior tip close to axial furrow and opposite anterior half of L1 (Fig. 9.8) or S1 (Fig. 9.2, 9.6), convex dorsally; ocular furrow not developed. Intercocular area sloping down from ocular lobes to axial furrow (can appear flat and shelf-like on compacted specimens), slightly narrower than width (tr.) of ocular lobes and approximately 20% to 30% width (tr.) of extraocular area opposite L2. Extraocular area sloping relatively steeply down to cephalic border (Fig. 9.3). Weak posterior ocular line present on some individuals (Fig. 9.7, 9.9). Genal caeca occasionally weakly developed on extraocular area (Fig. 9.6, 9.9). Terrace lines on cephalic doublure and rostral plate (Fig. 10.2). Bertillon markings sometimes developed on dorsal surface of base of genal spine (Fig. 10.1), rarely on dorsal surface of anterior and lateral cephalic border (Fig. 10.1), and questionably rarely on anterior portion of ocular lobes. Hypostome unknown.

Prothorax of 14 segments (Fig. 10.1, 10.2, 10.3); width (tr.) of axis approximately equal to width (tr.) of inner pleural region on T1, gently tapering posteriorly. Axial nodes developed on all segments (Fig. 10.1). Inner pleural regions of T1 and T2 transverse, tapering distally, with straight margins; tips blunt. T3 hyperpleural; pleural spine robust, dolichosporous, sharp-tipped. Inner pleural region of T4 to progressively lesser extent T5 and T6 tapering, divergent relative to transverse line proximally, curving to more transverse orientation distally. Inner pleural regions of T6 to T10 transverse, parallel-sided, with straight margins. Inner pleural regions of T11 to T14 increasingly divergent, parallel-sided, margins increasingly curved on more posterior segments. Pleurae of T4 to T14 blunt-tipped or with very small sentate pleural spines, progressively longer on more posterior segments. Pleural furrows barely extend onto base of pleural spines of T3 and
T9 to T14 when spines are developed. Base of pleural spine of T3 may bear terrace lines or bertillon markings, distally grading into granulations on pleural spine (Fig. 10.1, 10.4).

Opisthothorax of at least 9 segments (Fig. 10.1). Long axial spine on T15; presence of axial structures on T16 and more posterior segments unclear. Inner pleural regions of T15 slightly curved, tapering, divergent; straight, parallel-sided, and divergent on all more posterior segments; tips of pleurae of T15 to T21 pointed, tips of more posterior segments unclear. Axis poorly defined by weak axial furrow on T15 to T19; defined by break in slope on more posterior segments. Pleural furrows effaced. Rest of opisthothorax and pygidium unknown.

Ontogeny.—Known specimens range from approximately 2.6 mm (Fig. 11.1, 11.2) to approximately 15 mm in cephalic sagittal length (Figs. 9.5, 9.7, 10.2).

On the smallest known cephalia the axial and glabellar furrows are moderately well incised (Fig. 11.1, 11.2). L2 and L3 barely widen anteriorly, L3 is only marginally wider (tr.) than L2, and the ocular lobes barely contact the anterolateral corner of L3. These are characteristics of the earliest stages of phase 4 of olenelloid cephalic development (above). Transition into phase 4 of cephalic development evidently took place at smaller cephalic size in *P. brevispina* (approximately 2.6 mm sag. length) and in the two *Nephrolenellus* species (approximately 3.2 mm sag. length; Webster, 2007b).

During subsequent development in *P. brevispina*, the posterior portion of LO proportionally widened and, as in *Nephrolenellus*, L1 progressively proportionally narrowed (tr.) anteriorly, L2 and L3 proportionally widened (tr.) and shortened (exsag.), and LA proportionally elongated (sag.) and widened (tr.), resulting in the hourglass-shaped glabella typical of morphologically mature individuals. Proportional anterolateral expansion and ultimate merger of the distal portions of L2 and L3 with consequent isolation of S2 from the axial furrow evidently occurred at cephalic lengths somewhere between 2.7 mm and 5 mm: this merger of L2 and L3 defines entry into phase 5 of olenelloid cephalic development (above). In contrast to *Nephrolenellus* species (Webster, 2007b), there is no indication of axial nodes on glabellar lobes anterior to LO over the known portion of *P. brevispina* ontogeny. The axial and glabellar furrows are less well incised on cephalia 3.5 mm and 4.5 mm in sagittal length (Fig. 11.3, 11.4), and are extremely shallow or effaced on cephalia longer than 5 mm (sag.).

Other morphological changes over the sampled portion of ontogeny in *P. brevispina* included considerable modification to cephalic outline: the extraocular area progressively widened (tr.), the posterior cephalic margin progressively became oriented more strongly posteriorly when traced abaxially (trending from 5° to
15° relative to a transverse line; Fig. 8.4), the base of the genal spines became progressively less anteriorly advanced (Fig. 8.3), and the anteriormost point of inflation of the lateral cephalic border became more posteriorly located during phases 4 and 5 of cephalic development (Fig. 7.4). There is no pronounced change in the strength or relative location of the adgenal angle along the posterior cephalic margin over the sampled portion of ontogeny (Fig. 8.1, 8.2). The ocular lobes proportionally shortened (from approximately 47% to just over 30% of sagittal cephalic length), associated with an anterior migration of the posterior tips of the ocular lobes from a point opposite the midpoint of L1 (Figs. 7.3, 11.1).

The shape of the genal spine is unclear on the smallest known specimens, but on a cephalon 4.5 mm in sagittal length (Fig. 11.4) the spines are more elongate and less bulbous at the distal end relative to the morphologically mature condition. On this small specimen the inflation of the genal spine does not extend to the very tip of the spine, which can be seen as a tiny, thorn-like projection extending posteriorly from the posterolaterally oriented inflated portion of the spine. The transition from the swollen to the non-swollen portion of the spine is abrupt. The spine tip is located slightly posterior to the midline of the swollen part of the spine, indicating that inflation of the genal spine was pronounced on the outside (abaxial) margin of the spine. This spine tip is absent on all larger specimens, presumably having been either resorbed or inflated so as to be continuous in relief with the rest of the genal spine (see below).

A thorax bearing at least twelve segments is preserved on one of the smallest known specimens (Fig. 11.1). This smallest known thorax is qualitatively similar in all morphologically mature condition (described above) except that it is proportionally narrower (tr.) relative to its length, it is even more posteriorly tapered in outline, and the pleurae of all segments are laterally elongate (tr.) of LO and the pleurae of all segments relative posteriorly tapered in outline, and the pleurae of all segments are laterally elongate (tr.) of LO and the anteriormost point of inflation of the lateral cephalic border is located more posteriorly in P. brevispina than in P. iddingsi (Fig. 7.4). The degree of cephalic effacement is also typically higher in P. brevispina.

Other differences are more subtle: the ocular lobes tend to be slightly longer relative to glabellar length in P. brevispina than in P. iddingsi, although with much overlap in variation (Fig. 7.3); the occipital node is typically smaller in P. brevispina than in P. iddingsi; and anterior ocular lines, intergal ridges, and genital ridges are present on some specimens of P. iddingsi, but have not been observed on P. brevispina. Palmer in Palmer and Halley (1979) noted that the glabella was narrowest at about its mid-length in P. iddingsi, but was of nearly constant breadth in P. brevispina. This potential interspecific difference is not supported here (Fig. 8.5). Differences from Eopeachella angustispina are discussed under that species.

Genus Eopeachella new genus

Type species.—Eopeachella angustispina n. sp., by monotypy.

Diagnosis.—Biceratopsids of relatively small size (sagittal length of cephalon rarely exceeds 11 mm). Glabella hourglass-shaped, constricted at S1, transverse width of L1 less than width of LO; glabellar furrows very shallow; preglabellar field absent. Ocular lobes short, posterior tips located close to glabella opposite anterior third of L1 or S1. Distal portion of posterior margin of cephalon flexing anteriorly by 35° to 55° relative to proximal portion at rounded adgenal angle located approximately two-thirds of distance along posterior margin from axial furrow to base of genal spine. Intergal spines absent or represented by tiny swellings. Genal spines just less than half cephalic length (sag.), moderately stout, taper along length to blunt tip, base opposite LO. Lateral cephalic border and base of genal spine distinctly broadened laterally and slightly inflated dorsally posterior to point opposite lateral margin of L2 or L3, maximum inflation at base of genal spine.

Occurrence. — Upper Dycean, Bristolia Zonule of Palmer and Halley (1979); U.S.A. (Nevada).

Etymology.—Named for the lower stratigraphic first appearance and inferred sister-taxon relationship to Peachella.

Figure 12—Morphologically mature cephalon of Eopeachella angustispina. 1–3, holotype cephalon in dorsal, left lateral, and oblique dorsoanterolateral views, FMNH PE58061, ×3; 4–7, Cephalon in dorsal, left lateral, anterior, and oblique dorsoanterolateral views, FMNH PE58060, ×3; 8, partially exfoliated cephalon, dorsal view, FMNH PE58073, ×4. 1–7 from ICS-1003, 8 from ICS-1046, all from Oak Spring Summit section, Delamar Mountains, Lincoln County, Nevada. See text for stratigraphic details.

Discussion.—Based on their very similar oculo-glabellar morphology (including general effacement), Eopeachella is hypothesized to be the sister-taxon to Peachella. The genera are most easily distinguished by the development in Eopeachella of moderately stout, blunt-tipped, genal spines which taper along their length, as opposed to the grossly bulbous, inflated genal spines in both Peachella species. It is deemed more appropriate to recognize Eopeachella as a distinct genus rather than expand the diagnosis of Peachella to include E. angustispina and lose the historical association of Peachella with bulbous genal spines. The relationship of Biceratops to this hypothesized Eopeachella + Peachella clade/grade has yet to be resolved, and will be fully explored in a comprehensive cladistic analysis to be presented elsewhere.

Eopeachella angustispina new species
Figures 12, 13
Peachella n. sp. Webster, 2007c, p. 51.

Description (mature morphology).—Cephalon semicircular in outline; proximal portion of posterior cephalic margin angled slightly posteriorly away from axial furrow, distal portion flexing posteriorly by 35° to 55° relative to proximal portion at rounded adgenal angle located approximately two-thirds of distance along posterior margin from axial furrow to base of genal spine. Greatest cephalic length estimated to exceed 11 mm (sag.). Genal spine moderately stout, tapers along length to blunt tip, base opposite LO; length just less than half cephalic length (sag.). Intergenal spine typically absent, rarely represented by tiny swelling located midway between adgenal angle and base of genal spine (Figs. 12.8, 13.6). Cephalic border defined by very shallow cephalic border furrow which weakens posterolaterally on some specimens (Fig. 12.8); rounded dorsally anteriorly, steeply sloping to cephalic margin, gently sloping into cephalic border furrow; width of anterior border opposite junction of ocular lobes with LA approximately half length (exsag.) of LO; posterior border narrows adaxially. Lateral cephalic border and base of genal spine distinctly broadened laterally and slightly inflated dorsally posterior to point opposite lateral margin of L2 or L3, maximum inflation.
FIGURE 13—Morphologically mature cephalon of *Eopeachella angustispina*. 1, poorly preserved, exfoliated cephalon in early phase 5 of development, dorsal view, FMNH PES8066, ×10; 2, incomplete and exfoliated cephalon, dorsal view, FMNH PES8065, ×7; 3, exfoliated cephalon, dorsal view, FMNH PES8064, ×5; 4, mostly exfoliated cephalon, dorsal view, FMNH PES8063, ×5; 5, incomplete and exfoliated cephalon, dorsal view, FMNH PE58067, ×4; 6, mostly exfoliated cephalon, dorsal view, FMNH PES8062, ×3; 7, incomplete and mostly exfoliated cephalon, dorsal view, FMNH PE58068, ×4. All specimens from ICS-1003, Oak Spring Summit section, Delamar Mountains, Lincoln County, Nevada. See text for stratigraphic details.

at base of genal spine; width (tr.) of border at point of maximum inflation approximately 1.5 times length (exsag.) of LO. Glabella extends to anterior border furrow, 90 to 95% of cephalic length (sag.), hourglass-shaped, constricted at S1. Maximum width of LA up to 17% wider (tr.) than basal glabellar width. Posterior margin of glabella convex posteriorly. Axial furrow and all glabellar furrows very shallow. SO deepest abaxially, abaxial end slightly anterior to adaxial end. S1 deepest abaxially, oriented strongly anterolaterally abaxially. LO and L1 subtrapezoidal, narrowing anteriorly. S2 deepest in slot position, isolated from axial furrow, abaxial end slightly anterior to adaxial end. L2 and L3 merged distally, widening (tr.) anteriorly until contact with ocular lobes. S3 oriented anterolaterally away from axis until contact with ocular lobes; very shallow over axis. LA slightly wider (tr.) than long (sag.), 35% to 45% of glabellar length (sag.), slightly inflated dorsally above extraocular area (Fig. 12.6), summit slightly higher than posterior glabellar lobes (Fig. 12.2, 12.5); widest point slightly anterior to contact with anterior margin of ocular lobes. Large axial node on LO; L1 typically with low, broad swelling axially (Figs. 12.1, 12.4, 12.7, 13.1, 13.3, 13.4, 13.6, 13.7). Ocular lobes divergent from exsagittal axis by 22° to 28° (measured as angle between exsagittal axis and line from posterior tip of ocular lobe to contact of adaxial margin of ocular lobe with abaxial margin of L3; Fig. 7.1) or 35° to 42° (measured as angle between exsagittal axis and line from most abaxial point along ocular lobe to contact of abaxial margin of ocular lobe with abaxial margin of LA; Fig. 7.2), crescentic, posterior tip close to axial furrow and opposite anterior third of L1 (Fig. 13.3, 13.4) or S1 (Fig. 12.1, 12.4, 12.7), convex dorsally; ocular furrow not developed. Interocular area sloping down from ocular lobes to
axial furrow (Fig. 12.6), slightly narrower than width (tr.) of ocular lobes and approximately one-sixth width (tr.) of octoceracal area opposite L2. Extraceral area gently vaulted (Fig. 12.6). Cerebral ceca occasionally developed on extraceral area (Fig. 13.5). Very weak ridge representing either intergenal ridge or posterior oculine line present on some individuals (Figs. 12.1, 12.4, 13.4, 13.5, 13.7). Hypostome, thorax, and pygidium unknown.

Otogeny.—Known cephalon range from approximately 3.9 mm (Fig. 13.1) to more than 11 mm sagittal length. On all these specimens the anterolateral margins of L3 are in contact with the adaxial margins of the ocular lobes, and L3 is wider (tr.) than L2; the distal portions of L2 and L3 are also merged, and S2 is therefore isolated from the axial furrow. This glabellar morphology is characteristic of phase 5 of ontogenetic development of the olenellid cephalon (see above). Similar-sized specimens of P. iddingsi and P. brevispina are also in phase 5 of cephalic development. Morphological changes in E. angustispina over this ontogenetic interval were very slight: the ocular lobes slightly shortened such that the posterior tips migrated from a position opposite the mid-length of L1 (Fig. 13.1, 13.2) to oppose the anterior third of L1 or S1. The low, broad swelling on the axis opposite the mid-length of L1 (Fig. 13.1, 13.2) to opposite the axial furrow (Fig. 13.5). Very weak ridge representing either intergenal ridge or posterior cephalic border at the base of the genal spines, and in the tapering of the genal spines, E. angustispina closely resembles Paraneophrorenellus inflatus. However, in Paraneophrorenellus inflatus the glabellar, axial, and cephalic border furrows are prominently incised, the genal spines taper to a sharp point, L2 and L3 do not merge distally, LA is wider and much more prominently inflated dorsally, and the ocular lobes are more strongly divergent. Cladistic analysis (to be presented elsewhere) suggests that the similarity in morphology of the lateral cephalic and base of genal spines between these taxa is convergent.

The first appearance of Eopeachella angustispina is stratigraphically lower than that of either Peachella species, although the top of its range overlaps with P. iddingsi (collections ICS-1005 and ICS-1046). The previously undocumented occurrence of E. angustispina and of P. brevispina (above) in the Delamar Member raises the diversity of olenellid trilobites in that unit to 20 species (see also Webster, 2007c), exceeding that in all other coeval units.

On the Origin of the Derived Features of Peachella

Peachella has long been diagnosed by its general cephalic effacement and its prominently inflated, bulbous genal spines. However, the ontogenetic and phylogenetic origins of these derived features have remained enigmatic. The material examined and described above permits insight into these issues.

As discussed above, Eopeachella angustispina is considered to be the sister-taxon to Peachella. The stratigraphic order of first appearances of the species (E. angustispina below P. iddingsi below P. brevispina) cannot be interpreted in terms of a simple anagenetic evolutionary lineage: the fact that E. angustispina co-occurs with P. iddingsi and that the stratigraphic range of P. brevispina may be contained within that of P. iddingsi (above) demonstrates that Eopeachella and Peachella evolution involved cladogenetic speciation.

Cephalic effacement.—In both Peachella species the effacement of cephalic furrows occurred progressively during relatively late stages of ontogeny (phases 4 and 5 of cephalic development). In Peachella iddingsi, the axial and glabellar furrows are well incised on a cephalon 2.2 mm in sagittal glabellar length (Fig. 5.1); the furrows are less prominent on cephalon 3.2 to 3.7 mm in sagittal length (Fig. 5.2, 5.3, 5.4), and are very shallow on cephalon 3.9 mm in sagittal length (Fig. 5.5). Traces of glabellar furrows can often be seen even on large cephalas (Figs. 2.7, 3.1). In Peachella brevispina, the axial and glabellar furrows are moderately well incised on cephalon 2.6 mm in sagittal cephalic length (Fig. 11.1, 11.2); the furrows are less prominent on cephalon 3.5 mm and 4.5 mm in sagittal length (Fig. 11.3, 11.4), and are extremely shallow or effaced on cephalon larger than 5 mm (sag.). Cephalic effacement is similarly ontogenetically dynamic in Biceratops (unpublished data). It is presently unknown whether cephalic effacement also progressively occurred during the ontogeny of Eopeachella: the smallest known specimen of E. angustispina (approximately 3.9 mm in sagittal cephalic length; Fig. 13.1) bears very shallow cephalic furrows. Other biceratopsid taxa such as Nephrolenellus spp. (Webster, 2007b) and Bristolia spp. (Palm er and Halley, 1979) possess well incised cephalic furrows throughout ontogeny. It therefore seems parsimonious to interpret
progressive cephalic effacement during ontogeny as a character-istic which evolved in the last common ancestor of Biceratops, Eopeachella, and Peachella.

This ontogenetic trend towards cephalic effacement is mirrored by a general stratigraphic and phylogenetic trend. The degree of cephalic effacement is typically somewhat less in Eopeachella angustispina than in Peachella iddingsi, and effacement is most extreme in P. brevispina. Such a coupling between an ontogenetic and a stratigraphic/phylogenetic trend could be achieved through evolutionary rate and/or timing modifications to development (Webster and Zelditch, 2005).

McNamara (1986) suggested that effacement of glabellar furrows was associated with morphometric development of the glabella from the “expansion stage” (roughly equating to phases 3, 4 and 5 of cephalic development as defined above) into the “de-velopment stage” (equating to phase 5 of cephalic development as defined above) in Cambrian trilobites. This purported association is not tenable for olenelloid trilobites, however. In terms of glabellar shape and segmentation (which define the various stages in McNamara’s [1986] divisions of glabellar ontogeny and the various phases of cephalic development used here), the condition in morphologically mature (phase 5) Biceratops, Eopeachella, and Peachella (which are effaced) is no more ontogenetically “advanced” than in morphologically mature (phase 5) Bristolia or Olenellus species (which are not effaced). Furrow effacement in olenelloids is a progressive ontogenetic feature superimposed upon and independent of a phylogenetically conserved pattern of ontogenetic shape change in the glabella.

Furrow effacement similar to that observed in Peachella convergently evolved in many other trilobite groups (e.g., “diplomorph” trilobites and many agnostine and styginid genera; see Shergold, 1977; Lane and Thomas, 1983; Fortey and Owens, 1990, 1997). As in Peachella (above), the effacement is ontogene-tically dynamic in at least some of these other cases (e.g., the olenid Leurostega aphelix Robison and Pantoja-Alor, 1968; see Robison and Pantoja-Alor, 1968, pl. 103, figs. 1–4, 7–9). Comparative morphology at early (pre-effacement) ontogenetic stages may therefore be useful in resolving phylogenetic placement of effaced taxa within otherwise non-effaced clades.

The functional significance of effacement is unknown, and there is no consistent correspondence between effacement and environment or exoskeletal thickness among other effaced trilobites (Fortey and Owens, 1997). Lane and Thomas (1983) noted that effacement in stygins and phylogenetic clades may be with an increase in dorsal convexity of the exoskeleton and an increase in width of the axis. The Peachella cephalon is moder-ately strongly vaulted for an olenelloid, and there is no apparent association between axis width and effacement in these trilobites. In terms of environment, Peachella ranged across the Cordilleran shelf (Fig. 1) and is found in a variety of lithologies. In P. iddingsi there is variation in degree of effacement among similar sized specimens within single collections (e.g., compare Fig. 2.6 and 2.7; or Fig. 2.8 and 2.3 or 2.5). When this within-collection var-iation is taken into account, there are no obvious differences among localities in the degree of effacement. This suggests that degree of effacement was not an ecophenotypic response to environmental heterogeneity, at least within species on the geo-graphic scale sampled here. There is similarly little support for ecophenotypy as an explanation for interspecific differences in degree of effacement. Peachella is restricted to a time of general relative shallowing (Webster, 2007c), but the lowest occurrence of Eopeachella (and the inferred phylogenetic origin of efface-ment in the clade) is in the lower portion of the Delamar Member in an interval of relative deepening (Webster, 2007c). Eopeachella and Peachella (and also the stratigraphically younger Biceratops) co-occur with many other trilobites which do not show analogous ontogenetic or stratigraphic trends toward effacement.

Genal spine inflation—The present study reveals that the char-acteristic bulbous, inflated, blunt-tipped genal spine morphology of morphologically mature Peachella specimens was also pro-gressively attained during ontogeny. At phase 3 of cephalic de-velopment in P. iddingsi the base of the genal spine is only slight-ly inflated, and the spine tapers along its length in the style of a “typical” trilobite (Fig. 5.1). During phase 4 of cephalic devel-opment the genal spines become progressively more inflated (compare Fig. 6.1 and 6.6 to Fig. 5.2, 5.3, and 5.4), and by early phase 5 of cephalic development the genal spines are essentially of mature morphology (Fig. 5.5, 5.6). Some specimens in phase 5 of cephalic development retain a tiny thorn-like projection at the distal tip of the genal spine (Figs. 2.3, 2.10, 4.4, 5.5, 5.7). Assuming that this projection represents the true tip of the genal spine, this suggests that the inflation of the spine progressed in a proximal-to-distal direction down the spine during phases 3, 4, and 5 of ontogeny (in a crudely similar fashion to the pattern of inflation of an elongate party balloon). The location of this pro-jection indicates that the spine is more prominently inflated on its abaxial side.

The same ontogenetic pattern of spine inflation apparently also holds for P. brevispina. Small cephalic of P. brevispina exhibit a genal spine morphology strikingly similar to that of P. iddingsi in phase 4 of cephalic development (compare Fig. 11.4 with Fig. 5.3). The small thorn-like projection on the distal tip of the genal spine can also be seen on Fig. 11.4. All known specimens of Eopeachella in phase 5 of cephalic development and have an essentially mature genal spine morphology which is, at least in the sense of being broad and inflated proximally and tapering to the tip, coarsely similar to the early stage of ontoge-netic inflation of the genal spine of Peachella. It therefore seems parsimonious to interpret progressive genal spine inflation during ontogeny as a characteristic which evolved in the last common ancestor of Eopeachella, and Peachella. (Biceratops lacks genal spines, and the condition of the last common ancestor of the hypothesized Eopeachella + Peachella + Biceratops clade is there-fore unknown.)

The degree of spine inflation is markedly greater in Peachella than in the stratigraphically older Eopeachella. Mirroring the pat-tern of cephalic effacement, this crude parallelism between on-togenetic inflation and phylogenetic clades was often also achieved through evolutionary rate and/or timing modifications to development (Webster and Zelditch, 2005).

Also like cephalic effacement, genal spine inflation conver-gently evolved (although not to the degree found in Peachella) in several trilobite lineages (e.g., the Carboniferous Cystispsina Richter and Richter, 1939, Tawstockia Brauckmann, 1974, and Spatulina Osmólska, 1962; see Hahn et al., 1992; Owens and Tilsley, 1995). As in Peachella (above), the inflation of the spine in at least some of these taxa did not extend to the tip and, al-though their early ontogenies are unknown, it is possible that progressive inflation during development also occurred. These phyllopod taxa inhabited deep-water facies, and are characterized by moderate effacement of glabellar furrows and a reduction or loss of eyes. The spine inflation and effacement of the inferred Eopeachella and Peachella clade initiated during a time of rela-tive sea-level deepening, but was maintained during subsequent shallowing. Peachella is found in a range of lithologies (carbonates, mudstones, and sandstones), rendering an explanation of the spine morphology in terms of adaptation to a particular substrate type (e.g., for support) poorly substantiated. Thus, although study of Eopeachella and Peachella offers insight into the inferred Eopeachella and Peachella clade initiated during a time of rela-tive sea-level deepening, but was maintained during subsequent shallowing. Peachella is found in a range of lithologies (carbonates, mudstones, and sandstones), rendering an explanation of the spine morphology in terms of adaptation to a particular substrate type (e.g., for support) poorly substantiated. Thus, although study of Eopeachella and Peachella offers insight into the inferred
ACKNOWLEDGMENTS

The kind assistance of F. Collier, T. Deméré, H. Filkorn, M. Florence, M. A. Kooser, and C. Labandiera during loan of ma-
cerates from their institutions is appreciated. R. G. Buttes graciously
accepted and then generously loaned specimens from his private collection to the ICS, and N.
Brown and E. Fowler generously loaned material from their
private collections. Welcome assistance in the field collecting Peach-
ella specimens was provided by N. Brown, G. Dechman, E. Fowler,
M. A. Kooser, J. E. LaGrange, P. M. Sadler, and C. Stevenson.
A. R. Palmer collected the specimens of *Eoeppelella angustispina*
from Oak Spring Summit. N. C. Hughes and J. S. Hollingsworth
provided helpful reviews.

REFERENCES

BATIE, E. E. 1965. Stratigraphic analysis of the Cambrian Carrara Formation,
Death Valley region, California-Nevada. Unpublished M.A. Thesis, Uni-
versity of California, Los Angeles. 225 pp.

BEECHER, C. E. 1895. The larval stages of trilobites. American Geologist, 16:
166–197.

BRAUCKMANN, C. 1974. Neue Trilobiten aus dem Kulm von Aprath bei Wup-
stand. Naturkundliche Verhandlungen der Vereinigung der Freunde des Abend-

BATES, E. E. 1965. Stratigraphic analysis of the Cambrian Carrara Formation,

FOWLER, E. 1999. Biostratigraphy of upper Dyean strata of the Carrara Forma-
(ed.), Laurentia 99: V Field Conference of the Cambrian Stage Subdivision

tisppini (Trilobita: Carbon). Senckenbergiana lethaia, 72:91–120.

HALL, J. 1862. Supplementary note to the thirteenth report of the Regents on
the State Cabinet. Fifteenth Annual Report of the Regents of the University
of the State of New-York, on the condition of the State Cabinet of Natural
History, and the Historical and Antiquarian Collection annexed thereto, p.
114.

HARRINGTON, J. H. 1956. Olenellidae with advanced cephalic spines. Journal
of Paleontology, 30:56–51.

HOLM, G. 1887. Om Olenellus Kjerulfi Linns. Geologiska Fo¨reningens i Stock-
molens Kjellrus. Li¨nings. GeologiskaFo¨reningens iStockholm Förhandlingar,

LAGRANGE, J. E. 2002. Biostratigraphy of Olenellid Trilobites from the Low-

LIEBERMAN, B. S. 2003. Biogeography of the Trilobita during the Cambrian
radiation: Deducing geological processes from trilobite evolution. Special

LIEBERMAN, B. S. 1980. The Lower and Middle Taconic of Europe and North

LIEBERMAN, B. S. 1980. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 2002. The Taconic System and its position in stratigraphic
geology. Proceedings of the American Academy of Arts and Sciences, 20:
174–256.

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 2002. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

LIEBERMAN, B. S. 1986. The role of heterochrony in the evolution of Cam-

LIEBERMAN, B. S. 1980. Palaeomorphosis in Scottish olenellid trilobites (Ear-

ACCEPTED 24 OCTOBER 2008