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The main purpose of this work is to show how a continuous finite bandwidth of 
modes can be readily incorporated into the description of post-critical Rayleigh- 
B6nard convection by the use of slowly varying (in space and time) amplitudes. 
Previous attempts have used a multimodal discrete analysis. We show that in 
addition to obtaining results consistent with the discrete mode approach, there 
is a larger class of stable and realizable solutions. The main feature of these 
solutions is that the amplitude and wave-number of the motion is that of the most 
unstable mode almost everywhere, but, depending on external and initial 
conditions, tihe roll couplets in different parts of space may be 180" out of phase. 
The resulting discontinuities are smoothed by hyperbolic tangent functions. In 
addition, it is clear that the mechanism for propagating spatial nonuniformities 
is diffusive in character. 

1. Introduction and general discussion 
It is clear from the stability diagram (figure 1) of Rayleigh number us. wave- 

number in the case of a motionless fluid heated from below that, for a given Ray- 
leigh number greater than the critical Rayleigh number, a continuous finite band 
of modesin the neighbourhood of the critical wave-number (&) may be excited. 
For example, if (R - .Rcr)/&r (R the Rayleigh number) is e2x, then a O ( E )  band of 
modes is possible. Previous work such as that of Schluter, Lortz & Busse (1965) 
and Segel (1966) are typical of attempts to examine possible finite amplitude 
solutions in that the analysis is carried through using a discrete modal synthesis 
in order to  represent the flow fields. While extremely regular rolls have been 
observed in some supercritical experimental situations (Koschmieder 1966), in 
general the observed rolls have exhibited rather irregular patterns (Chen & 
Whitehead 1968; Silveston 1958). It is difficult to conceive that discrete multi- 
modal solutions can allow a wide enough class of functions to describe the 
spatial amplitude modulations which inevitably occur as the result of non- 
uniform forcing or from general initial and boundary conditions. We attempt 
here to include a wider class of solutions by allowing the continuous band to be 
represented. The technique used is similar to that developed by Benney & Newel] 
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(1967) for interacting wave packets and analogous to the averaging technique 
of Whitham (1965). The basic idea is to treat the amplitude W of the vertical 
velocity's neutral solution around R = Rcr, k = k,, as a slowly varying function 
of both position and time. 

Insertion of this representation of the neutral solution into the non-linear 
equations leads to certain conditions having to be satisfied in order to successively 
solve the iteration equations. This solvability condition then yields an equation 
for W ( X ,  Y ,  7') (X = EX, Y = ~ y ,  T = s2t). In  non-dimensional form, this reads 

where fi is the unit vector in the direction of a critical mode, and p = V/K is the 
Prandtl number. 

The only difference in this equation from other approaches (for example, Segel 
1966) is the presence of the diffusion term on the left-hand side. In  the absence 
of this term the amplitudes would be driven to the stable stationary solution by 
the Van der Pol oscillator term on the right-hand side: 

ww* = 37r2x. (1.2) 

Our first observation is that non-uniformities in space are propagated (in 
dimensional form) by diffusion according t o  the law 

(1.3; 

where K is the thermometric conductivity. In the limit of large Prandtl 
number (or small heat conductivity) the relevant diffusion time is that of heat 
conduction as the information that one roll is spinning is relayed to its neigh- 
bour by a thermal torque. On the other hand, for low Prandtl numbers (or 
high heat conductivity) the very fast propagation of temperature information 
suppresses the effect of the thermal torque in the neighbouring roll and the 
information is transmitted by viscous torques. We see from (1.3) that in the limit 

P + O  x - 42/(vt). 

Such diffusive behaviour has been observed in an apparatus described by Chen 
& Whitehead (1968). Shortly after the critical Rayleigh number was exceeded, 
one spot would begin to convect. If the critical Rayleigh number was only slightly 
exceeded so that small random disturbances elsewhere in the tank had not suffici- 
ent time to grow by themselves, the disturbance that first convected would diffuse 
outward, triggering neighbouring cells. In  the very slow and careful experiment 
by Koschmieder (1966), the sidewall effect dominated the pattern of flow. We 
emphasize that once diffusion has triggered the disturbance, its subsequent 
growth depends additionally on the Van der Pol forcing. However, in many 
situations thereisinitially no significant spatial non-uniformity ; in fact, the initial 
disturbances can be spatially random. In these situations the statistical initial 
value problem would be appropriate. 

In  $2, equations somewhat more general than (1.1) and appropriate for the 
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study of finite bandwidth convection are developed. The essential difference is 
that we treat modal packages instead of discrete modes. By a modal package we 
mean a local continuous band of wave-numbers centred on a discrete mode. 
The advantages of the approach are fully discussed. In  0 3, we look at  the modal 
solutions for the case of rolls and their stability. Although the approach is new, 
this part of the analysis closely resembles the work of Schluter et al. (1965) 
and that of Eckhaus (1965). However, in addition, although we are in full agree- 
ment with the results of these authors on the stability bounds of modal solutions, 
we show that it is unlikely that modes other than the critical mode can ever 
reach their finite amplitude solutions if perturbed before they reach their finite 
amplitude state. Correlation of these analytic results with the experiment of 
Chen & Whitehead (1968) is discussed. 

In 8 4, we develop a completely new class of solutions and demonstrate in some 
limited cases their stability. Although reasonably complicated solutions can 
occur depending upon initial and boundary conditions, one of the essential 
features is that the rolls often reach the finite amplitude solutions of the critical 
modes lying on the circle k2 = &.n2 of the neutral stability surface (see figure 2). 
This phenomenon manifests itself as solutions in which the modulus of the ampli- 
tude is that of the finite amplitude state of the neutral roll but where the sense of 
rotation of corresponding roll couplets differs in different parts of space. The 
discontinuities (which may be forced by external heating, initial or boundary 
conditions) are smoothed by boundary-layer-like hyperbolic tangent functions. 
In addition, in order for these solutions to be stable ' jetlike ' profiles appear as 
the envelope solutions to the neutral modes which are 90" out of phase. 

Finally we emphasize that although a discrete package representation is 
necessary in order to describe a full three-dimensional flow, in the two-dimen- 
sional case a single diffusion-like equation suffices to describe a,ny flow. Several 
numerical solutions to this equation with various initial and boundary con- 
ditions were computed. The solutions obtained contained the essential feature 
described in the previous paragraph, namely that the shape of the steady 
solutions proved to be rectangular with discontinuities smoothed by hyper- 
bolic tangent functions. However, the relevant scales of the final solution 
were closely related to the dominant scales of the initial conditions which were 
compatible with boundary conditions. 

2. Equations of motion 
The equations describing the perturbation fields about a stationary state for 

the problem of a fluid heated from below are relatively well known. Using the 
Boussinesq approximation and neglecting the heat produced by viscous dissipa- 
tion, they are 

v . u  = 0, (2.1) 
au 
-+ (Qxu)  = - V  +ag$T+VV2U, B = V X U ,  (2.2) 
at 

aT -+u.VT-pw = KV~T, 
at 
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where T(r, t ) ,  p ( r ,  t )  and u(r, t )  are the perturbation temperature, pressure and 
velocity fields respectively; K is the thermometric conductivity, v the viscosity, 
2 the unit vector in the vertical direction, and w = u .2. The motionless state is 
described by a linear temperature profile: 

= -prg{1-a(T-q)}, 
dz 

u = 0, 

Wave-number, k 

FIGURE 1. Stability diagram showing finite bandwidth of modes. 

where a is the coefficient of cubic expansion of the fluid, and p,., are reference 
density and temperature. The co-ordinate z represents the vertical co-ordinate 
whereas x and y are the horizontal co-ordinates. 

The usual stability problem associated with the above set of equations and 
appropriate boundary conditions is to find the lowest temperature gradient Po 
which allows non-damped solutions of the linearized equations. In the free- 
free boundary case with perfectly conducting boundaries, the boundary condi- 

tions are that a2W 
w = 0,  -= 0, T = 0, a t  z =  0 , d .  (2.6) 

a22 

It is readily shown that a disturbance of the form 

m7Tz 
eik-x sin d 

first becomes unstable for a Rayleigh number olgP0d4/~v  (the non-dimensionalized 
temperature gradient) of 27n4/4 with the corresponding wave-numbers 

k2 = 7r2/(2d2), 

The stability graph is shown in figure 1. 

m = 1. 
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It is also known (Segell966) that for Rayleigh numbers R in the neighbourhood 
of the critical Rayleigh number R,, (for the case of free-free boundaries with con- 
stant temperature gradient R > R c r )  that finite amplitude solutions can exist. 
There seems to have been little attention paid to the fact that for R - Rcr = O(e2), 
any finite O(s) bandwidth of modes is possible. It is the aim of the following analy- 
sis to look at  some of these. Accordingly, we begin with the modified ‘neutral’ 

where the amplitude W is a slowly varying function of position as well as time, 
in order to accommodate a description of the sidebands. This technique has been 
successfully used by Benney & Newell (1967) and Newell (1969) in describing 
interacting wave packets. The appropriate scaling is 

X =ex, Y = CY, T = $t.  (2.8) 
It turns out that if slow spatial variation occurs over a distance of O(e-l), then 
only the variation parallel to k has an effect at lowest order. For variation per- 
pendicular to  the k direction, which we will discuss in more detail at a later stage, 
the scale ./E is the appropriate one. With the transformation (2.8) the operators 
reduce to a a  a -+-+@- 

at at aT’ 

We readily reduce the equation system (2.1)-(2.3) to a single equation by twice 
taking the curl of the momentum equation and taking its dot product with 6, the 
unit vector in the vertical. To remove the temperature from the linear part of the 
operator, we apply the operator (ajat) - K V ~  t o  the resulting equation and obtain 

We expand the dependent variables as a power series in 6, 
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where the fo are the modified neutral solutions of the most unstable mode given 
by (2.7). The equation (2.10) with the transformations (2.8) and (2.9) now reads 

( 3 0  + €9, + €"2) (wo + €W1+ e2 w2) 

= - age(Vi, + ~ E V , .  V,) (uo. VT, + e(ul. VT, + uo . VT,)} 

+ €(a1  x uo) + e(Q0 x u,)}. 21, 
where the operators 

(2.12) 

x P l X .  V1Xl2 - .sPzV?x, 
a 

a x -  
and 0 = v,, + €V,,, - (2.13) 

The linear balance yields the neutral solution set (2.7). The first non-linear re- 
sponse yields a generation of second harmonics. Before we list these, we note in 
particular that 9,w0 = 0. The reason for this is that we have chosen Ikl to 
be the wave-number modulus giving the minimum Rayleigh number 

RCT(wP0 d 4 / 4 .  

We find the second harmonic response which we will denote by fI2) to  be 

w p  = (2) = (2) = 0 u1 W l  

(2.14) 
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In addition, there are free modes generated in TI and p1  due to the dependence of 
W on the slow horizontal co-ordinates (X, Y) .  However, these do not return to 
give ' secular ' responses in w2 and so do not affect the analysis to this stage, 

Using (2.7) and (2.14) we find the O(@) balance of (2.12) yields 

agpo d2 k2 
WW* ( Weikex + W*eik*') sin 2 +other terms, d 

-Epow2 = -9 w 
"22K2(7I2+k2d2) 

(2.15) 
with the boundary conditions 

(2.16) 

The 'other terms' in (2.15) are higher harmonics and do not contain the eigen- 
functions corresponding to the operator with the boundary conditions (2.16). 
However, the first two terms of the right-hand side of (2.15) involve the natural 
eigenfunction of the operator Yo, and thus the solvability condition demands 

w2w*, 
aspo d2k2 

2K2(712+k2d2) 
(2.17) 

h 

where P2 = - ( v + K )  ( f + k 2 ) 2 ~ + 1 2 u ~  d2 aT (k .Vx)2+agp2k2.  (2.18) 

We non-dimensionalize as follows: 
1 7 r l  

W = ( K / d ) w ,  k = -f; = --fi, 
d 42d  

T = (d2/K)F, X = d X ,  

and defining p2 = xpo and V/K = p (the Prandtl number), we have 

(2.19) 

The only term in this equation which differs from previous analysis (see Segel 
1966, for example) is the diffusion term on the left-hand side. Withoutr this term, 
it is clear that we are dealing with the non-linear response of just 6he neutral 
mode If;\ = 71/42. Thus, non-linear solutions are possible for x > 0, i.e. when 
R > Ro, and the system resembles a Van der Pol oscillator which is driven to the 
steady solution -_ ww* = 37r2x. 

The solution 
The above equation (2.19) enables us to look at  the package of modes contained 

within an O(E)  square of the neutral mode k, If;( = 71/42, In the following we are 
only going to concern ourselves with finite amplitude roll disturbances as we know 
from Schliiter et ul. (1965) that hexagons are unstable finite amplitude states 
save when the viscosity is temperature-dependent or the mean temperature is 
time-dependent (see Krishnamurti 1968). We may readily normalize time, length, 
and velocity to yield 

= 0 is unstable. 

aw a2W - - (1 - WW")  W.  (2.20) aT ax2 
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Here we have taken Ci to be ( 1 , O )  and fc to be (n/J2,0) .  Since the neutral curve is 
the circle lkl = n/,/2,  it  is clear that if we allow an O(E)  band of modes in the X 
direction, an O(& band is possible in the Y direction (see figure 2). Accordingly, 
we should have used the scales X = €2, Y = ,,ley, in the derivation of (2.19), 
whence we would have obtained 

(2.21) 

as our solvability condition, where 

w = W(EX,  ,,l€Y,@t). (2.22) 

It will be necessary to use this formulation in order to determine the effects of 
rolls whose axes are slightly oblique to the axis of the neutral mode. Moreover, 

FIGURE 2. The circle kz + kt = na/2, showing the possible modes 
about k, = n/J2, k, = 0. 

if we have in addition many neutral modes fidly=l, then the equations describing 
the interaction of the N packages around such modes are 
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In (2.23) a/aX,, refers to the derivative along the unit vector ii, and a/aY,, 
refers to the derivative normal to ii,. The non-linear terms in (2.23) arise only 
from modal interactions of the type 

fi,+fij-fi, = L, (2.24) 

as there is no other way in which an interaction 

L,+fij-Lz = fr, 
IL:I = IL;l = I&:/ = $772, with 

(2.25) 

can produce a fcm which is on the curve kZ = &rg for I&, - &,I = O( 1). However, 
if we ask only that (2.25) be satisfied to O(S) and we allow the f i l s  to  approach 
each other arbitrarily closely, then there are many solutions: 

kj = f i i+&+,  fiz = &+Si2.,. 

This implies fr, = fi, + S(k, -kz) from (2.25), whence 

ii; = *n2+0(6). 

We thus obtain in the equation for determining w2 

z O w 2  = exp [i(& + o(s)). XI sin 772, Lz = 1 277 2 Y 

where the non-linear forcing is within O(6) of being a natural eigenfunction of 
the operator Po. Upon integration we would obtain 

wg = O(1/62), 

which in the limit S - t  0 renders the asymptotic expansion (2.11) non-valid. 
This point has been raised by many authors (Benjamin & Feir 1967; Whitham 
1967; Benney & Newell 1967; Newell 1969; Phillips 1967) recently in connexion 
with resonant wave interactions where it has been noted that a slight (of the 
order of the non-linearity) detuning of the resonance conditions still leads to the 
full resonance effect. The packet or finite bandwidth approach essentially en- 
forces a measure on the fc space which removes the possibility of ill-conditioned 
solutions. 

3. Modal stability analysis 
It is readily seen that solutions of the type 

W ,  = f,(T) eiglx, Wj = 0,  j = 2 . . . n, (3.1) 

are possible in (2.23) where we have chosen W ,  to be the amplitude of the mode 
f, = (n/& 0). The solution of type (3.1) is driven in time to the finite amplitude 
steady state 

Note that this solution makes the vertical velocity spatially periodic in the X 
direction with period 2n/( ]&,I -t &,). Here K,  = 0 corresponds to a mode on the 
lower branch f z  = in2 of the neutral stability surface corresponding to the criti- 
cal Rayleigh number and K2, = 1 corresponds to the points A+ and A- on the 

W ,  = (1-K4)* eiKlX, K2, < 1. (3.2) 
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stability curve in figure 1 where the Rayleigh number meets the neutral stability 
curve. Of relevance is the stability of such solutions. This question has been 
successfully attacked by Schliiter et al. (1965)  by strictly modal methods. How- 
ever, we shall rederive these results in order to: (a) show that our approach is 
consistent with theirs for analyzing the stability of such modal solutions to 
infinitesimal perturbations; ( b )  put the instabilities discussed by Schliiter et al. 
in perspective with the two-dimensional sideband instabilities demonstrated by 
Eckhaus; and finally, ( c )  show that the finite band of stable modes disappears 
as we initiate modal disturbances not on the steady finite amplitude states of 
these modes but on modes that are in the process of growing to a steady state. 

There are three types of instability. The first is a three-dimensional instability 
whereby the modal solution (3 .2 )  becomes unstable to another discrete roll whose 
axis makes an O( 1) angle with the axis of the mode (3 .2) .  This is readily obtained 
by substitution of 

W j  = u ~ ( T ) ,  

into (2.13),  whence we obtain upon linearization 

du . 
d$ = { l  - (l  -K?) (' + Plj)} ui, 

which yields 

Exponential growth is possible for the range of wave-numbers 
ui cc exp {K2, - Plj ( 1  - K!)) T .  

Pli 
1 + Plj 

K2, > ___ 

(3 .3)  

(3 .6 )  

and the maximum growth occurs in the mode ki when Pli is minimum, for which 
elf = &n, Pli = 2001473, and hence K2, > 2001673. Thus the most unstable mode 
is one whose axis is perpendicular to the axis of the roll (3.2).  To distinguish this 
from subsequent instabilities, it will be called a type I11 instability. 

In  order to discuss the instability to oblique modes and to two-dimensional 
sideband modes, it is sufficient to use the equation for the local package in the 
neighbourhood of k = (n/$, 0). Substituting 

W = ( l - K 2 ) ) e i = X + u ( X ,  Y,T), (3 .7)  

into 

we obtain upon linearization 

wherep2 = 1 - K 2  is intrinsically positive by the range of possible solutions (3 .2) .  
A set of solutions exists in the form 

u = v,(T)exp[i{(K+M,)X+M, Y ) ] + v 2 ( T ) e x p [ i { ( K - M x ) X - M ,  Y)]  

as the response of u* e2iKx to the mode exp {i(K + M,) X + iM, Y }  is 

exp {i(K - M,) X - iM, y), 
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and the response of u*exp ( 2 i K X )  to the mode exp {i(K - M,) X -  i M ,  Y> 
is exp { i (K + M,) X + i M ,  Y>,  thus automatically closing the system. (It is 
helpful also to note that had we perturbed solution (3.2) with functions u(X, Y ,  T) 

FIGVRE 3. The circle k: + ki = 7ra/2, showing points of maximum oblique 
roll growth. 

which permitted Fourier transforms, the system again closes as the Fourier 
transform of u * ( X )  exp ( 2 i K . X )  is & * ( 2 K - L ) ,  where d ( L )  is the Fourier 
transform of u(X).) Substitution of (3.9) into (3 .8)  and setting wl, w2 a ehT gives 

h = + - p J + 1 / ( p 4 + ) V 2 ) ,  (3.10) 

and 

A( M x ,  M , : K )  has relative maxima when 

(I) M ,  = 0,  M g  = - J2nK;  h = K2; 

Type I instability is only possible when K c 0 (for rolls with length scale larger 
than the critical roll), and the fastest growing modes are rolls whose axes are 
oblique to the solution roll but which lie on the circle &2 = in of the neutral 
stability surface (see figure 3). Type I1 instability for Ka > $ corresponds to the 

19 Fluid Mech. 38 
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sideband instability discussed by Eckhaus and is analogous to the sideband 
instability of the Stokes gravity wave. However, the fastest growing modes do 
not lie in the close neighbourhood of the original mode but in fact lie within the 
stability curve K2 < &. We summarize with a diagram: 

(4 (b) 

FIGURE 4. Stability diagrams: (a )  regions of the three types of instability; 
( b )  growth rates h for the various instabilities. 

However, it is our feeling that this situation is rather idealistic for the 
following reason; namely, that while the mode K is growing to its finite amplitude 
state, it is usually subjected to the same type of perturbations. We wish, there- 
fore, to examine the stability of the time-dependent solution of (3.8) which is of 
the form 

W = W,(T) eiKx,  (3.11) 
and whose solution is 

p2 ( W ,  Wf),,, e 2 p z y  

p 2  - ( W ,  W;),=, + ( W ,  W:),=,e2paT' ' w, w: = arg W ,  = constant, (3.12) 

where p 2  = 1 - K2.  
We note that W ,  Wf is a continuous function of time (in fact, analytic) in- 

creasing monotonically from its initial value (which may be as close to zero as 
we wish) to its final amplitude of p2.  Continuity implies that all intermediate val- 
ues are assumed by the function, and we pose the following question. If at  some 
time T, a t  which the amplitude of W ,  W: is a2p2(0 < a2 6 1) we introduce 
infinitesimal sideband perturbations, then for small times after T,, how do the 
growth rates of the perturbations compare with the local growth rate of W,(T)? 
Accordingly, we set 

W = W,(T)exp ( iKX)+pW2(T)exp{ i (K+2Mx)X+i2M,  Y}+pW,(T) 

x exp{i(K-Nx)X-iM, Y } ,  (Ipl < 1)) (3.13) 

into -_ w =  w-WZW". aw aT ( a  ax ~ 2 r a y 2  a2 
(3.14) 
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Neglecting O(p2) terms, we obtain 

-- a w1 - (p2 - w, W?) w,, 
at 

(3.15) 

M$ 
~ - ( K + M ~ + - )  J2= - 2 w , w : ,  - wz, 

We see from (3.15) that by self-interaction the mode K receives an initial exponen- 
tial growth exp (h,.,(T - T,)} from an initial state W ,  W: = a2p2, where 

= p2(1-a2). (3.17) 

We can find the initial growth of the sideband and oblique perturbation modes 
from the initial state W1 W? = ~ 1 . 2 ~ 2 ,  W,, W ,  = O(p) ,  14.1 << 1, by giving the matrix 
in (3.16) its value at  time T,. Since the eigenvalues of the matrix are distinct for 
all T,, this step is justifiable from standard theorems in differential equations (see 
Coddington 1961, p. 224; see also appendix of this paper) by noting that the 
solution of (3.16) is a continuous function of the parameter W ,  which in turn by 
(3.15) is clearly a continuous function of time. Thus, in the neighbourhood of T,, 
the growth rates of the oblique and sideband modes are given by 

exp {nobl igue(T-Ta)}  and ~ X P  {&.B(T- TJIj where 

(I) hobligue-hS.I = K2 for M ,  = 0, M$ = - J27i-K (K < 0) ,  (3.18) 

( (a2 + 2) K2 - a2) ( ( 2  - a2) K2 + a2) 
4K2 M2, = 9 (3.19) 

A similar calculation for the three-dimensional disturbance perturbing the solu- 
tion (3.12) at time T, gives 

(3.20) 

We note that in particular for a2 = 1 the results reduce to those found 
previously in this section. The result of the oblique perturbation remains the 
same. The range for which the mode K grows faster than the three-dimensional 
and sideband perturbations decreases to zero with decreasing a2. Outside this 
range note that the perturbations are growing exponentially faster than the 
mode K ,  which is a further justification for the mathematical treatment described 
in the previous paragraph. Note in addition that as a2gets close to zero all the per- 
turbation modes grow at  the same rate. 

& , I I , I ~ I - ~ s . I =  K2 = 1-(1-K2) ,  
19-2 
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as in the limit a2 -+ 0 they all lie on the curve Lz = n2/2 and grow with their natural 
growth rate from an infinitesimal perturbation. 

We emphasize that the latter analysis of this section has been a local theory in 
the neighbourhood of T, but it indicates that the single mode steady solution for 
K f 0 is unlikely to be attained. This would suggest that the only single mode 
steady finite amplitude solution which can be attained is that of the most critical 
mode K = 0 (or fi2 = n2/2). However, it  is still possible to force a mode K to its 
finite amplitude value before crossing to some supercritical Rayleigh number, for 
in this case, if K lies in the band 0 < K < J(200/673), all perturbations will 
be damped. 

Before commenting on the relation of these results with experimental observa- 
tions, let us point out one of the advantages of the finite bandwidth approach. If 
we take the three discrete modes (whose interaction leads to the sideband and 
oblique mode instabilities) f,, L,, &, to be 

(k+sK,O), (k+s(K+Jf,), +Jfy), ( k + @ - J f , ) ,  - &&-), 

SL, - f;, = f3 

fid+iiJij = fi 

respectively, then a discrete mode analysis would have to include the 

interaction in addition to the 

interactions. However, substitution of 

W = W,exp(iKX)+ W,exp{i(K+M,)X+iMy Y>+ W, 
x exp {i( K - Mx) X - iJfy Y }  

into (3.8) automatically incorporates the correct interaction giving rise to the 
instability. An analysis which examines the competition of two modes close 
together and which only accounts for the 

i i i+i i j - i i j  = fr, (i,j = 1 , 2 )  

interactions would lead to incorrect results. 
The only experimental situation where instabilities of two-dimensional modes 

have been observed involved an experiment in which the modes were artifi- 
cially initiated by the experimenter (see Chen & Whitehead 1968). The instability 
most clearly observed was in the form of two-dimensional rolls at  right angles to 
the original rolls (and very similar to type I11 instabilities). This occurred when 
the original rolls had a wavelength less than the critical value. 

Type I instability was not seen as clearly, possibIy because its finite ampli- 
tude behaviour is not as powerful. However, there was a strong tendency for large 
two-dimensional rollsto zig-zag, and this could well be a manifestation of growing 
oblique rolls. If such is true, then finite amplitude effects must alter the oblique 
rolls at relatively small amplitudes. It would appear doubtful that the type I1 
instability would be noticeable in experimental situations because the two 
instabilities discussed above have more rapid growth rates. However, in the above 
experiment, where Iateral boundary conditions may well have had an effect, a 
cell size adjustment was observed. 
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4. Exact solutions 

In  this section we look at steady periodic envelope solutions of the equations, 
In the previous section we looked at  solutions of spatial period 2n/ (k+sK) .  

d2W -+ w- W2W" = 0. 
dX2 

Let W ( X )  = r ( X )  eietx, = u ( X )  + i v ( X ) ,  r ,  8, u, v real and obtain 

r" - r6'2 + r - r3 = 0, (4.2) 

r28' = h (hconstant), ' = d / d X ,  (4.3) 

which are the equations for the motion of a particle under a central force field 
with the potential of a soft spring. Using (4.3) and multiplying (4.2) by r' we 
obtain upon integration, 

Here E and h correspond to the constant energy and normal angular momentum 
of the orbit and are the constants of integration. In  general the above equation 
(4.4) yields periodic elliptic functions as solutions. For E > 0 there is a possibility 
of a 'solitary' envelope (analogous to the solitary gravity waves) which arises 
when the cubic on the right-hand side of (4.4) has a double root. Equation (4.4) 
then has the form 

r ' 2 =  z~ 1 2  ( r  2 -  ro) 2 2 (r2-r:)  (rf > r i ) ,  

which has for solution 
r2 - r; 

r2 = ri - (ri  - r?) sech2 0 X .  
4 2  

Another particular solution which is of interest is 

r = tanhX/ J2 

u = tanhX/J2 

(0 = 0). 

(v = 0) .  

(4.5) 

As tanhX/,/2 = 1 for X = O( & l) ,  this solution for moderately large (XI 
corresponds to rolls of wave-number which have opposite amplitudes as X + 2 co, 
corresponding to a 180' phase change. These two regions of constant amplitude 
joint smoothly at  the origin, where the strength of the rolls decreases to zero. We 
examine the stability of such a solution to two-dimensional disturbances, namely 
those independent of the direction of the axes of the rolls. From the discussion 
in the previous section we know that these two-dimensional solutions outside 
a certain range of wave-numbers are unstable to infinitesimal three-dimensional 
disturbances. However, a shear flow in the y direction where the Reynolds num- 
ber of the shear flow is small will cancel such three-dimensional instabilities and 
keep the rolls aligned. We set 
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and we obtain upon linearization the uncoupled set of equations 
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d2.iC+(2h-4+6sech2&).iC = 0, @ 

d20 + (2h + 2 sech2 5) 0 = 0. @ (4.9) 

Our problem is to determine eigenvalues h for which (4.8) and (4.9) are non- 
trivially satisfied and we restrict G ,  0, and their f%st derivatives to be bounded a t  
5 co. Let us first discuss (4.8), which tests the stability of the solution to rolls 
either in phase or T out of phase with the solution. We prove first that the eigen- 
values are real. Multiplying (4.8) by G and subtracting the complex conjugate 
equation we have 

+2(h-h*)44* = 0. (4.10) 

If 4L is bounded at  JcoJ (Re h > 2), then applying the limit 

to (4.10) we find h = A*. If lii goes to zero at  lcol thenintegrating (4.10) between 
-a and co again implies h = A* and hence h real. It is clear for h > 2 that the 
solutions will be bounded at  lml. Instability will only arise for values of h < 0. 
However, it may be possible for h < 2 that for certain values of h the decaying 
exponential solution is valid for both ends of the & axis. This question is readily 
resolved by making the substitution 

tanhg = t ,  (4.11) 
whereupon (4.8) becomes 

a'% dlii 
at2 at 

(1 -t2)2-- - 2t( l  - t2)  -+ (2.3(1 - t2 )  - (4 - 2h))G = 0, (4.12) 

which is the associated Legendre equation. Solutions which are bounded at 
infinity only occur when 4-2h < 4 or for h 2 0. In  fact the eigenvalues are 
h = 0, 8, 2 with corresponding eigenfunctions Pg(t), Pi(t) and Pi(t). However, a 
similar transformation (4.11) in (4.9) yields 

a20 a0 
at2 at 

(1 - t2)2- - 2t(l - t 2 )  - + (1.2(1 - t 2 )  + ( -  2 4 )  a = 0, 

which has solutions P:(t) and P:(t) with eigenvalues of - & and 0 respectively. 
We can prove - 4 is indeed a minimum eigenvalue by looking at the variational 
problem for (4.9) which is 

Using the method of multiplicative variation by setting 

we can easily show 
v = sechtV, 

f sech2t V'2dt  

J sech2 [ Po?[ 
2 h + 1 >  for sech2& tanh 6 V ( [ )  
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and thus we have in particular the result which will be useful later 

295 

(4.13) 

Thus it would appear that the solution u = tanhE becomes unstable to rolls 
&rout of phase which grow like ett sech 6. We should remember that for this eigen- 
value the solution to (4.8) is 6 = 0. Thus the instability appears in the region of 
the $ plane where the strength of the rolls is weak and manifests itself in the 
nature of a ' jetlike' profile. However, from the nature of the non-linear terms in 
(4.1) we might expect that the sechc solution would only grow to a finite ampli- 
tude analogous somewhat to the discrete mode solution discussed in 9 3. 

Thus we might expect solutions of the form 

u = tanh 6,  v = sech E. (4.14) 

Such solutions are not possible for the homogenous system (4.2) but are possible 
by including a steady forcing term in (4.1) whose real and imaginary parts are 

f( 1 +f)* tanh 6, fJ(f- &) sech < (f > 0). 

Such a forcing term can arise from a heat source within the fluid of the form 

e2[F(X/,/2)eikr+(*)]sinnz, 

P = some external forcing function, Indeed in many situations both in the labora- 
tory and in the real world we do have forced convection. The equation (4.2) 

which system has for solution 

;ii = (1 +f)* tanh 6, 3 = f* sech 6. 

If we test the stability of such a solution by setting 

u = ;ii+a(E)e-*t, v = ? + O ( < ) e - A t ,  

(4.16) 

we get the coupled pair of equations 

E+[(2A-4-6f)+ (6+4f)sech25]6-4f4(l +f)*sechEtanh@ = 0, (4.17) 

d28 
- + [(2A - 2f) + (2 - 4f) sech2 61 8 - 4f4( 1 + f))sech 6 tanh E &  = 0. 
dC2 

(4.18) 

We of course are interested in the possibility of solutions for h < 0 (again, it  can 
readily be shown that h is real) and in particular h < f i n  which case 6 and 0 are 



296 A .  G .  Newell and J .  A .  Whitehead 

not only bounded at  (a) but also asymptotic to zero there. Hence we can write 
the variational statement 

-(6+44f)/sech3&Pdc- (2-44f) s sech2[02d[ 

+ 8f* (1 +f)*/sech 5 tanh c $8 a[) 

+ Of2d5+2f O2dt-2 sech2f;82dc 

+ 4 [( 1 +f)* tanh +f* sech @I2 d( 

s s s  
s 

upon completing the square. Using (4.13) we have 

2h 2 2f-1, (4.19) 

where the inequality sign is strict save for f = 0 as the function (sechc), which 
makes the equality hold in (4.14), keeps the perfect square above strictly posi- 
tive. We notice also for f = 0, we regain the result for no forcing, namely h 2 - &. 
Thus for f 2 + we have absolute stability. For f = + we see that only forcing on 
the u component is present but this leads to a v component. Where the u = tanh 5 
solution is weak namely at  5 = 0, the v = sechg solution is stronger and vice 
versa. For large 151 the rolls are of scale 2nlk except that the sense of rotation 
of corresponding roll couplets is reversed on opposite sides of the 6 = 0 axis. 
Near the centre the predominant rolls are those which are in out of phase with 
the rolls far away from the origin and whose envelope has a jetlike profile. 

It is of interest to inquire not only into the existence and stability of solutions 
but also their realizability, namely what initial conditions lead to these kinds 
of steady solutions? As long as the field is kept two-dimensional (and here again 
we invoke the notion of a shear flow to keep the rolls aligned), then equations 
(4.15) are exact modal equations for the whole flow. Therefore, we can treat 
initial-boundary value problems purely from the standpoint of physical space. 
This is clearly an advantage over the modal or transform approach as the latter 
leads to the difficulty of galloping inflation (i.e. quadratic interaction of n modes 
yields @(n+ 1) modes, etc.) due to the non-linear terms. In order to show the 
solutions (4.16) realizable we choose the initial conditions ( f  = $): 

77X 

L 
v = 0.5 COS- , 
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and boundary conditions 

- u( - *L) t )  = U(*L, t )  = J(#)) 
v( - +L) t )  = V(4L) t )  = 0, 

with L = 200. A numerical solution reached the steady solutions 

u = &tanh[, v = &sechg 
after a short time. 

It is of interest to discuss the reasons for these solutions being attained. It 
seems that as far as possible the flow tends to choose as its length scale the 

FIGURE 5. Evolution of amplitude function u(t,  t )  from the initial state. 

u = 0.2 sin (6?r/L)E+0+3 sin (16n/L)& ( a )  t = 0, ( 6 )  t = 8.0. 
Note that the final length scale is approximately L/16. 

basic neutral wavelength of the most excited disturbance subject to initial and 
boundary conditions and the forces applied. For simplicity let us choose the 
equation 

(4.20) 

with boundary conditions u( - iL ,  t )  = u(*L, t )  = 0 ( L  = 200). 
We represent the initial conditions by a Fourier series 

m nn 
2 a, sin (t + *L)) . 
n n=l 

For the purpose of example we take the two modes a, = a,, = 1, all others zero, 
so that the initial curve contains the basic length scales @, &L. From (4.20) 
we see there are two forces tending to change u([)  t ) :  (a )  the Van der Pol term 
(1 - u2) u which tends to drive the solution to k 1 ; (b )  the curvature term a2u/ac2 
which tends to iron out kinks in the initial curve. Ifwe begin as in figure 5 with the 
initial conditions 

677 1677 
u = 0.2 sin - 6 + 0.8 sin __ 

L L 

the final result has a dominant scale of ,1,L, but the shape of a square wave with 
hyperbolic tangent smoothing. This corresponds with a mode 

K = (16n/200) N 0.25, 
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which lies well within the parabolic stability bound for sideband disturbances 
K 2  = 9 .  As the amplitude of the initial mode is large enough, no instability takes 
place. Similarly, if we begin as in figure 6 with 

the final form is again rectangular with the dominant scale &L. However, if we 
begin as in figure 7 with the amplitudes of the two modes equal, 

we note that the curvature terms tend to iron out the kinks due to the shorter 
scale (see arrows in figure), so that the dominant scale in the final solution is that 
of the larger wavelength. Note, however, that the finite amplitude of the perturb- 
ing smaller scale has slightly lengthened the dominant scale 

(due to sin A + sinB = 2 sin ( A  + B)/2  GOS ( A  - B) /2 )  

so that this scale no longer fits by itself into the box. Thus, in order to fit boundary 
conditions, the higher harmonics are generated in the neighbourhood of the 
boundaries. 

FIGURE 6. Evolution of amplitude function u([,  t )  from the initial state. 

Note that the final length scale is about L/6. 

u = 0.8 in (67r/L) E+ 0.2 sin (16r/L) E. (a)  t = 0, ( b )  t = 8.0. 

These results are perhaps contrary to those which one might expect from an 
initial examination of the linear eigenvalue problem posed by (2.20) with bound- 
ary conditions 

W(0,  T) = W(L,, T) = 0. (4.21) 

It is convenient to use the dimensionless but not the normalized form of (2.20) 
with fi = (1,O) which in the linear approximation is 

where e2x = (R - Rcr)/Rcr and x is the eigenvalue. The solution 

n m  W = ertsin - X  
Lx 

(4.22) 

(4.23) 
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satisfies the boundary condition (4.21) and for CT = 0 leads to the relation 

n2n2 n2x - = 3-. 
La, 8 
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(4.24) 

Defining 

8 
371.2 

we have R'n' - Re, = - Rc, K t ,  (4.25) 

which implies that the Kn lie on the neutral stability curve (figure 1). This can 
be easily verified by expanding 

(k2 + n2)3 R=- 
k2 

in the neighbourhood of kcr.  Thus the minimum Rayleigh number for convection 
subject to sidewall boundary conditions is the Rayleigh number corresponding 
to the wave-numbers k,, rt E K ,  with K: = 7r2/L$ closest to kc,. If Lx were equal to 

I L I .  
FIGURE 7. Evolution of amplitude function u(E, t )  from the initial state. 

u = 0.5 sin (6n/L) l+ 0.5 sin (16n/L) &(a) t = 0, ( b )  t = 1.6, (c )  t =  5.6, (d) t = 8.0. 

Note that length scales of both L/6 and L/16 are noticeable. 

(2n/kCr) N ,  N a, large integer, one might infer that convection could automatically 
fit in the box and the critical Rayleigh number would be the usual Rc, for an 
infinite box. But in order to satisfy both boundary conditions u = w = 0 (see 
(2.7)); this is not so. The convective pattern that arises in a finite box is made up 
of two scales, 2n/(kc,  k EK,) with K ,  corresponding to the longest mode that fits 
in the b0.r. The combination of these two scales yields the eigenfunction structure 
e% 1: sin K,X. The sinusoidal eigenfunction solution W = sin K ,  X (unlike the 
case of a qingle mode) does not persist when substituted into the cubic non-linear 
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term W2W*. The third harmonic is generated, and this and higher harmonics 
distort the initial sinusoidal profile, leading to the final shapes we obtained 
with the numerical experiments. 

The linear eigenvalue problem taking account of the slight three-dimensionality 
can be similarly performed on (2.22) by using the eigenfunction structure: 

(4.26) 

This leads to exactly the same relation as (4.23) as the Y dependence does not 
play a role in determining the Rayleigh number but only in splitting the package 
into two which are centred at 

5. Conclusion 
Whereas we have used as a model the convection problem, the basic ideas 

used in this approach are relevant to problems where a continuous band of modes 
is possible. Examples of such applications occur in dispersive wave theory when 
there is no a priori quantization of modes. Indeed we know that the sideband 
modes play the dominant role in non-linear wave interaction and are re- 
sponsible for destabilizing the well-known Stokes gravity wave for sufficiently 
deep water. In this latter case a discrete mode analysis leads immediately to the 
excitation of all higher harmonics of the sideband modes and a wave packet 
approach is required in order to attain any steady solution (Benney & Newell 
1967). In  the problem of convective instability in a rotating system (or with super- 
posed magnetic field) growing oscillations are the predominant instability for 
sufficiently low Prandtl number. In  this case the solvability equation contains 
dispersion and frequency modification terms in addition to diffusion and Van 
der Pol forcing. In  addition it is necessary to move with the group velocity of 
each disturbance. Of interest would be the competing effects of the dispersive 
wave sideband instability when the fastest growing modes lie in the immediate 
neighbourhood of the initial mode itself and the sideband instability mechanism 
described in 0 3 when the fastest growing mode is chosen discretely from a bal- 
ance of diffusion and Van der Pol forcing. 

Indeed, were the neutral stability regimes derived from the Orr-Sommerfeld 
equation €or the description of the instability of infinitesimal disturbances in 
parallel flows realizable physically, then these ideas would be equally valid 
and the solvability equation would parallel that of the overstable convection 
described in the previous paragraph. 

As mentioned in the introduction, the statistical initial value problem is also 
of interest, as the initial values of the disturbances are usually quite random in 
nature. This would closely parallel similar work done on Burger's equation 
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(Lange 1968) for late decay with the difference that the statistical moments of 
the amplitudes themselves in general grow in time. We believe that the effect 
of the non-linear coupling will be to drive all the energy toward low sideband 
wave-numbers (or back to the most excited critical mode). 

At the risk of over-emphasis, let us briefly review the results of this work. 
First, the representation used was that of packages centred around the most 
unstable modes lying on the minimum curve of the neutral stability diagram 
lc2 = in2. This had the advantage that the only non-linear modal interactions 
which we needed to consider were of the type. 

The resulting solvability conditions showed clearly that spatial non-uniformities 
were propagated by diffusion. Numerical experiments confirmed this. The results 
of Schluter et al. (1965) and those of Eckhaus (1965) were rederived, but we have 
shown the unlikelihood of modes other than K = 0 ever reaching the final state 
if the fluid is initially motionless. However, the main purpose of this work was not 
to discuss modal solutions but to attain a wider class of solutions which are both 
realizable and stable. The advantage of the technique was demonstrated clearly 
for the case of two dimensions, when a single equation was sufficient to describe 
the evolution of the flow from a wide variety of initial and boundary conditions. 

The results of $ 4  are by no means exhaustive but contain what we believe 
to be the essential features for smoothing discontinuities which may be forced 
on the system by external conditions. Other features salient to a slight three- 
dimensionality can be noted by searching for solutions to (2.21). Solutions to 
this do exist and take the form of sech Y tanh Y.  This corresponds to rolls whose 
spin varies along the axis of the roll and which spin is in opposite directions on 
different sides of zero. Although we have not tested the stability of these solutions, 
i t  is of interest to note that they do vanish for sufficiently large Y ,  thus allowing 
boundary conditions to be satisfied. Perhaps they can be reached if the initial 
information is confined locally in the neighbourhood of the mode vector 

= (T/J2,0)  

or equivalently may be the final state reached by the oblique mode instabilities 
discussed in 3. 

The authors wish to thank Fritz Busse for the many helpful discussions. This 
work was supported in part by the National Science Foundation, Atmospheric 
Sciences Section, under Grant GA-849. 

Appendix 

treatment in $ 3. We have from (3.16) the vector differential equation 
We include a brief section in order to justify more rigorously the mathematical 

dy = A ( W ( T ) ) y ,  
dT 
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where A is the matrix given in (3.16). We wish to  show that in the local neigh- 
bourhood of T,, { W(T,) = W ,  = ap} the solutions to ( A  1) are arbitrarily close to 
the solutions of the system 

(A 2) 
dx 

= A ( W(Ta)) 2 ,  

where the initial conditions at T = T, on y and x are the same. We may write 
(A 1) as 

= A(W(Ta)) y + (A(w(T)) -A(w(T, ) ) )  y, (A 3) 

such that (A 2) and (A 3) may be written 

g = f ( T , y ( T ) ) ,  (A 4) 

(A 5 )  

where Ilf-gII < 6 for IT-TaI < 8, (A61 

dz 
= g(T,x(T)) ,  

the double brackets representing some norm of the difference of the vector func- 
tionsf and g. In  addition we ask thatf(T, y ( T ) )  satisfy the Lipschitz conditions in 
the neighbourhood of T, 

Ilf(T7 ?AT)) - f ( T ,  x(T)) I I  G KllY(T) - Z(T)II, (A 7)  

which is clearly so sincef is linear in y. Integrating (A 4) and (A 5 )  from T = T,, 
and subtracting we obtain 

Taking the norm and using (A 6) and (A 7) we have 

Define 

We obtain K E  < s(T-T,),  
dE 
dT- 

which implies upon integration, since E(T,) = 0, that 

Resubstituting in (A 8) we have 
6 

[Iy-zll < - K (@(T--*J- 1). 

Then the solutions to (A 2) and (A 3) are arbitrarily close provided 6 is sufficiently 
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This means that the faster the basic solution W grows in the neighbourhood of 
T, the smaller we must take the neighbourhood (T,, TI). However, since the per- 
turbation solutions are growing exponentially faster than the basic flow in the 
ranges of interest specified in (3.18), (3.19) and (3.20) we do not need a large 
time interval before the perturbations have significantly changed the flow field. 
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