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Abstract
A form of dispersion relation is proposed for a conservative, finite-amplitude,
barotropic Rossby wave in slowly varying parallel shear flow. The relation is
expressed in terms of pseudomomentum and pseudoenergy densities of the wave
whose exact conservation laws are known. The zonal phase speed is given by the
functional derivative of pseudoenergy density with respect to pseudomomentum
density, wherein the effects of wave-mean flow interaction and the amplitude
dependence of the phase speed are implicit. This theoretical prediction is compared
with the observed phase speed in a numerical simulation of nonlinear barotropic
decay on a sphere. The theory agrees well with the observed phase speed of the
wave except in regions where the meridional eddy momentum flux changes sign
and/or where the phase speed and phase tilts change abruptly. In a significant
departure from standard theory, multiple critical lines are identified on each flank of
the jet in the simulation, with significant wave amplitude through them. It is shown
that wave-mean flow interaction in the generalized dispersion relation renders
critical lines nonsingular and permits the Rossby wave to be transmitted through
them, even into the region where the phase speed of the wave exceeds the zonal-

mean zonal wind.
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1. Introduction

The Rossby wave plays a central role in the large-scale circulation of the
Earth’s atmosphere. While early linear theory illuminated the fundamental
properties of the atmospheric Rossby wave (Rossby! 1939; Haurwitz 1940; Charney
and Drazin 1961; Longuet-Higgins 1964, 1965; Platzman 1968; Hoskins and Karoly
1981; Held 1983), extensive inquiries were also directed toward the wave’s
interaction with the mean flow (Dickinson 1969; Matsuno 1971; Andrews and
McIntyre 1976; Boyd 1976; McIntyre and Palmer 1983; Killworth and McIntyre
1985; Haynes and McIntyre 1987). It is now widely recognized that the Rossby wave
can drive the mean state of the atmosphere through its radiation stress, represented
by the generalized Eliassen-Palm flux in the quasigeostrophic limit of the
Transformed Eulerian Mean (TEM) formalism (Andrews and McIntyre 1976, Edmon
et al. 1980, Andrews et al. 1987).

Although the response of the mean field to the wave forcing is well described
by the TEM set, the corresponding theory for the finite-amplitude Rossby wave in
shear flow is less well developed. General description of finite-amplitude wave-
mean flow interaction was considered mainly in the field theory and fluid mechanics
literature (Sturrock 1961; Whitham 1965; Bretherton and Garrett 1968; Hayes
1970) and culminated in the Generalized Lagrangian Mean (GLM) formalism of
Andrews and McIntyre (1978ab, see also Biihler 2009). Unfortunately these theories

are not readily verified by (or applied to) atmospheric data because key quantities

1 The original Rossby paper, while almost exclusively dealing with the atmospheric
Rossby wave, predated the launch of the Journal of Meteorology (the predecessor of
the Journal of the Atmospheric Sciences) and was published in the Journal of Marine

Research.
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such as pseudomomentum and pseudoenergy densities are difficult to diagnose at
finite amplitude. (A notable exception is the formalism developed by Killworth and
McIntyre 1985, McIntyre and Shepherd 1987, and Haynes 1988.)

Recently Nakamura and Zhu (2010) derived an exact conservation law for
finite-amplitude pseudomomentum (wave activity) density applicable to Rossby
waves and balanced eddies, extending the generalized Eliassen-Palm theorem and
hence the TEM set to arbitrary eddy amplitude. For conservative barotropic flow on
a sphere, this can be written as (Nakamura and Solomon 2010, Solomon and

Nakamura 2012)

0 0 (715 2
(Aacosq)):a(uv <1—,u )), (D

ot
where ¢ istime, a is the radius of the sphere, (u,v)= (Aacos ¢,ad) is the wind
vector in longitude A and latitude ¢, u =sing, and the overbar and prime denote

longitudinal average and departure from it, respectively.? The angular (zonal)

pseudomomentum density Aacos¢ is defined by
1 _
A(ptacosd = ——(C(Q(u.1) = C(u.n)

:i ffqazd/ld,u—ffqazdld,u ,

D(Q) D(n)

(2)

where C(Q(u,t)) is Kelvin’s circulation around the wavy contour of absolute

vorticity g(A4,u,t) = Q that encloses the same area as the polar cap north of y,

whereas C(u,t)=2macos¢(u(u,t)+Qacos¢) is Kelvin's circulation around the

172

2 Throughout the text cos¢ is used in place of (1— u*)"> where it simplifies the

notation.
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zonal circle at latitude u, and Q is the sphere’s rotation rate. The last line in (2)
uses Stoke’s theorem and D(Q) and D(u) denote the regions delimited by the Q -
contour and by the latitude circle, respectively. It is readily shown (Nakamura and
Zhu 2010) that A >0 and that A converges to the familiar linear pseudomomentum
density [Held 1985, see also (29a) below] in the small-amplitude limit. To evaluate
(2) one only needs instantaneous distribution of absolute vorticity ¢.

Under conservative dynamics the first term on the right hand side of (2) is a
constant of motion due to Kelvin's circulation theorem, so the time derivative of (2)

leads to

0 _
EUREF(:”):O’ Uger = u(l,t)+ A(W,t) . (3ab)

The reference state velocity U,,, is the zonal velocity of the flow that would emerge
if the wavy g contour were ‘zonalized’ without changing the enclosed area or

Kelvin’s circulation (Nakamura and Zhu 2010, Solomon and Nakamura 2012). Note

that U,,, is steady even when # and A are not. This fact can be exploited to derive
conservation of pseudoenergy density E(u,t), the difference between the zonally

averaged energy density and the energy density of the reference state, both

measured relative to the rotating sphere:3

. [v’cos¢)] 4)

a

3 Unlike angular pseudomomentum density Acos¢, pseudoenergy density E does

not obey rotational invariance (analogous to Galilean invariance on the beta plane),
so it is important to define the reference.
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7= 1 _ A’
E(u.t)= E<(u +u/)2 +V,2)_5U12€EF =e _UREFA+7' (5)

where e = (u"* +v"*)/2 is eddy kinetic energy density, p’ is pressure perturbation
and p, is constant density. Note we used (3b) to derive the last expression in (5).

Both A and E vanish if the flow is zonally symmetric and the gradient of
absolute vorticity is single-signed, so they are properties of eddy (Nakamura and Zhu
2010). These quantities are easy to evaluate from instantaneous data and all the
foregoing results are valid for arbitrary amplitude and shape of eddies, whether
wavelike or turbulent. Furthermore, it is clear from (1) and (4) that the domain
integrals of angular pseudomomentum and pseudoenergy are invariant in time, since
the eddy fluxes on the right-hand side vanish at the poles.

In this article we will utilize the above conservation laws to derive
generalized dispersion relation for finite-amplitude Rossby waves in barotropic
shear flows. By ‘generalized’ we mean that the phase speed is expressed as a
functional of A and E, fundamental conserved properties of the wave at arbitrary
amplitude, instead of prescribed wavenumbers. This allows one to incorporate
implicitly the dependence of the phase speed on wave amplitude and the effects of
wave-mean flow interaction. Since both A and E are evaluable from data, the
theory can be tested by numerical simulations of finite-amplitude Rossby waves.

The next section outlines the derivation of the generalized dispersion relation,
emphasizing the assumptions made. In section 3 the theoretical prediction of phase
speed is tested with a numerical simulation of a freely decaying Rossby wave in a

shear flow on a rotating sphere (Held and Phillips 1987). The accuracy of the theory
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will be demonstrated along with some limitations. Section 4 closely examines the
phase speed structure and critical lines in the simulation. It will be shown that the
geometry of critical lines differs significantly from classical theory. We will see that
nonlinearity in the generalized dispersion relation removes singularity from critical
lines and enables finite-amplitude Rossby wave to propagate through them, even
into a region where the phase speed is eastward with respect to the zonal mean flow.

The final section summarizes the results.

2. Generalized dispersion relation

A well-established strategy for finding the dispersion relation and
conservation laws for a slowly modulated, almost plane wave is to apply variational
principle to the phase-averaged Lagrangian density (Sturrock 1961, Whitham 1965,
1970, Bretherton and Garrett 1968, Hayes 1970, Grimshaw 1984). Normally this
procedure entails finding an appropriate Lagrangian, taking the average over phase,
and then requiring stationarity of the average action with respect to amplitude and
phase to obtain the dispersion relation and conservation laws, respectively.
However it is not always easy to find a suitable Lagrangian for a finite-amplitude
wave and its physical interpretation is confounded by the fact that there may be
more than one Lagrangian that generate the same governing equation. To date,
average Lagrangian densities for the Rossby wave have been found only in the small-
amplitude limit (Seliger and Whitham 1968, Buchwald 1972).

Instead of attempting to identify the exact form of Lagrangian density, in what
follows we assume that an average Lagrangian density for the Rossby wave exists as

a function of local wavenumbers and frequency. Then by requiring stationarity of



128  the averaged action with respect to phase, we obtain the conservation laws in terms
129 of Lagrangian density (Whitham 1965, Bretherton and Garrett 1968). Since the

130 derived conservation laws should correspond to (1) and (4), by matching the terms
131 we can determine the relationships among the (unknown) Lagrangian density,

132 (known) pseudomomentum and pseudoenergy densities A, E [(2)(5)], and the

133 (unknown) phase speed of the Rossby wave. Finally by eliminating the Lagrangian
134  density from these relationships we will obtain the expression for the phase speed in
135 terms of A and E, which we call the generalized dispersion relation.

136 Barotropic flow on a sphere is described by streamfunction y(A,u,t) such
137 that Oy /0A =vacos¢, Oy /Ou=—ualcosg. Let

138 YA LD =Y + AV Y s (6)

139 where
Uger

140 Ve (1) = _af—dﬂ (7)
cos¢

141 is streamfunction of the reference state defined by (3) and

_ A

142 Ay (u,t)= af—du (8)

cos ¢

143 is the change in the zonal-mean streamfunction due to eddy, where A is defined in
144 (2). The eddy streamfunction y’ is assumed to be nearly plane, that is, a periodic
145 function of phase function 6(4,u,t) such that

146 v'(0)=y'(0+27). 9)
147 Itis understood that the average of ¥’ over 27 vanishes. The local wavenumbers

148 and frequency are defined as the gradients of phase function
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k=0,, |=6, oc=-0, (10)

u t
where the subscripts denote partial derivative. For simplicity, we only consider

waves for which (k,/,0) is independent of longitude A (compatible with the fact that
the background flow Ay + v, isindependent of 1). Then

k,=0,10,=6,=k,=0,0,=0,=—k =0 (11
= k: constant, [=I[I(u,t), o=0o(U,t).

To ensure periodicity (9), neither the background flow Ay +y ... nor the wave

properties can change significantly over one cycle (27 ) of phase. Thus, we require
[>u,', o>t (except for steady state), (12)

where u, and ¢, are the meridional and temporal scales of the background state,

respectively. [A more formal two-scale analysis is spared for the sake of space—see
for example Whitham (1970, 1974 ch.14).]
Now we assume that the barotropic equations of motion arise from

stationarity of action
8 [[[ Ldrdudr=o, (13)

where L is the Lagrangian density of the flow. Finding the exact form of L is beyond
our scope, but it is safe to assume that L depends on the first derivatives of v . With
the waveform given by (9) and (10), the zonal average of L, denoted by L, should
depend on (9,,91,9ﬂ) = (—0,k,l) butnoton 0 or A because any derivative of 1//' is
written as y, times the gradient of 8 [(9), (10)], whereas the zonal averaging

eliminates the dependence on 6 or A (due to the zonal periodicity of the flow and

constant &, zonal averaging has the same effect as the phase averaging) . Likewise
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L should depend on the amplitude of v, o’ (1,t) = 1//_6’,2, aswell as A/cos¢ through
Ay [(8)] and U, (u)/cos¢ through v, [(7)], but not explicitly on time (the time

dependence enters only through modulation of VO, a* and A). Let us then define
perturbation Lagrangian density £ as

L(6,.0,.0,.0° A )=L—L (14)

REF
where L, (1) is the Lagrangian density of the reference state. Again £ does not
depend explicitly on A or ¢ because of the zonal and temporal symmetries of the
reference state.

Conservation laws and dispersion relation for the wave are derived by
requiring that the average action be stationary (Whitham 1965, Bretherton and

Garrett 1968)

5ff£dudt:0 (15)
with respect to independent variables of the wave, normally phase 6 and amplitude.
Of the list of variables in (14), both &* and A concern wave amplitude, one Eulerian
and the other Lagrangian, and therefore they are interdependent. Furthermore, even
though neither o> nor A depends on 6, at finite amplitude they may be related to
frequency —0, (Sturrock 1961; Whitham 1974 ch.14). Therefore separating phase
and amplitude is not trivial at finite amplitude; for this reason we only consider
variation with respect to 0 as an independent variable. (In linear theory, «* and A
are proportional to each other and they are independent of frequency. Thus

variation with respect to o directly yields a dispersion relation: Whitham 1965;

Bretherton and Garrett 1968; Seliger and Whitham 1968.)
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Variation with respect to 6 at fixed u leads to the following conservation

laws for pseudomomentum and pseudoenergy in the form of Euler-Lagrange

equations (e.g. Salmon 2013):

o, 0L) 0|, oL

—le, == |+—|0 =0, 16
az[ ‘ae,]+au[ " 08, (16)
LA PR IS PR (17)
AR ou| ' 08,

These conservation equations arise from the fact that £ does not depend explicitly
on A or ¢ (i.e, the zonal and temporal symmetries of the reference state). Equations
(16) and (17) correspond to (1) and (4), respectively, for a slowly modulated, near
plane Rossby wave. Matching of terms between (1) and (16) and between (4) and
(17) suggests

Aacosq):Gl%:—k%E—%, 0=2 (18)
00, oo ow k

E:Q%—£:G%—£:w%—ﬁz—wAacosq)—E, (19)
00 oo ow

t

— kI(1—u?)o oL oL
—uV(1—p*)= =0 — k=, 20
W (1-w) & ‘o0, ol (20)
!/ /
i+ 2 et cos¢ =0, oL :—Ga—ﬁz—wka—ﬁ, (21)
Dy a 00, ol ol

where o is angular (zonal) phase speed of the wave. (In what follows we will prefer

to work with ¢ = wa, equivalent phase speed at the equator.) From (18)

10
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L=— f (Aacos$)dm =— f (Acos¢)dc,* (22)

and from (19)

E=—-wAacos¢—L =—cAcosp+ f(Acosq))dc

(23)
— f cd(Acos ).
The derivative form of (23) is
OE
cUt)=—F—"—
8(ACOS¢) k.1, fixed (24)
Upe—A 02 i de

cos¢ O0(Acos @) - cos¢ - O(Acos @)’

where we used (5) to derive the second expression. In (24) the phase speed of the
Rossby wave c is given by the functional derivative of pseudoenergy density £ with
respect to angular pseudomomentum density Acos¢. We call (23) and (24) the
generalized dispersion relation, since the definitions and conservation of Acos¢ and

E [(1)-(5)] do not depend on specific shape of the wave. Admittedly we assumed a
rather restrictive waveform (9)-(11) to derive the dispersion relation, but the
derived result (24) may be used to find the phase speed even when the exact
waveform is not known (details to be outlined below). All information about the
properties of the wave and the mean flow that affect the phase speed is included in

E and Acos@, quantities easily evaluable from data.

The generalized dispersion relation is nonlinear in two important ways. First,

4 An arbitrary function of k£ and / may be added to the right-hand side as a constant
of integration, but this function is actually zero since (19) requires £ — 0 as
E.A—0.

11
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the phase speed ¢ depends on angular pseudomomentum density Acos¢ and
therefore it is amplitude-dependent. This is why the right-hand side of (23) takes an
integral form, and (24) a derivative form: in other words, the Acos¢ - E relation is
nonlinear. Second, the dispersion relation includes the effect of wave-mean flow
interaction [(3)] through the quadratic term in A [(5)]. This term is negligible at
small amplitude because in that limit both ¢ and Acos¢ are quadratic in (the small)

wave amplitude (see section 2b below). Before evaluating (24) from data, we shall

discuss meridional propagation of wave amplitude and a few useful limiting cases.

(2a) meridional propagation of amplitude

If rewrite (1) and (4) as

%(Aacosq))—ké%(cAAacosq)):0, (25)
0 10

—E+——"(c,E)=0, 26
ot +a@,Lt(CE ) (26)

where ¢, and ¢, are the effective meridional transport velocities of angular

pseudomomentum and pseudoenergy densities, respectively, then from (18)-(21)

T T2 2y n2
¢ = uv'—pu ):kl(i U)o _ 85/81’ 27)
Acos¢ a“Acos¢ 0L/0oc
- ' cdL /0l
c,=E" uu’—i—%—l—e v’cos¢:—a6(a£/ao_)_£. (28)

As we will see below, in the small-amplitude limit ¢, ~ ¢, and they are reduced to

the meridional group velocity of the Rossby wave.

(2b) small-amplitude limit

12
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In the small-amplitude limit, A and E are approximated as (e.g., Held 1985;

Nakamura and Solomon 2010, appendix)

12
Acosp~ 29, E~e—uA (29ab)
20q/0u

(the A term in E is negligible in this limit). Since both E and Acos¢ are quadratic
in small wave amplitude, OF / (Acos¢) in (24) may be approximated as E/Acos¢:

E u e

c(u,t)y=— ~~ — . 30
(1) Acos¢p cos¢ Acos¢ (30)
Therefore (23) becomes
E~—cAcosp=—wAacos¢; L~0, (31)

namely, the amplitude dependence of phase speed in (23) is negligible and the

Lagrangian density vanishes. The vanishing £ renders ¢, =c, [(28), (27)] and also

or .. or
o~or=%561%s1 32
96 °% T a1 (32)

Hence with (27) and (32)

a@ﬁ/@l %aé—azc , (33)
oL /0o or ¢

Cp=C, =

namely ¢, and ¢, both approach the meridional group velocity of the Rossby wave.

(2c) Steady amplitude limit
When the wave amplitude is steady, the tendency terms in (16) and (17)

vanish and thus the fluxes are invariant with g. From (16) and (20)

13
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k%—f:—u’_v’(l—uz)

kL (1—p)o (u) .
= e =indep. of u

(34)°
= [la-p)] <o),

and since [ is invariant in time, from (10) /, =6, =—0, = —k®w, =0. Thus c is

ut
independent of latitude. The dispersion relation (24) becomes

u Oe

‘- cos¢ - d(Acoso)’

(35)

where c is constant but the terms on the right-hand side are slowly varying

functions of u. One may consider (34)-(35) as the finite-amplitude extension to the

Wentzel-Kramers-Brillouin (WKB) dispersion relation for the steady Rossby wave.

(2d) Beta-plane approximation

Translating the foregoing results for the beta plane is straightforward: one

simply needs to replace (al, au, cos¢, 1—u*) with (x, y,1, 1). For example, (24)

becomes
OE Oe
c(y,t)=——— =u(y,t)———- (36)
aA k,l,y fixed 6A
It is well known that plane wave
v'(x,y,t) = Bcos(k(x—ct)+1y) (37)

is an exact solution of the nonlinear barotropic vorticity equation on the infinite beta

plane if the background flow is uniform (i =1, ) and if the phase speed c is given by

5> If the wave amplitude is steady globally, W(l —u?)=0 everywhere since the flux

vanishes at the poles. Thus (34) should be applied only locally. (This is not the case
for an infinite beta plane.)

14



276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

C:MO—]&Lj_lz, (38)

where f is the constant gradient in the Coriolis parameter. Because of the

symmetry along the phase lines, it is straightforward to show that (the Cartesian

version of) (2) leads to (appendix A)

A VYY) _ (K +I) B

28 4B ' (39)

i.e., exactly the same form as the linear pseudomomentum density [(29a)]. Since

Vy'y  &*+0P)B B
2 4 K

e =

(40)

substitution in (36) recovers (38). Therefore, the well-known dispersion relation for
the Rossby wave is derived from the generalized dispersion relation based on
pseudomomentum and pseudoenergy densities. In particular, the ‘beta-effect’ is

introduced through A [(39)].

(2e) Diagnosing the phase speed of nonsteady wave from A and E

The foregoing Lagrangian-based formalism is in fact applicable to a wide class
of slowly modulated near-plane waves, not just Rossby waves. Results analogous to
(18)-(33) have been reported for example by Sturrock (1961), Bretherton and
Garrett (1968), and Grimshaw (1984). What is new here is that, since A and E for
the Rossby wave (and balanced eddies) may be evaluated with data according to (2)
and (5), we can test the validity of the finite-amplitude dispersion relation. A final
obstacle in doing so is that (24) is written in terms of functional derivatives that

cannot be evaluated explicitly because the precise functional dependence of ¢ on A

15
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is unknown except for special cases like (40) in which the two quantities are
proportional to each other.

To circumvent this difficulty, we rewrite (16) and (17) using (18)-(21) as

0 ) 1/2) 0 [ 85]

—|Aa(1— =——|k—]|, 41

at( all—4’) oul ol (41)
a_E:i[wk%] _ (42)
or oul”" o

Since the fluxes on the right-hand side vanish at the poles [(20), (21)], ¢ may be

evaluated as

OE' /ot
’t - — T T i~
c(p.1)=oa A" /Ot
Ewn= ["Ew.nay, Awn= [ A n1-p?) " ay'. (43)
—1 -1

Unlike the linear limit, the phase speed is not determined locally but involves

integrals of Acos¢ and E over latitude. [In (43) the integrals are defined over

[—1, 1] but they can be also defined over [u, 1] without affecting the result.]

However where dc/du or u'v' vanishes it may be evaluated locally:

OE(u.1)/ Ot (D1 0p)(uv' (1= "))
* o Ha — C+ )
A=) 20AWN 10 a(l— ) 0A(u.1)/ Ot

C

c'=c if 220 or uV'=0. (44)
ou

In the next section we will use (43) to evaluate the phase speed of a numerically
simulated finite-amplitude Rossby wave and compare the result with the directly

measured phase speed to verify the accuracy of the theory.
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3. Rossby wave phase speed during nonlinear barotropic decay on a sphere
The generalized dispersion relation derived above is now tested in a numerical
simulation of nonlinear barotropic decay on a sphere. The experimental setup is
identical with that of Held and Phillips (1987), HP87 hereafter, except that we use a
T170 spectral transform model with a 12t-order hyperdiffusion that damps the
shortest wave with the e-fold time of 0.3 day. A wave with zonal wavenumber k=6
whose amplitude is initially centered at 45°N, slightly north to a midlatitude jet, is
allowed to evolve freely thereafter. This may be thought of as a crude model of
decaying synoptic eddies in the upper troposphere. The model solves barotropic
vorticity equation and angular pseudomomentum density Acos¢ is computed at a
regular time interval (6000s) using the method described in appendix B. Together
with the velocity output, we compute pseudoenergy density £ according to (5).
Figure 1 samples snapshots of absolute vorticity in the Northern Hemisphere at

six stages of a simulation with initial wave amplitude ({, in HP87) of 4x10 s,

This amplitude is chosen because the result exhibits a wealth of wave behaviors
before dissipation renders the flow nonconservative. The wave initially centered at

45°N creates large meandering of vorticity contours (Fig.1a), but subsequently the

meanders migrate southward with a characteristic eastward tilt with increasing
latitude (Figs.1bc). Eventually the wave breaks around 25° N and forms a critical
layer in which vorticity is quickly stirred (Figs.1d-f, see section 4 for more on critical
lines). By day 15 zonal wavenumber 12 emerges as a prominent structure in 20° -
30°N (Fig.1f). There is also poleward intrusion of filaments of low absolute vorticity,

although it is less wavelike because the filaments are strained by the cutoff vortices

17
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that already exist in the initial condition.

Figures 2a and 2b show Acos¢ and E as functions of time and latitude. The
former is everywhere positive by definition, whereas the latter proves
predominantly negative because of the second term in the last expression of (5). The
two quantities are highly correlated and they demonstrate clearly that the initially
centralized wave activity separates into equatorward and poleward packets, until
they congregate around 24° and 55° N. At these latitudes Acos¢ and E attain
maximum amplitudes around day 9-10. Up to ~day 6 the transport velocity for

pseudomomentum c, is characterized by large negative (equatorward) values to the

south of 45°N and small positive (poleward) values to the north (Fig.2c). Then ¢,

changes sign to positive in the midlatitude around day 8.5. This coincides with a
reversal of phase tilt due to rapid reconfiguration of phase lines (see Fig.11 below).
Such transition hints at reflection of the wave from the critical lines and/or
interference of multiple waves (though this is hardly visible in Figs.2a and 2b
because of very small wave activities in the midlatitude), at which point the
generalized dispersion relation becomes invalid since the theory is built on the

assumption of single wave. Figures 3a-c show u /cos¢ and its departure from the
initial condition, as well as U, / cos¢ in the same coordinate as Fig.2. The zonal-
mean angular velocity u /cos¢ is accelerated around 45°N as the wave exits the

source region, whereas it is decelerated where the wave packets arrive (compare
Fig.3b with Fig.2a). Since the region of acceleration is north to the axis of the initial

jet (35°N), the jet is displaced northward: by day 6, the axis moves to 42°N. This
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shift does not occur in U,,,. / cos¢, consistent with (3a), demonstrating that the
displacement of the jet is due to repartitioning of # and A.

Global conservation of Acos¢ and E are examined in Fig.4. The domain
averages of these quantities are invariant under conservative dynamics and indeed
they remain constant up to ~day 6, after which the average Acos¢ ( E) decreases
(increases) significantly. This is largely due to dissipation of pseudomomentum
density by enhanced diffusive flux of vorticity (Nakamura and Zhu 2010) in the
critical layer. We therefore expect (43) to hold for at least first six days of the
simulation.

The phase speed in (43) is evaluated as the slope of the A"- E" curve at each
latitude. Figure 5 shows scatter plots of E' (ordinate) versus A" (abscissa) at ten
different latitudes through the first seven days of simulation. These quantities are
computed by integrating Acos¢ and E meridionally [(43)], from the South Pole for
15°-45°N and from the North Pole for 50" -60° N. As one might expect from Figs.2a
and 2b, the two quantities are tightly correlated and form a compact curve at all
latitudes. Each curve consists of 101 data points and they proceed in time from the
upper left to the lower right. The length of the curve is shortat 15° and 60°N
because the wave amplitude is consistently small in the domain of integration

throughout the seven-day period (Figs. 2a and 2b). The curve length increases
dramatically from 15° to 35°N where the wave amplitude undergoes significant

growth over time. The curve shortens again from 35° to 45°N, as the wave

amplitude here decreases in time and this partially cancels the increasing trend in
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the lower latitudes upon meridional integration. The slope of the curves in Fig.5
[(43)] equals the phase speed ¢ = wa. To the lowest order the curves appear close
to being linear with similar slopes, but weak curvatures are also recognizable
particularly during the early stage of the simulation, suggesting that the phase speed
does depend on the wave amplitude.

The phase speed estimated from Fig.5 will be shown shortly, but for a
validation purpose we need direct ‘observation’ of the phase speed, which we

compute with the meridional velocity (v) based on the formula

(Ov/0t)(0v/oA)
(Bv/A)

Cobs(u’t)%_a ’ (45)

where overbar denotes zonal average. Unlike spectral analysis, (45) may be
evaluated instantaneously (the tendency term is evaluated from the difference
between two consecutive outputs), and if v is simply translating in longitude at a

uniform phase speed, i.e., v=v(1—@(u,t)), ¢, =c,, (U,t), then (45) is exact. Here v

obs

is an arbitrary smooth function and its amplitude need not be small. When multiple
waves are present, that is, when & is also a function of A, (45) defines a weighted
average phase speed of all wave components. To demonstrate the accuracy of (45),
we show in Fig.6 the phase migration of the meridional velocity v at 37° and 20°N as
functions of longitude and time (Hovmoller diagram): shown on the left are the
model output of v normalized by their instantaneous rms value across longitudes,
and on the right are the reconstructions by way of translating a sine function with
the phase speed calculated from (45). In the model output wavenumber 6 remains

dominant throughout the simulation, although wavenumber 12 also emerges at 20° N
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toward the end. At 37°N there is a kink in the phase lines around day 8.5, and at 20’
N the phase lines are discontinuous around day 6.5 and 7.5. These irregularities are
due to breakup and reconnection of phase lines, to be discussed more in detail in the
next section. The reconstructions reproduce the salient features of the model output,
smoothly connecting the gaps in the phase lines. Even at the end of the 15-day
period the placement of the phase remains nearly identical with the model output,
justifying the use of (45) as a surrogate for the phase speed. (We have also used the
eddy component of relative vorticity in place of v to evaluate (45) and obtained
virtually identical results). Finally, we will also compare the phase speed estimated
from (43) with the linear theory [based on (30) with the small amplitude
approximations to A and E (29) and the instantaneous values for the zonal-mean
quantities].

Figure 7 shows the values of phase speed based on (43) (thick dots), (45)

(thin solid curve), and (30) (thin dots) as functions of time. At latitudes 40°N and

1

higher, the observed phase speed c,,, (solid curve) starts at around 20-25ms~ and

slowly increases to about 30 ms~' at the end of the seven day period. Atlower
latitudes the initial phase speed is much slower—in fact negative (westward) at 15°
and 20° N— but quickly increases to about 25 ms~' in 3-4 days. This initial
latitudinal gradient in the phase speed is consistent with the development of phase
tilt between 15° and 40°N in absolute vorticity (Fig.1b). The large fluctuation in the
observed phase speed at 15 N is due to rapid breakup and reconnection of the phase

lines across a critical line (see section 4 and Fig.11). At this latitude the theoretical
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estimate based on (43) matches the observed values only for a short period (day 1-3)
and deviate significantly at other times, but the agreement improves as one moves
higher in latitude (20°-35°N). Overall the theoretical estimate based on (43) agrees
with the observed values better than the linear theory, particularly at 15° and 60° N
and during the early stage of the simulation — a somewhat surprising result given
the small wave amplitude in these circumstances. A possible reason for this is that
the linear dispersion relation only quantifies changes in wave geometry, while
initially the wave amplitude is also changing rapidly: only the finite-amplitude theory
takes the effect of changing amplitude into account. On the other hand, at 45° and
50° N the linear theory is much closer to the observation—another surprise
considering the large initial wave amplitude here. At 45°N the phase speed
predicted by (43) is highly variable and at 50°N it is out of the frame most of the time.
A likely reason for these big discrepancies is that eddy momentum flux u'v' [or

equivalently, ¢, : see (27)] changes sign around these latitudes (Fig.2c). Since (43)
may be rewritten as [with (41), (42), (20)]

T F
cuv :_8E/8t, (46)
u'v' OA /0t

¢ is indefinite where #’v’ vanishes and likely subject to large uncertainties as it
changes sign. In this case the local formula (44) likely produces more accurate result.
Apart from these caveats, it is encouraging that (43) is capable of predicting the
observed phase speeds of finite-amplitude Rossby waves in parallel shear flows,
particularly considering that the slowly varying assumption is not necessarily

satisfied in the simulation. That said, we do not necessarily advocate using (43) as a
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diagnostic method for ¢ given that (45) is accurate and much easier to compute.
True utility of the generalized dispersion relation lies in the fact that it can describe

the effects of nonlinearity on wave dynamics as demonstrated in the next section.

4. Phase speed structure and critical lines

The dispersion relation (24) is built on several assumptions: (i) dynamics is
conservative; (ii) the wave is near plane and consists of a single zonal harmonic; (iii)
wave amplitude, phase speed, and the zonal-mean state all vary slowly in time and
latitude compared with the phase. Given these restrictions, it is expected that the
predicted phase speed becomes less accurate as one or more of these conditions are
violated.

In linear wave theory, WKB assumption breaks down at turning latitudes (/ =0)

and critical lines (¢ =u /cos¢, CLs hereafter). At CL the linear wave theory itself

breaks down due to singularity. The linear WKB dispersion relation for the Rossby

wave on the beta plane reads [cf. (30)]

B, (»)

e_ _Pg¥) 47
A K41 (©Y) (47)

u(y)—c=
where f3, is the local meridional gradient of absolute vorticity. Aslongas S, is

nonzero, (47) implies [> — oo as the wave approaches a CL (i —c =0). This implies

that both the meridional phase and group velocities vanish at the CL:

. _Oke) __2KIp

STl Caeepy 0w emis (48)

i.e,, an incident wave cannot reach the CL in finite time.

6 Although (47) is formally invalid at the CL, these limits still hold.
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Given that the dispersion relation (24) is based on finite-amplitude theory,
can we expect a different behavior at CLs? To gain some insight on this, we shall
examine the spatio-temporal structure of the CLs observed in the simulation
described in section 3. Since in our simulation both # and ¢ are changing in time

and space, the locations of CLs can change. Figures 8a-8d show c,,  obtained from
(45) (thick solid curve) and u /cos¢ (thin solid curve) as functions of latitude for day

0, 3,5 and 7, respectively. Crossing of the two curves defines the location of a CL.

Initially the two curves are well separated (¢, <u /cos¢ everywhere) so there is no

obs
CL (Fig.8a). However, because of rapid initial transformation of the wave the profile

of ¢, changes quickly, and by day 3 the two curves cross on both flanks of the jet

(Fig.8b). In fact, there are two crossings on each flank due to a sharp falloff of ¢

obs ?

giving rise to two CLs sandwiching a region in which ¢, >u /cos¢ (shaded, Fig.8b).

For each shaded region, we call the CL facing the jet axis ‘the inner CL’ and the one

facing away from it ‘the outer CL." The structure of c,, remains relatively flat inside

the jet from day 3 and 5, but in low latitudes it is highly transient: on day 5 two
additional CLs appear to the south of the existing ones but they disappear by day 7

(Figs.8cd). The two persistent CLs on the southern flank of the jet slowly migrate

northward, from (13°,19°N) on day 3 to (20°,24°N) on day 7, whereas the two CLs on
the northern flank remain nearly stationary at ~(54°,63°N). Although the initial
formation of CLs is clearly due to the rapid change in the profile of ¢, rather than

the modification of # / cos¢, the magnitudes of ¢, —it /cos¢ in the shaded regions

remain comparable to the modification of i /cos¢ (see Fig.3b), suggesting that for
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the maintenance of mature CLs the wave-mean flow interaction is important. In fact,
the northward migration of the subtropical CLs is in step with the deceleration of the
mean flow in this region.

Figures 8e-8h show the corresponding evolution of A/cos¢ and c,. Initially
the wave has no meridional tilt (Fig.1a) so W'y = ¢, =0 everywhere (Fig.8e), while
the peak of A/cos¢ islocated at ~45°N. The latter separates into equatorward and
poleward moving packets, of which the former moves faster because of a greater
(negative) ¢, (Figs.8f-8h, see also Fig.2a). These packets become increasingly more
focused because ¢, decreases toward the front end of the packets. Although both
A/cos¢ and c, tend to vanish in the far field, there remain significant wave
amplitudes at the CLs, particularly the inner CLs. On day 3 ¢, is also clearly finite at
three of the four CLs. This is a significant departure from linear theory, which
predicts that the shaded regions are inaccessible to the Rossby wave packet. On the
contrary, the wave packet amplitudes are actually greatest in the shaded regions on
day 7 (Fig.8h). It appears as though CLs are no longer singular and capable of (at
least partially) transmitting the Rossby wave through them. The only thing that
appears singular is the near discontinuous variation of c¢,,, across the outer CLs
(Fig.8¢,d).

As an attempt to build conceptual understanding of the CL behavior in the
nonlinear simulation, let us utilize the generalized dispersion relation developed
above with the beta-plane approximation. We also assume that the phase speed c is

constant. (In doing so we are tacitly removing the amplitude-dependence of phase
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speed, so that wave-mean flow interaction is the sole nonlinear effect to be

considered.) In this case the integral form of (36) is

A’ A’
E+cA:E+7—(UREF—C)A:2—7—(L7—C)A=0.7 (49)

The above equation is defined for each latitude y and time ¢. Rearranging,

— 2 2
poe—C A_Kxl A (50)
A 2 2kl 2

where the second equality uses ¢, = kla® / A [(27)] and e = (k* +[*)ar* /2. Equation

(50) replaces (47) in linear theory. From (50) at the CL (it = ¢) we have

klA
CAZW.

(51)
Thus the transport velocity ¢, at the CL becomes a function of wave amplitude.
Assuming ! is finite, a wave with nonzero A will have nonzero ¢, ata CL. This is

consistent with the fact that both A/cos¢ and c, are finite at many of the CLs in

Fig.8. The implication is that under the dispersion relation (49), an incident wave
packet can reach the CL in finite time and may be transmitted through it. Unlike
linear theory, a CL does not require that /> diverge. In addition to the expression for

¢, (50) provides a constraint on the wave amplitude at the CL
e=—, (52)

which represents a local maximum of e with respectto A since [from the A -

derivatives of (49)]

7 Since we fixed ¢, (49) and (50) should be viewed as equations for A, given ¢, U,

and e, rather than the formulae for c.
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a—A:L_l_CZO,
d’c¢ 0 ,_ 0
8,42:a_A(”—C):a_A(UREF—A—C):_1<O' (53)

Note that (52) cannot be obtained from the linear (small-amplitude) theory because
the right-hand side would be two orders of magnitude smaller in wave amplitude
than the left-hand side.

To illustrate how the wave solution varies across CLs, Fig.9 schematically
depicts the left-hand side of (49) as a function of A at a fixed time for three different

latitudes y,,y,,y; in decreasing order. For simplicity, we assume that U,,,
monotonically decreases from y, to y,. Curve 1 corresponds to the highest latitude
y,. The intersections of the curve with the abscissa provide two possible roots for A
but let’s say the smaller root A = A, materializes here. This is close to the linear
solution [ignoring A’ /2 in (49)] represented by the intersection of the dash-dotted

line and the abscissa. Note that the horizontal coordinate of the vertex is

A=U,;(y)—c so A <U,.(y,)—c orequivalently ¢ <u(y,). Thus, at this latitude
the wave travels westward relative to the zonal mean flow. At the second latitude y,

the wave amplitude is higher so the curve is shifted upward but also to the left, since

Uper (3,) <Ugpr(3,) . The curve 2 touches the abscissa at the vertex, so A hasa
double root A, =U,,,.(y,)—c or equivalently ¢ =u(y,). In another words y=1y, isa
CL. Now U, continues to decrease toward y, at which the left-hand side of (49) is

described by curve 3. This curve again intersects the abscissa at two points (since A

must be real the vertex of the curve cannot move above the abscissa), but this time
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the larger root A = A, is chosen so that A, >U,,.(y;)—c, or ¢ >u(y,), namely at this

latitude the wave travels eastward relative to the mean flow. This is a solution not

possible in the linear theory. Because of finite A, ¢, remains nonzero from y, to y,,
supporting the meridional transmission of pseudomomentum through the CL. A
wave solution is possible in the region # — ¢ <0 because of wave-mean flow
interaction: finite-amplitude wave decelerates the mean flow to such an extent that
the wave propagates faster than the flow. Since the CL corresponds to a double root
of quadratic dispersion relation (49), it involves no mathematical singularity. The
picture that wave activity may be transmitted through CL at finite amplitude fits the
inner CLs (at ~24° and 53°N) in Figs.8b-d particularly well, where both A and c,
are finite (Figs.8f-h) although ¢, at 53°N is very small.

If CLs are nonsingular in (49), is there any singularity anywhere? One might
consider U, —c =0 in (49) analogous to linear CL but it is not realizable at finite
amplitude because it requires ¢+ A* /2 =0. In Figs.8a-8d, U,,, / cos¢ indicated by
the dashed curve indeed stays above ¢, most of the time, except in the subtropics
on day 3 and in low latitudes on day 5 (c,,, > U, /cos¢ implies that the wave is
evanescent in latitude). Although (49) is nonsingular at # = ¢ and U,,, = c, from

(50) itis clear that ¢ = u 4+ A/2 has the same mathematical characteristics as the

linear CL, including a vanishing ¢, :

c,—0 as (+A/2)—c=——0. (54)

|

Note that w <+ A/2 <U,... In Figs.8c and 8d c,,, starts to decrease sharply once
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it reaches halfway between u and U,,, at the flanks of the jet, and ¢, nearly

vanishes there (on day 5 this occurs at ~19° and 63°N; Figs.8c and 8g). It suggests
the presence of singularity, and the sharp drop in ¢ may be viewed as the wave’s
attempt to avoid it. It also gives rise to another CL (¢ =u ), the outer CL, at about the
same latitude. Even though the CL itself is nonsingular, the sharp decrease of ¢
makes its location practically indistinguishable from the latitude of singularity (54).
Further transmission of wave activity through this CL may be limited given the small

¢, there. In the meantime, the decreasing ¢, towards the outer CL causes

accumulation of A, which explains the large wave activities in the vicinity of CLs
(Figs.8g and 8h).

Since the CL geometry discussed above departs significantly from the
traditional view based on the linear theory, it is summarized schematically in Fig.10.
In the classical linear theory the wave solution is possible where ¢ <u yet the
incident Rossby wave cannot reach the CL in finite time because a diverging / causes
the meridional group and phase velocities to vanish at the CL (Fig.10a). In finite-
amplitude theory, a nonzero A allows the group velocity to remain finite at the inner
CL, so the wave activity may be transmitted through it into the region in which ¢ >u
(Fig.10b). However, the wave soon encounters singularity as ¢ approaches halfway

between u and U,,., where ¢ decreases sharply and c, nearly vanishes. It creates

the outer CL at the same location (Fig.10b), which transmits little wave activity
through it.
When the wave energy at the CL is large, streamlines develop closed contours

(‘cat’s eye’) with substantial meridional width to an observer co-moving with the
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wave, a favorable condition for wave breaking (Haynes and McIntyre 1987). This is
the case with the inner CLs at ~24"and 53°N in Figs.8cd. Particularly around 24°N,
where there was little wave activity initially, a rapid wave breaking and stirring of
absolute vorticity occurs (Figs.1d-1f). The well-stirred region between ~20° and 30°
N is identified as the nonlinear critical layer (or ‘surf zone’, McIntyre and Palmer
1983). The inner CL is located at the center of the critical layer, whereas the outer CL
is at the southern edge of the critical layer. Thus, the separation between the inner
and outer CLs, d, is roughly (half) the width of the nonlinear critical layer. Figure 10

suggests that d is approximately written as

Acrit (Ecrit )1/2 (5 5)

%|8L7/8y‘m,[ %‘&7/0)/ '

crit
where the subscript crit indicates characteristic values in the critical layer, and we
used (52) to derive the second expression (constant factors are dropped). Thus,

more energetic wave and/or weaker horizontal shear make the critical layer wider.

Killworth and McIntyre (1985) show that the upper bound of d is ~ 7|0 /y

i
Once the wave reaches the outer CL, it encounters an abrupt drop in c. Since
this violates the assumption of slow variation, the dispersion relation breaks down
there (even if singularity is averted). This occurs relatively early in the simulation at
low latitudes; this is why the agreement between theory and observation in Fig.7 is
short-lived at 15 and 20° N. Rapid change in ¢ implies rapid change in /, or
equivalently, the tilt of the wave. Figure 11 shows the phase structure (longitude-

latitude) of v-velocity between day 7.8 and 8.8 of the simulation. There are visually

discernible discontinuities in the meridional tilt at ~15°, 20°, 35°, and 62°N. These
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all coincide with gaps in ¢ (not shown), and except at 35° N they coincide with the
outer CLs. Since discontinuity in / means discontinuity in refractive index, it implies
that the incident wave is partially reflected and partially refracted by the CLs. (Wave
reflection is something that the WKB-like solution cannot describe.) Thus, in Figs.8¢
and 8d, the region between the two outer CLs at 20° and 62° N is shaping up to be a
waveguide, hosting multiply reflected waves.

Figure 11 shows not only discontinuous tilt but also break-up and
reconnection of phase lines at the outer CLs. Since the wave is traveling at distinct
phase speeds across the CL, the phase lines inevitably deform and eventually break,
and then reconnect with the next phase lines on the other side of the CL. The jump in
phase lines is evident in 15°-20° N (see also Fig.4 of Haynes and McIntyre 1987) and
also near 35°N. The phase jump occurs rapidly and creates anomalous transient
behaviors in phase speed as we observed in Fig.7 at 15° N and in Fig.6 at 20° N (phase
discontinuities). The phase jump at35°N around day 8.5 in Fig.11 is preceded by a

gap in ¢ (Fig.8d) and it causes a reversal of the meridional tilt, hence u'v' and c,,as

we have seen in Fig.2c. Apparently this midlatitude jump is caused by interference of
two Rossby modes in the waveguide traveling at distinct speeds due to different
meridional structures. Clearly, description of these rapid phase jump behaviors is

beyond the ability of the dispersion relation [(24)].

5. Summary
We have extended the dispersion relation for the Rossby wave in barotropic

shear flow to finite-amplitude regime using the exact conservation laws for
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638  pseudomomentum and pseudoenergy densities (Nakamura and Zhu 2010) and the
639 well-known method based on the phase-averaged Lagrangian density for slowly

640  modulated, near plane waves (Whitham 1965, Bretherton and Garrett 1968). The
641  phase speed is expressed as a functional derivative of pseudoenergy density with
642  respect to pseudomomentum density. Despite obvious limitations (conservative

643  dynamics, single zonal harmonic, slow modulation, near plane waveform, etc.),

644  writing the dispersion relation in terms of pseudomomentum and pseudoenergy

645  densities enhances the versatility of theory since their conservation does not depend
646 on specific wave geometry or amplitude, and the effects of wave-mean flow

647  interaction and the amplitude dependence of the phase speed may be incorporated
648  seamlessly. Furthermore, since pseudomomentum and pseudoenergy densities are
649  readily evaluable, the theory is testable with numerical simulations.

650 In addition to the dispersion relation, we have developed a method to

651 estimate the phase speed of the wave directly from instantaneous data [(45)]. Data
652 sampled from the numerical simulation of nonlinear barotropic decay on a sphere
653  (HP87) with an initial zonal wavenumber 6 demonstrate that the finite-amplitude
654  theory reproduces the observed phase speed better than the linear theory as long as
655  one is away from regions in which meridional eddy momentum flux changes signs
656  and/or the phase speed is discontinuous. It is also found that the linear theory does
657  notnecessarily perform better at smaller amplitude when the wave amplitude is

658 growing quickly. Consistent with previous studies (e.g., Randel and Held 1991) CLs
659  are generally located on the flanks of the jet, but their geometry differs significantly

660  from the standard linear theory: there are multiple CLs on each side of the jet axis. It
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is shown using the generalized dispersion relation that nonlinearity removes
singularity from CLs and the meridional group velocity at the CL remains finite when
the wave amplitude is finite. As a result, the Rossby wave may be transmitted
through the CLs even into the region where ¢ >1u .

In future studies we will extend the analysis to atmospheric data and examine
the CL geometry in the upper troposphere and its relationship to wave breaking with

the aid of the generalized dispersion relation.
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Appendix A Derivation of (39) from (37) and (2)
With the plane waveform (37) and the beta-plane approximation, absolute

vorticity ¢q is

q0.y)=f,+ By+4'(),

, (A1)
q'(0)=—(k> +1*)Bcosd, O=k(x—ct)+Iy.
Pseudomomentum density A is defined by the beta-plane version of (2)
. 1 ! ! / !
A)= E[ JJ a@ravas— [[ a@.)a'ae
>0 2y (A2)

e .
:_fv | )qdy Z—Kq(&y)é(é’,y)jtiﬁé (e,y)l,

where overbar denotes phase average (= zonal average) and £(6,y) is the meridional
displacement of the contour ¢ = Q relative to y along phase line (fixed 0 ). Because
the meridional gradient of ¢ along the phase line is constant (=),

q(6.y)=0(»)— BE(©.y). (A3)
Requiring ﬁ_ =0 (displacement is area-preserving), one sees from (A3)

o= f,+By. &O)=—4¢'©)/B. (A4)

Substituting in (A2)

: (A5)

B qlz lq_/z ZLE:(kZJrlz)ZBZ
2 B 4p

which is (39). Notice that, although (A5) is identical with what the linear theory

predicts, the wave amplitude B here is not assumed small.
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Appendix B Calculation of A

One may calculate A by evaluating the area integrals in (2) with weighted box
counting method. However, this method is prone to errors when the wave amplitude
is small, since in that case A becomes a small difference between two large integrals.
Here we use an alternative method to calculate A.

By taking the derivative of (2) with respect to u twice, one obtains

2

) g
o (Acosg)= aa(q(u,t)—Q(u,t)), (B1)

where Q(u,t) is absolute vorticity in equivalent latitude [Nakamura and Zhu 2010

Eq. (19)]. From the definition of zonal-mean absolute vorticity

2

2

(ﬁcos¢):a[2ﬁ—g—Z]. (B2)

Adding (B1) and (B2) then using (3b)

82
o’

_ o922
(U g cOS@) = [29 8/4]' (B3)

We first calculate Q(u,t) by inverting the area-absolute vorticity relation
S(Q)=2ma’(1—p), (B4)

where S(Q) is the area of domain in which ¢ > Q. This is evaluated with equally

the maximum and minimum values of

spaced 1024 bins of Q between Q__ and Q

max min ’

absolute vorticity. S(Q) is then inverted for Q(u) on equally spaced u (1024
latitudes), using linear interpolation. Then we calculate the gradient of Q with a
finite difference method and evaluate the right hand side of (B3) on each u. Finally

we solve for U, cos@ using a tridiagonal solver with the boundary conditions

35



706  Upgrcos¢p=0 at y=41.
707 Once U, cos@ is obtained, we interpolate the result onto Gaussian latitudes

708 on which the model’s variables are evaluated, and subtract # cos¢ to obtain Acos¢.
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Figure 1 Evolution of absolute vorticity in the Northern Hemisphere during

nonlinear barotropic decay described in section 3. Abscissa is longitude and ordinate

is latitude. (a) intial condition, (b) day 3, (c) day 6, (d) day 9, (e) day 12, (f) day 15.
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Figure 2 Wave properties as functions of time and latitude during the same

numerical simulation as in Fig.1. (a) Angular pseudomomentum density Acos¢,

contour interval = 0.6 ms~' (b) pseudoenergy density E, contour interval = 20 m’s°
(c) effective transport velocity ¢, (= group velocity in small-amplitude limit),

1

contour interval =1 ms . In (b) and (c), negative values are shaded. See text for the

definitions of variables.
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go3  Figure 3 Same as Fig.2 but for the mean flow properties. (a) Zonal-mean angular

sos  velocity it /cos¢, contour interval =2 ms~' (b) it /cos¢ minus its initial value,
8os  contourinterval =1 ms~' (c) Angular velocity of the reference state flow U,,, / cos@,

g6 contour interval = 2 ms~'. Negative values are shaded.
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Figure 4 (a) Domain-averaged Acos¢ as a function of time during the above

simulation. Unit: ms~

1

. (b) Same as (a) but for domain-averaged E. Unit: m’s °.
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g1z Figure 5 Scatter plots of A" (abscissa, ms™') versus E' (ordinate, m°s ) at 10

813 different latitudes, each constructed from the first 7 days of simulation. Each frame
g4  show 101 data points, sampled every 6000 s. The wave amplitude is small in the
815 upper left and large in the lower right. For 50°, 55°,and 60 N, A" and E were

si6  evaluated by southward integration from the North Pole. See Eq. (43) and text for

g17  details.
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(a) 37°N

0 100 200 300

(d) 20°N

818

819  Figure 6 Left: longitude-time plots (Hovmoller diagrams) of the rms-normalized v
s20  velocity for the simulation, at 37° N (top) and 20° N (bottom). Right: Reconstruction
g21  of phase by integrating the ‘observed’ phase speed calculated from Eq. (45). See text

g22  for details.
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g24  Figure 7 Phase speed of the Rossby wave ¢ during the first 7 days of simulation at
825 10 different latitudes. Thin solid curve: ‘observed’ phase speed based on Eq. (45).
826  Thick dots: theoretical estimates based on (43) and the A"- E" relations in Fig.5.

827 Thin dots: theoretical estimates based on linear theory [(30) and (29)]. The unit of

g28  the ordinate is ms™'. See text for details.
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Figure 8 Top row: c,,, based on (45) (thick solid curve) and # /cos¢ (thin solid

curve) and U,,. /cos¢ (dashed curve) as functions of latitude at four different

instants during the numerical simulation of nonlinear barotropic decay. (a) Day 0

(b) Day 3 (c) Day 5 (d) Day 7. In the shaded region c,,, >u /cos¢: the boundaries of

these regions mark the critical lines. Bottom row: same as the top row but for c,

based on (27) (thick solid curve) and A/cos¢ (dot-dashed curve). Zero line is also

added. (e) Day 0 (f) Day 3 (g) Day 5 (h) Day 7. The unit of the ordinate is ms ™' in

all plots.
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E+cA

839

g0  Figure 9 FE 4 cA as quadratic functions of A. Curves 1-3 correspond to three
sa1  different latitudes, y,,y,,y;. The dash-dotted line in indicates linear dispersion
gs2  relation at y,: itis tangent to curve 1 at A=0. The intercept of each curve with the

843 ordinate equals e at that latitude and the horizontal coordinate of the vertex of each

g44  curveis U, —c. See text for details.
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(a) Linear theory (b) Nonlinear theory

CL inner CL outer CL
Figure 10 Schematics of mature critical line geometry (horizontal axis is latitude).
Critical lines are defined by the intersections of the u#(y) and c(y) curves. (a)
Classical linear theory. Phase speed c is constant across latitude whereas the
meridional group velocity (indicated by gray arrows) drops to zero at the critical line.
(b) Nonlinear theory. The inner critical line is nonsingular and transmits the wave

to the right. ¢ is constantup to c~u + A/2, where it drops abruptly. ¢, also nearly

vanishes here. The outer critical line coincides with the latitude of sharp falloff of c.

The distance between the two critical lines is denoted by d. See text for details.
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(a) Day 7.8 (d) Day 8.4
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854

855  Figure 11 Reconfiguration of phase lines in v-velocity from day 7.8 to day 8.8.
8s6  Notice the breakup and reconnection of phase lines around 15°-20°N and 35°N.

857 Contour intervalis 1 ms~' and negative values are shaded.
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