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The finite-amplitude Rossby wave activity introduced recently by Nakamura et al. mea-
sures disturbances in terms of the areal displacement of potential vorticity (PV) from
zonal symmetry and possesses exact Eliassen-Palm and nonacceleration theorems. This
article investigates both theoretically and numerically how this wave activity, denoted A∗,
relates to previously defined quantities such as the generalized Lagrangian mean (GLM)
pseudomomentum density and the impulse-Casimir (IC) wave activity in the context of
barotropic flow on the sphere. It is shown that under the barotropic constraint both the
new and GLM formalisms derive the nonacceleration theorem from the conservation of
Kelvin’s circulation, but the two differ in the way the circulation is partitioned into a
mean flow and wave activity/pseudomomentum density. The new wave activity differs
from the (negative of) GLM pseudomomentum density by the Stokes correction to angu-
lar momentum density, which is not negligible even at small amplitude limit. In contrast,
A∗ converges to the IC wave activity and the familiar linear pseudomomentum density in
the conservative small-amplitude limit, provided that their reference states are identical.
Both the GLM pseudomomentum density and the zonal-mean IC wave activity may be
cast into a flux conservation form in equivalent latitude, which may then be related to
an exact Eliassen-Palm theorem through a gauge transformation. However, of the three
wave activity forms, only A∗ satisfies an exact nonacceleration theorem for the zonal-
mean zonal wind ū. A simple jet forcing experiment is used to examine the quantitative
differences among these diagnostics. In this experiment, A∗ and the IC wave activity
behave similarly in the domain average; however, they differ substantially in the local
profiles, the former being more closely related to the flow modification. Despite their
close conceptual relationship, the GLM pseudomomentum fails to capture the merid-
ional structure of A∗ because the Stokes correction term dominates the former. This
demonstrates various advantages of A∗ as a diagnostic of eddy-mean flow interaction.

Key Words: wave activity, potential vorticity, Kelvin’s circulation, Lagrangian-mean,
barotropic

1. Introduction
The bulk of fluid dynamics, both theory and modeling, has been developed in an

Eulerian framework. Since the pioneering work of Reynolds (1895), eddies have typically
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been defined as the departure from some spatial or temporal average. If we define the
Eulerian zonal mean of a scalar field χ(λ, µ, t) on the surface of a sphere as

χ(µ, t) =
1

2π

2π∫
0

χ(λ, µ, t)dλ, (1.1)

where λ is longitude, µ = sinφ, φ ∈ [−π/2, π/2] is latitude, and t is time, then the eddy
component is given by

χ′(λ, µ, t) = χ(λ, µ, t)− χ(µ, t). (1.2)
This decomposition forms a basis for our understanding of wave properties and the
interactions of eddies with mean flows in geophysical fluids. In particular, the conservation
of pseudomomentum is fundamental to our understanding of atmospheric circulation (e.g.
Vallis 2006 §§7,12). The local conservation of pseudomomentum density A may be written
as

∂A

∂t
+∇ · F = 0, (1.3)

where F is a flux. Terms may be added to the right-hand side of this exact conservation
relation to account for nonconservative processes in the relevant equation of motion as
we will see in §4 or errors of approximation discussed below.

Linear pseudomomentum density can be defined in terms of small wavy departures of
vorticity ω from a time-independent, zonally uniform reference state ωR, ζ ′ ≡ ω − ωR.
(Here ωR = ω but we use the subscript R to emphasize the time independence.) For
example, for barotropic flow on a sphere of radius a (Held & Phillips 1987)

AL(µ, t) =
a

2 cosφ
ζ ′2

dωR/dµ
. (1.4)

The quantity AL is the negative of pseudomomentum density but we will call it sim-
ply wave activity, following the standard nomenclature. In the absence of friction and
other nonconservative effects AL satisfies the generalized Eliassen-Palm (E-P) theorem
(Andrews et al. 1987)

∂AL
∂t

+ v′ζ ′ = O(α3), (1.5)

where v is the meridional component of the flow velocity and α is a measure of eddy
amplitude. The right-hand side includes the advection of AL by the eddies. Wave activity
is related to the zonal-mean zonal velocity u through the second term, the poleward flux
of vorticity by the eddies:

∂ū

∂t
= v′ζ ′ = −∂AL

∂t
+O(α3) ⇒ ∂

∂t
(ū+AL) = O(α3). (1.6)

Thus, in the conservative, small-amplitude limit the zonal-mean flow remains unchanged
if wave activity is steady, a result accurate through O(α2). This is the simplest form of
the nonacceleration theorem due to Charney & Drazin (1961). In a balanced flow the
eddy vorticity flux may be expressed as the convergence of eddy momentum flux (or
equivalently, the divergence of the Eliassen-Palm (E-P) flux) through Taylor’s identity

v′ζ ′ = −(a cosφ)−1 ∂

∂µ
{u′v′(1− µ2)}. (1.7)

With this identity (1.5) may be recast in the form of (1.3). The vorticity flux v′ζ ′ cosφ
vanishes upon integration over the domain, which, together with (1.6), leads to the con-
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servation of the domain-integrated AL cosφ (accurate through O(α2)) and u cosφ (ex-
act). The global conservation of AL cosφ is a key to formulating certain linear stability
theorems (Kuo 1949; Rayleigh 1896; Vallis 2006 §7).

An effort to extend (1.5) to a finite-amplitude regime while maintaining the Eule-
rian description of the flow is due to Killworth & McIntyre (1985), McIntyre & Shepherd
(1987), and Haynes (1988). These authors construct a finite-amplitude wave activity that
obeys an exact local flux conservation (1.3) by combining Kelvin’s impulse and Casimir
functions associated with absolute vorticity (or potential vorticity, PV). The impulse-
Casimir (IC) wave activity is measured relative to an arbitrary, zonally symmetric ref-
erence state that does not depend on time. The IC wave activity is O(α2) as α→ 0 and
its zonal average converges to the linear wave activity (1.4) in this limit, provided that
the same reference state is used. The global conservation of IC wave activity allows one
to derive finite-amplitude stability theorems for shear flows (McIntyre & Shepherd 1987;
Shepherd 1988, 1989). However, the O(α3) term in (1.6) becomes locally dominant at
large amplitudes, undermining the role of IC wave activity as a driver of the mean flow.
Also, the definition of IC wave activity depends on the choice of the reference state, which
is not a priori obvious for the real atmosphere. For these reasons, application of the IC
wave activity was initially limited to model simulations, where the diagnostic provided
insights into the evolution of instabilities, wave breaking and the reflection of Rossby
wave trains (Scinocca & Peltier 1994; Brunet & Haynes 1996; Magnusdottir & Haynes
1996, 1999). More recently, Strong & Magnusdottir (2008) applied the IC wave activity
to observed atmospheric flows. Although their analysis was performed for a composite
of many events, Strong and Magnusdottir were able to demonstrate the usefulness of
finite-amplitude wave activity for understanding a complex wave breaking phenomenon.

A significant conceptual advantage may be gained if one switches to a Lagrangian per-
spective. The generalized Lagrangian mean (GLM) theory (Andrews & McIntyre 1978a,c;
McIntyre 1980) defines a mean state by averaging quantities over selected material vol-
umes. For example, Lagrangian-mean properties of a wavy material tube displaced from
a zonal circle may be described as a function of its center-of-mass latitude, φm. In par-
ticular, the relationship between the GLM angular momentum and pseudomomentum
densities at φm is analogous to (1.6) yet exact, that is, there is no residual on the right-
hand side (Andrews & McIntyre 1978a; see also (2.16) below). This allows one to interpret
pseudomomentum density as the driver of the mean flow even at finite amplitude. How-
ever, at finite amplitude the center-of-mass latitude may not be mapped to geometrical
latitude one-to-one (see figure 6b below) and thus becomes unsuitable as a meridional
coordinate. To circumvent this problem, McIntyre (1980) suggested the use of the PV
contours as a quasi-material meridional coordinate (modified Lagrangian mean). While
PV is generally a monotonic function of latitude, it may not sample the globe uniformly
as its gradient becomes inhomogenous in the presence of a flow and nonconservative pro-
cesses (see figure 6a). For this reason, it is deemed more practical to adopt equivalent
latitude, a measure of mass (area) enclosed by the PV contours on an isentropic surface,
scaled to the real latitude (McIntyre 1982; Butchart & Remsberg 1986). Although the
equivalent latitude gained popularity in the analysis of stratospheric transport (Allen
& Nakamura 2003), to the authors’s knowledge, the GLM theory has never been refor-
mulated for equivalent latitude. For a baroclinic atmosphere, some flavor of the GLM
theory is retained in the transformed Eulerian mean (TEM) formalism of Andrews &
McIntyre (1976, 1978b), in which the Lagrangian-mean motion in the meridional plane
is characterized by the residual circulation. The TEM formalism – the generalized E-P
flux and its divergence in particular – has been widely used to diagnose wave-mean flow
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interaction (e.g., Edmon et al. 1980). See Bühler (2009) for a comprehensive review of
the GLM theory.

Recently, Nakamura & Zhu (2010a,b) (hereafter referred to as NZ10ab) and Naka-
mura & Solomon (2010, 2011) (NS10 and NS11 hereafter) introduced a finite-amplitude
wave activity based on the instantaneous areal displacement of PV contours from zonal
symmetry. In the context of barotropic flow on the sphere,

A∗(µe, t) =
1

2πa cosφe

 ∫∫
ω>ωe

ωdS −
∫∫
µ>µe

ωdS

 , (1.8)

where dS = a2dλdµ is the area element, ω = 2Ωµ+ ζ is the absolute vorticity (Ω is the
rotation rate of the sphere and ζ is relative vorticity), and ωe is the value corresponding
to equivalent latitude µe, i.e., the latitude of the ω-contour in an eddy-free reference state
after ω is ‘zonalized’ without changing the enclosed area. Measuring the departures from
a mean state which is independent of longitude, this finite-amplitude wave activity is
the negative pseudomomentum density defined in equivalent latitude coordinate. With
the Stokes theorem the two integrals in (1.8) can be expressed as Kelvin’s circulation
about the material vorticity contour C(ω(µe, t)) and the circulation around the circle of
equivalent latitude C(µe, t)

A∗(µe, t) =
1

2πa cosφe
(C(ω(µe, t))− C(µe, t)). (1.9)

It is easy to show (NZ10a, NS10) that A∗ > 0 for an arbitrary geometry of the ω-
contour and (e.g., appendix of NS10) that the small-amplitude, conservative limit of A∗

equals AL if ωR in (1.4) is taken as the absolute vorticity as a function of µe, which
is invariant with time. Furthermore, in the conservative (but finite-amplitude) limit, A∗

satisfies exact Eiassen-Palm (E-P) and nonacceleration theorems

∂A∗

∂t
+ v′ζ ′ = 0,

∂

∂t
(ū+A∗) = 0 (1.10)

at each µe. The latter result arises naturally if one applies Kelvin’s theorem to (1.9) and
notes that (2πa cosφe)−1C(µe, t) = ū(µe, t) + Ωa cosφe.

By integrating (1.10) with time from a hypothetical eddy-free reference state (ū, A∗) =
(uref , 0) to the current observed state (ūobs, A∗obs), one can quantify the adjustment to
the mean flow, or the departure from the reference state, in terms of the observed wave
activity

∆u ≡ ūobs − uref = −A∗obs, (1.11)

which can be evaluated with instantaneous data using (1.8). The above formalism has
been extended to a baroclinic atmosphere and applied to reanalysis data to quantify the
quasi-adiabatic adjustment in the general circulation of the atmosphere due to finite-
amplitude eddies (NS10, NS11). Furthermore, (1.10) implies that the reference state flow

uref (µe) ≡ u+A∗ =
1

2πa cos(φe)

 ∫∫
ω>ωe

ωdS −
∫∫
µ>µe

2ΩµdS

 (1.12)

is time-independent in the conservative limit, and more generally, it responds only to
forcing and dissipation and filters out the exchange between u and A∗ through the E-P
flux divergence. Similar to previous diagnostics of circulation based on the distribution
of PV with equivalent latitude (Butchart & Remsberg 1986; Nakamura 1995; Baldwin
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& Dunkerton 1998; Liberato et al. 2007; Harvey et al. 2009), uref removes the effects of
transient, reversible distortions to the PV field and hence underscores nonconservative
effects. For example, NZ10ab use uref to diagnose the effects of mixing on the sharpening
of jets in β-plane turbulence. It has been demonstrated by NS10 and NS11 that (the
baroclinic generalization of) uref captures a greater seasonal variation and less high-
frequency fluctuations than u, suggesting that uref exhibits better signal-to-noise ratio
as a climate diagnostic.

Thus the new diagnostic carries a flavor of Lagrangian-mean formalism by incorporat-
ing the material displacement with the contours of PV but avoids the difficulty of the
GLM formalism by using equivalent latitude as a coordinate, which, unlike the center-
of-mass latitude, is guaranteed to cover the entire globe uniformly even when the eddy
amplitude is large. Moreover, as suggested by NZ10a, the global conservation of A∗ cosφe
may be used to formulate the finite-amplitude (Lyapunov) stability theorems similar to
those derived from the IC wave activity (McIntyre & Shepherd 1987; Shepherd 1988,
1989).

The purpose of this article is twofold. First, we shall theoretically relate A∗ with the
GLM pseudomomentum density and the IC wave activity by explicitly working out the
formalisms for barotropic flow on the sphere. This will clarify that the three forms of wave
activity satisfy similar conservation law of the form (1.3) but differ by the divergence of a
vector, that is, they are related through a gauge transformation. Yet of the three only A∗

satisfies the exact nonacceleration theorem for the zonal-mean flow ū. Second, we shall
relate A∗ quantitatively with the other more traditional measures of wave activity in a
simple barotropic experiment on the sphere in which a jet is formed by localized wave
forcing. This is a fundamental phenomenon of barotropic flow on a rotating sphere, inves-
tigated over the years analytically, experimentally and numerically (Kuo 1951; McEwan
et al. 1980; Vallis 2006). The transport by waves results in a convergence of eastward
momentum into the forcing region and westward momentum elsewhere. This is similar
to the mechanism which maintains the midlatitude westerly winds against surface fric-
tion (Charney 1959; Eliassen & Palm 1961; Edmon et al. 1980; Boer & Shepherd 1983).
Application of the different forms of wave activity to this controlled experiment clarifies
the strengths and weaknesses of the diagnostics.

In the next two sections we will examine the theoretical connections among the GLM
pseudomomentum density, the impulse-Casimir wave activity, and A∗. In §4 these mea-
sures of wave activity will be compared in the analysis of the numerical simulation of an
eddy-driven jet. Sensitivity of these diagnostics to model truncation is also addressed.
The final section provides a summary.

2. Circulation, wave activity, and Generalized Lagrangian Mean

In this section, we will examine the link between the new wave activity and the GLM
pseudomomentum density by constructing a theory of the latter for barotropic flow on
the sphere. To avoid the difficulty of Lagrangian mean coordinates located in the interior
of the sphere (McIntyre 1980 §4.2), we will not derive the GLM set from the full 3D
problem, but apply the GLM theory directly to the 2D barotropic vorticity equation on
the sphere. Since the conservation of Kelvin’s circulation is central to both the GLM
theory and the novel construction of NZ10ab, NS10 and NS11, we will first outline the
forms of circulation as well as the methods employed for its calculation.
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2.1. Circulation in the (λ, µ)-plane
Consider a conservative, barotropic fluid motion on a sphere of radius a with rotation
rate Ω. Since the motion is independent of height, we will work in the longitude-sine
latitude coordinate (λ, µ) = (λ, sinφ), where φ is latitude. In these coordinates the area
element of the fluid is given by

dS = a2 cosφdλdφ = a2dλdµ,

so the spherical surface is mapped onto a rectangular plane, which makes the kinemat-
ics similar to those in Cartesian coordinates. Note that the Eulerian fluid velocity is
nondivergent

V = (U, V ) = (aλ̇, aµ̇) and ∂U/∂λ+ ∂V/∂µ = 0,

where U = u/ cosφ, V = v cosφ, and (u, v) are the velocities in the (λ, φ) coordinates.
Here the dot (i.e. χ̇) indicates the material derivative of χ. The momentum equations in
the (λ, µ)-plane are

D

Dt
[U(1− µ2)]− 2ΩµV =

−1
a

∂p

∂λ
(2.1)

D

Dt

(
V

1− µ2

)
+ 2ΩµU +

µ

a

(
U2 − V 2

(1− µ2)2

)
=
−1
a

∂p

∂µ
, (2.2)

where
D

Dt
=

∂

∂t
+
U

a

∂

∂λ
+
V

a

∂

∂µ

and p is pressure. Cross-differentiate (2.1) and (2.2) to obtain the vorticity equation

D

Dt
ω = 0, ω(λ, µ, t) = 2Ωµ+

1
a

{
∂

∂λ

(
V

1− µ2

)
− ∂

∂µ

[
U(1− µ2)

]}
. (2.3)

We express the Coriolis parameter f = 2Ωµ in terms of a vector potential A = (aΩ(1−
µ2), 0, 0) so that f = k · (∇×A), where k = (0, 0, 1). Although a gradient vector of
an arbitrary scalar field may be added to A without affecting the result, this particular
choice ensures that Kelvin’s circulation around the λ-periodic contour be defined correctly
(Bühler 2009 §10). Then absolute vorticity ω can be written in terms of the curl of
absolute velocity V∗ + A

V∗ + A ≡
(

(U + Ωa)(1− µ2),
V

(1− µ2)
, 0
)
≡ (M,N, 0), (2.4)

ω = k · (∇× (V∗ + A)) =
1
a

(
∂

∂λ
N − ∂

∂µ
M

)
. (2.5)

Now Kelvin’s circulation C about a closed material contour can be expressed as

C =
∮

(V∗ + A) · dl =
∫∫
D

ωdS, (2.6)

where dl is the line element vector of the closed material contour and D denotes the
domain enclosed by the contour. The last identity is due to the Stokes theorem. Kelvin’s
circulation is a conserved quantity for barotropic flow in the absence of forcing and
dissipation. Since under that condition absolute vorticity is also material, we consider
the circulation about these ω contours

C(ω) =
∫∫
ω̂>ω

ω̂dS. (2.7)
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The surface integral of vorticity can be estimated easily from a gridded data set by
weighted box counting. Simply determine if a given grid point is within the interior of a
contour, then add the vorticity at that point times the area of the grid box, which is the
spherical quadrangle at that latitude, ∆Sj = a2 cosφj∆φ∆λ:

C(ω) '
∑
ω̂ij>ω

ω̂ij∆Sj , (2.8)

where the subscripts (i, j) denote the longitudinal and latitudinal indices for the grid
point. On the sphere there is an ambiguity about the definition of interior, so we have
chosen the region designated by positive ω gradient pointing inward. This tends to be a
connected region enclosing the north pole, however disconnected islands can occur and
their contribution to the circulation should be included. Absolute circulation can also be
expressed as a function of equivalent latitude. For a given value of absolute vorticity the
corresponding equivalent latitude may be computed from the following relationship:

S(ω) ≡
∫∫
ω̂>ω

dS =

1∫
µe

2πa2dµ = 2πa2(1− µe) '
∑
ω̂ij>ω

∆Sj . (2.9)

Absolute vorticity is a monotonic function of equivalent latitude by construction, and
this function is invariant with time in the absence of dissipation and forcing. Hence ω(µe)
serves as a time-independent reference state, as does C(ω(µe)), which is at the core of
the theory developed by NZ10a, NS10, and NS11. In reality (and in a numerical model)
ω is not conserved exactly, but its contours provide a practical quasi-material coordinate
which allows one to construct a continuously re-initialized version of the GLM theory
(modified Lagrangian mean, McIntyre 1980).

2.2. Generalized Lagrangian Mean pseudomomentum density
Now we introduce the basic notions of GLM theory. For a more complete exposition
the reader should refer to Andrews & McIntyre (1978a) and Bühler (2009). We start by
constructing a one-to-one mapping between the particle locations on a zonal circle defined
by x = (λ, µm) and those on a wavy contour of ω, expressed as x+ξ = (λ+∆λ, µm+∆µ)
at a given time, where ∆λ(λ, µm) and ∆µ(λ, µm) are the departure of the latter relative
to the former. The Lagrangian zonal average along the contour and the corresponding
eddy quantity for a scalar χ are defined as

χL(µm, t) ≡
1

2π

2π∫
0

χ(λ+ ∆λ, µm + ∆µ, t)dλ. (2.10)

χl(λ, µm, t) ≡ χ(λ+ ∆λ, µm + ∆µ, t)− χL(µm, t). (2.11)

Notice that the integral in (2.10) is defined with respect to the particle positions on the
zonal circle at µ = µm, which are uniform in λ, but the distribution of the corresponding
particles on the wavy contour is not necessarily uniform. Therefore (2.10) differs from
an unweighted average along the wavy contour; rather it should be thought of as a
thickness-weighted average over a wavy infinitesimal tube (McIntyre 1980)

χL =
∮

χ
|∇ω|dl

/∮
dl
|∇ω|

= ∂
∂S

∫∫
ω̂>ω

χdS ≈
∑

ω+∆ω>ω̂ij>ω
χij∆Sj

/ ∑
ω+∆ω>ω̂ij>ω

∆Sj ,
(2.12)
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where the circuit integrals are defined on the ω-contour and the last approximation is
used to evaluate χL from gridded data. Now if we require ∆λ = ∆µ = 0 at µ = µm so
ξ = (∆λ,∆µ) is an eddy quantity, then by substituting χ = µ in (2.10) we have µL = µm,
which means that µm is the thickness-weighted average, or center-of-mass, latitude of the
wavy material tube. Formulated this way, the material tendency of χ retains its exact
structure upon Lagrangian averaging with no additional eddy terms.

Dχ

Dt

L

=
D
L

Dt
χL =

[
∂

∂t
+
V
L

a

∂

∂µ

]
χL, (2.13)

where V
L

= aD
L

Dt µ
L is the Lagrangian-mean velocity with which the center-of-mass

latitude moves. If an observed wavy ω-contour, whose Lagrangian-mean latitude is µm,
had evolved from an eddy-free reference state conservatively, then the latitude of the
contour in the reference state would have been µe. In this sense, the difference between
µm and µe may be thought of as a (hypothetical) Stokes displacement of the contour
associated with the eddies. Using (2.13), Kelvin’s circulation theorem may be written as

D
L

Dt
C =

[
∂

∂t
+
V
L

a

∂

∂µ

]
C = 0, (2.14)

where C is defined in (2.6). We write out C using (2.4), (2.6) and the expression for the
line element vector dl = a

[
∂
∂λ (λ+ ∆λ, µm + ∆µ)

]
dλ

1
2πaC = 1

a (V∗ + A) · (dl/dλ)
L

= M(λ+ ∆λ, µm + ∆µ)∂(λ+∆λ)
∂λ +N(λ+ ∆λ, µm + ∆µ)∂(µm+∆µ)

∂λ

=
(
M

L
+M l

)
(1 + ∂(∆λ)

∂λ ) +
(
N
L

+N l
)∂(∆µ)

∂λ

= M
L

+M l ∂(∆λ)
∂λ +N l ∂(∆µ)

∂λ .

The sum of the last two terms is defined as −P (µm, t) cosφm, where P is the GLM
(angular) pseudomomentum density. Thus

1
2πa

C = M
L − P (µm) cosφm, (2.15)

where the sign convention for the pseudomomentum density is standard. By applying
the circulation theorem (2.14) to (2.15), we have

D
L

Dt
M

L
=
D
L

Dt
(P (µm) cosφm) . (2.16)

Thus, if P is steady following the center-of-mass latitude, there will be no acceleration
of M

L
. This is an exact GLM nonacceleration theorem. Given (2.15) and that (1.9) can

be also written as
1

2πa
C = M(µe) +A∗(µe) cosφe, (2.17)

it is clear that the GLM and new formalisms differ only in the partition of Kelvin’s cir-
culation and that the conservation of circulation leads to the respective forms of nonac-
celeration theorem ((1.10) and (2.16)).

From (2.15) and (2.17),

−P (µm) cosφm = A∗(µe) cosφe +M(µe)−M
L
. (2.18)

Thus the difference between −P (µm) cosφm and A∗(µe) cosφe amounts to the Stokes
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correction to M relative to the zonal mean at equivalent latitude. Using (2.12) one can
recast Lagrangian mean with respect to equivalent latitude

M
L

(µe) =
∂

∂S

∫∫
ω̂>ω

MdS = − ∂

∂µe

 1
2πa2

∫∫
ω̂>ω(µe)

MdS

 ≡ ∂L

∂µe
, (2.19)

whereas

M(µe) = − ∂

∂µe

 1
2πa2

∫∫
µ>µe

MdS

 ≡ ∂Z

∂µe
. (2.20)

Therefore (2.18) becomes

−P (µm) cosφm = A∗(µe) cosφe +
∂

∂µe
(Z − L) . (2.21)

Since −P (µm) cos(φm) and A∗(µe) cos(φe) differ by the divergence of a vector (in this
case it only involves the derivative of a scalar with respect to equivalent latitude), the
two may be linked to the same conservation law through gauge transformation (Held
1985; McIntyre & Shepherd 1987):

∂

∂t
[A∗(µe) cosφe] =

∂

∂µe

[
u′v′(1− µ2

e)a
−1
]
, (2.22)

∂

∂t
[−P (µm) cosφm] =

∂

∂µe

{[
u′v′(1− µ2

e)a
−1
]

+
∂

∂t
(Z − L)

}
, (2.23)

where −P (µm) cos(φm), a property of the ω-contour, is treated as a function of µe and
t. Equation (2.22) derives from (1.10) and (1.7). Since the right-hand sides of (2.22)
and (2.23) vanish upon integration over µe, the global integral of both −P (µm) cosφm
and A∗(µe) cosφe would be steady in the conservative limit. However, their meridional
profiles are significantly different as we will see later: for example, −P (µm) cosφm is
not sign-definite whereas A∗(µe) cosφe is. As shown below, the two quantities do not
converge even at small amplitude.

2.3. Small-amplitude theory
Consider a slightly wavy ω-contour whose center-of-mass latitude is µm. The mapping
between a point on the latitude circle µ = µm and the corresponding point on the wavy
contour is defined as

(λ, µm)→ (λ,∆λ(λ, µm), µm + ∆µ(λ, µm)) , (2.24)

where ∆λ and ∆µ are O(α) and ∆λ = ∆µ = 0. According to Andrews & McIntyre
(1978b) the Stokes correction is defined as the difference between the Lagrangian mean
around the ω-contour and the zonal mean, here evaluated at µ = µm

χS = χL − χ(µm) = ∆λ
∂χ′

∂λ
+ ∆µ

∂χ′

∂µ
+

1
2

(∆µ)2
∂2χ

∂µ2
+O(α3). (2.25)

Substitute χ = M and use the fact that ∂M/∂µ = −aω to rewrite (2.25) as:

M
L

= M(µm) + ∆λ∂M ′

∂λ + ∆µ∂M ′

∂µ + 1
2 (∆µ)2 ∂

2M
∂µ2 +O(α3)

= M(µm) + ∆λ∂M ′

∂λ + ∆µ∂M ′

∂µ −
a
2 (∆µ)2 ∂ω

∂µ +O(α3).
(2.26)
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In the small-amplitude limit the Lagrangian eddy terms may be approximated as

M l = M ′ +
∂M

∂µ
∆µ+O(α2), and N l = N ′ +O(α2). (2.27)

Substituting (2.27) into (2.15) we find that

1
2πaC = M

L − P (µm) cosφm = M(µm) +MS − P (µm) cosφm
= M(µm) + ∆λ∂M ′

∂λ + ∆µ∂M ′

∂µ −
a
2 (∆µ)2 ∂ω

∂µ

+
(
M ′ + ∂M

∂µ ∆µ
)
∂(∆λ)
∂λ +N ′ ∂(∆µ)

∂λ +O(α3)

= M(µm) + ∆µ
(
∂M ′

∂µ −
∂N ′

∂λ

)
− a

2 (∆µ)2 ∂ω
∂µ −

1
2
∂M
∂µ

∂(∆µ)2

∂µ +O(α3)

= M(µm)− a∆µω′ − a
2 (∆µ)2 ∂ω

∂µ −
1
2
∂M
∂µ

∂(∆µ)2

∂µ +O(α3).

(2.28)

To get from line 1 to line 2 in the above, we have used (2.26). From line 2 to 3 we have
used integration by parts, ∂(∆λ)/∂λ + ∂(∆µ)/∂µ = O(α2), and from line 3 to 4, (2.5).
Since in the small-amplitude limit ω′ = −(∂ω/∂µ)∆µ+O(α2), the above can be further
rendered as

1
2πa

C = M(µm) +
a

2
(∆µ)2

∂ω

∂µ

∣∣∣∣
µ=µm

−

(
1
2
∂M

∂µ

∂(∆µ)2

∂µ

)∣∣∣∣∣
µ=µm

+O(α3). (2.29)

Now the small amplitude limit of A∗ is (NS10 appendix)

A∗(µe) =
a

2 cosφe
(∆µe)2

∂ω

∂µ

∣∣∣∣
µ=µe

+O(α3), (2.30)

where ∆µe is the normal displacement of the contour from the zonal circle µ = µe. It is
easy to show that the difference between µm and µe as well as those between ∆µ and
∆µe are O(α2), hence the difference between the second term on the right-hand side of
(2.29) and A∗(µe) cosφe is at most O(α3). Thus (2.29) becomes

1
2πa

C = M(µm) +A∗(µe) cosφe −
1
2

(
∂M

∂µ

∂(∆µ)2

∂µ

)∣∣∣∣∣
µ=µm

+O(α3). (2.31)

Alternatively,

1
2πa

C = M

µm − 1
2
∂(∆µ)2

∂µ

∣∣∣∣∣
µ=µm

+A∗(µe) cosφe +O(α3). (2.32)

Equation (2.32) is a small-amplitude limit of (2.17) provided that

µe = µm −
1
2
∂(∆µ)2

∂µ

∣∣∣∣∣
µ=µm

+O(α3). (2.33)

Thus (2.33) defines the Stokes displacement µm−µe and the Lagrangian time derivative
of (2.33) defines the Lagrangian-mean velocity:

D
L

Dt
(µm − µe) =

D
L

Dt
µm =

V
L

a
=

∂

∂t

(
1
2
∂(∆µ)2

∂µ

)∣∣∣∣∣
µ=µm

+O(α3). (2.34)
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By taking the time derivative of (2.29) at a fixed µ and observing that the tendency of
the mean quantities is O(α2)

∂
∂t (

C
2πa ) = ∂M

∂t + ∂ω
∂µ

∂
∂t

(
a(∆µ)2

2

)
− V

L

a
∂M
∂µ +O(α3)

= ∂M
∂t + ∂ω

∂µ
∂
∂t

(
a(∆µ)2

2

)
− V

L

a
∂
∂µ

(
C

2πa

)
+O(α3)

(2.35)

where the last line used C = 2πaM +O(α2) and V
L

= O(α2). Thus,(
∂

∂t
+
V
L

a

∂

∂µ

)(
C

2πa

)
=

∂

∂t
M +

∂ω

∂µ

∂

∂t

(
a(∆µ)2

2

)
+O(α3). (2.36)

Since
∂M

∂t
= V ′ω′ and

∂ω

∂µ

∂

∂t

(
a(∆µ)2

2

)
= −V ′ω′ +O(α3),

(2.36) leads to the small-amplitude limit of Kelvin’s circulation theorem(
∂

∂t
+
V
L

a

∂

∂µ

)
C =

D
L

Dt
C = O(α3). (2.37)

Now comparing (2.31) and the second identity of (2.28)

−P (µm) cosφm = A∗(µe) cosφe − 1
2

(
∂M
∂µ

∂(∆µ)2

∂µ

)∣∣∣
µ=µm

−MS +O(α3)

= A∗(µe) cosφe +M(µe)−M(µm)−MS +O(α3)
= A∗(µe) cosφe +M(µe)−M

L
+O(α3).

(2.38)

This is the small-amplitude limit of (2.18). Since (using (2.28) and integral by parts etc.)

− 1
2

(
∂M
∂µ

∂(∆µ)2

∂µ

)∣∣∣
µ=µm

= aω
2
∂(∆µ)2

∂µ = ∂
∂µ

[
aω
2 (∆µ)2

]
− a

2
∂ω
∂µ (∆µ)2

= ∂
∂µ

[
aω
2 (∆µ)2

]
+MS −∆λ∂M ′

∂λ −∆µ∂M ′

∂µ +O(α3)

= ∂
∂µ

[
aω
2 (∆µ)2

]
+MS + ∂(∆λ)

∂λ M ′ −∆µ∂M ′

∂µ +O(α3)

= ∂
∂µ

[
aω
2 (∆µ)2

]
+MS − ∂(∆µ)

∂µ M ′ −∆µ∂M ′

∂µ +O(α3)

= ∂
∂µ

[
aω
2 (∆µ)2 −M ′∆µ

]
+MS +O(α3),

(2.38) may be further rewritten as

−P (µm) cosφm = A∗(µe) cosφe +
∂

∂µ

[
aω

2
(∆µ)2 −M ′∆µ

]
+O(α3). (2.39)

This is the small-amplitude version of (2.21) and again the difference between−P (µm) cosφm
and A∗(µe) cosφe is written in terms of the divergence of a vector, linking the former
to the E-P theorem through gauge transformation ((2.23)). Yet since all three terms in
(2.39) are O(α2), −P (µm) cosφm and A∗(µe) cosφe do not converge even at the small-
amplitude limit.

3. Impulse-Casimir wave activity
As the conservation of Kelvin’s circulation leads directly to the nonacceleration theo-

rem involving the GLM pseudomentum, the conservation of Kelvin’s impulse has been
exploited to construct another class of eddy metrics. The measure of local wave activity



12 A. Solomon and N. Nakamura

introduced by Killworth & McIntyre (1985) is based on the impulse-Casimir method and
can be defined as

AIC(ωR, ωε) cosφ = −aµωε + I(ωR + ωε)− I(ωR), (3.1)

where ωR(µ) is a zonally symmetric, time-independent reference state of absolute vortic-
ity and ωε(λ, µ, t) = ω(λ, µ, t)− ωR(µ) is the departure from that reference state. (Note
that generally ωε 6= ω′ = ζ ′ since the former may contain a nonzero zonal-mean com-
ponent.) McIntyre & Shepherd (1987) show that the above construction is based on the
conservation of the density of Kelvin’s impulse µω and the impulse-Casimir function

I(ω) =

ω∫
ωmin

aµR(ω̃)dω̃. (3.2)

Here ωmin is the minimum value of ωR and µR(ω) is the inverse of ωR(µ), where we
assume that ωR is a monotonic function of µ so that its inverse is uniquely defined. For
example, if the reference state is chosen to be solid body rotation ωR = 2Ωµ, then the
density of IC wave activity may be written as

AIC(λ, µ, t) cosφ =
1
2
a(ωε)2/(2Ω). (3.3)

This provides a two-dimensional distribution of wave activity density on the sphere. In
contrast, AL, A∗, and P do not provide any information about the longitudinal distri-
bution. To facilitate the comparison, we will take the zonal average of AIC . As shown by
McIntyre & Shepherd (1987), in the small-amplitude limit

AIC(λ, µ, t) cosφ =
a

2
ζ ′2

dωR/dµ
+O(α3), (3.4)

so the zonal average of (3.4) is identical with (1.4). Therefore, AIC converges to AL (and
thus A∗) at small amplitude. As shown by Killworth & McIntyre (1985), AIC satisfies a
local flux conservation. Its zonally averaged form is

∂

∂t
{AIC cosφ} =

∂

∂µ

[
a−1(1− µ2)

(
u′v′ − v′AIC

)]
, (3.5)

where we used vε = v′ and uεvε = u′v′ for the barotropic flow. Equation (3.5) differs from
(2.22) by the last term in the right-hand side. This term denotes the eddy advection of
wave activity, which corresponds to the O(α3) term on the right-hand side of (1.5) in the
small-amplitude limit. This advective flux term may be eliminated through an implicit
gauge transformation

AIC → AIC
∗ ≡ AIC +

1
cosφ

t∫
t0

∂

∂µ

[
a−1(1− µ2)v′AIC

]
dt̃. (3.6)

Now we see that the tendency of this transformed wave activity is just the E-P flux
convergence

∂

∂t
{AIC

∗
cosφ} =

∂

∂µ

[
u′v′(1− µ2)a−1

]
. (3.7)

Comparing with (2.22), we see that A∗ = AIC
∗

for all time if it is true at one time.
Thus, like P , AIC is also related to A∗ through gauge transformation. However, only
A∗ satisfies the exact nonacceleration theorem for ū (1.10). Since the right-hand side of
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(3.5) vanishes in the domain average, the global integral of AIC cosφ is steady under the
conservative dynamics, even if its meridional profile is unsteady.

4. A numerical experiment
In this section we will conduct an idealized numerical experiment, in which an eddy

forcing is applied to drive a zonal jet on the rotating sphere. We will then use the
result of the experiment as a controlled test bed for the various forms of wave activity
diagnostics introduced earlier. The vorticity equation (2.3) can be written in terms of a
streamfunction ψ since (U, V ) is nondivergent:

Dω
Dt

=
∂ω

∂t
+

1
a2

(
∂ψ

∂λ

∂ω

∂µ
− ∂ψ

∂µ

∂ω

∂λ

)
= Q, (4.1)

where Q represents forcing and dissipation. This equation is discretized with a standard
spectral transform method truncated at T85 on a 256× 128 Gaussian grid. The size and
the rotation rate of the sphere are chosen to be those of the earth. The time-stepping is
done with an Adams-Bashforth third-order scheme and a time step of eight minutes. A
6th-order hyperviscosity is applied that damps the highest order modes with an e-folding
timescale of one day (Durran 2010 §6).

To simulate midlatitude stirring by planetary waves, a meridionally localized, station-
ary vorticity forcing is applied to a fluid initially in solid body rotation. The forcing is
slowly increased then maintained at a constant amplitude for thirty days after which it
is slowly reduced and the system is allowed to evolve freely for another thirty days. The
forcing has a Gaussian profile in latitude, centered at 45◦N with a width of 20 degrees
and sinusoidal, wavenumber four amplitude in the longitudinal direction. The maximum
amplitude of the forcing is 2.5×10−10s−2 which is found to produce a reasonable amount
of stirring without generating barotropic instability early in the experiment as to obscure
the wave dynamics. The specific form of Q is

Q = γζ + κ∇6ω

where γζ(λ, µ, t) =
{
γ0(t)10−((µ−1/

√
2)/.24)2 cos(4λ) 35◦ 6 φ 6 55◦

0 |φ− 45◦| > 10◦,

where the shape of γ0 is sketched in figure 3b below. Because of this nonconservative
term, (1.10) is modified to

∂

∂t
A∗ = −v′ζ ′ + F +D,

∂

∂t
uref =

∂

∂t
(ū+A∗) ≈ F +D, (4.2)

where F and D stand for forcing and dissipation of wave activity, respectively. The dissi-
pation of wave activity is due to diffusive flux (mixing) of vorticity and always negative
(NZ10a). Note that uref is driven solely by nonconservative processes. Hyperdiffusion of
ū also affects uref but this effect is small and ignored. The zonal-mean flow ū is not di-
rectly driven by the external forcing; rather wave activity is spun up first and subsequent
decay through eddy vorticity flux drives the flow

∂u

∂t
= v′ζ ′ = − 1

a cosφ
∂

∂µ

(
u′v′(1− µ2)

)
. (4.3)

The last term is the eddy momentum flux convergence, or equivalently the E-P flux
divergence, arising from (1.7).
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Figure 1. Zonal-mean fields in the Northern Hemisphere averaged over three twenty-day pe-
riods of the simulation. (a) zonal wind u, (b) absolute vorticity ω, (c) eddy momentum flux
convergence, and (d) the gradient of ω. Averages are taken for first twenty days (dot), days
25-44 (dash) and last twenty days (solid). Initial profiles for each quantity are also plotted as
solid curves.

4.1. Mean flow, wave activity, and reference state

The formation of a jet is illustrated in figure 1a with profiles of the zonal mean wind aver-
aged over three twenty-day intervals. Westerlies localized in the region of forcing develop
progressively throughout the simulation with easterlies on both flanks. The asymmetry
in the easterlies is pronounced with broader and stronger westward flow on the poleward
side of the jet. As the jet emerges, finite-amplitude cyclone/anti-cyclone pairs propagate
away from the forcing region (not shown). The associated perturbation to the initial dis-
tribution of planetary vorticity is seen in figure 1b. Within the first twenty days a large
positive gradient in ω develops at the axis of the jet, with reversals in the gradient in
the regions of westward flow (figures 1b,d). These negative gradients lead to barotropic
instability which produces strong mixing on the flanks of the jet. Figure 1c indicates
large convergence of momentum into the axis of the jet early in the simulation with a
symmetric pattern of divergence on the flanks. Later in the experiment this symmetry is
broken, giving way to a more complex pattern of eddy forcing. This results in the evolu-
tion of the zonal-mean wind beyond the termination of the forcing and even continuing
at the end of the integration.

To illustrate the nonconservative modification of the mean state, we show in figure 2
uref (φe) and ω(φe), to be compared with u(φ) and ω(φ) in figure 1. As noted in (4.2)
and by NZ10ab, these quantities evolve only in response to forcing and mixing, and the
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Figure 2. (a) uref (φe) in the Northern Hemisphere averaged over the same three, twenty-day
intervals as in figure 1. (b) ω(φe), the distribution of absolute vorticity with equivalent latitude,
also averaged over the same twenty day intervals.

difference with the zonal-mean quantities largely reflects the eddy-mean flow interaction
through the E-P flux divergence. The tendency of uref due to mixing (D in (4.2)) is
always negative, as the diffusive flux of vorticity acts as a damping on A∗.

It is seen that uref (figure 2a) is greater in magnitude than u in figure 1a throughout
the domain during each interval. This reflects uref = u+A∗ and A∗ > 0. uref attains its
maximum of more than 8.0ms−1 before day 25 and remains fairly constant near the jet
axis after about day 40. The gain in uref is due to forcing (F in (4.2)), and it extends
beyond the region of forcing into high equivalent latitudes (dotted and dashed curves
in figure 2a). This is because the waviness in absolute vorticity allows high-equivalent-
latitude fluid to migrate into the forcing region. The main evolution of uref after initial
growth is a progressive narrowing of the jet as A∗ is dissipated on the flanks, reflected in
the decrease in uref from the dashed- to solid curve, with greater dissipation occurring
on the poleward side. The profile of absolute vorticity in figure 2b remains (by construc-
tion) a monotonic function of equivalent latitude, but it shows an irreversible change in
gradients as a result of forcing and mixing. In particular, the enhanced mixing at the
flanks of the jet markedly reduce the gradients there, reinforcing the strong gradient at
the jet axis and producing a staircase-like profile (Dritschel & McIntyre 2008; NZ10b).

The E-P flux divergence governs the tendency of both u and A∗, however without
wave activity their relative magnitude is unknown. In figure 3 we compare this standard
flux-based analysis of wave forcing with a direct assessment of wave activity, averaged
within the forcing region (35-55◦N). As seen in figure 3a, the E-P flux divergence (dashed
line) is positive for the first 27 days and the zonal-mean flow (solid line) increases within
the forcing region. After that point barotropic instability ensues due to the vanishing of
the absolute vorticity gradient and the E-P flux divergence begins to oscillate, whilst u
slowly continues to grow for the duration of the simulation.

In figure 3b the evolution of the reference state flow uref (solid line) and wave activity
A∗ (dashed line) within the forcing region are plotted. Since uref (φe, t) = u+A∗, these
curves represent the partitioning of uref into eddy and zonal-mean components. Initially
uref grows rapidly and this is almost entirely due to the growth of wave activity through
forcing. The two curves only start to diverge around day 9, when u becomes significant.
After about day 12 wave activity equilibrates and starts to oscillate until the end of the
forcing period around day 40. The initial equilibration is due to the balance between
the gain through forcing and the loss through E-P flux convergence, but the subsequent
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Figure 3. (a) Zonal-mean zonal wind (solid line) and E-P flux divergence (dashed line), averaged
within the forcing region (35-55◦N) as a function of time in days. (b) uref (solid line) and wave
activity density (dashed line) also averaged over the forcing region. The dotted line shows the
timing of forcing, with a maximum amplitude of 2.5× 10−10s−2 and a minimum of zero.
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Figure 4. (a) Global-mean wave activities (in ms−1) for the jet simulation as a function
of time: linear wave activity AL (dot-dashed), finite-amplitude impulse-Casimir wave activity

AIC(dashed) and A∗ (solid). Dotted line represents AL calculated with instantaneous gradient
of zonal-mean absolute vorticity. (b) Time-averaged (days 0-67) wave activities as functions of
latitude using the same line markers as in (a). Note that the coordinate for A∗ is equivalent
latitude.

oscillation is also affected by dissipation due to mixing. The reference-state flow uref
equilibrates much later (≈ day 24) as the forcing is balanced by the dissipation. After the
forcing has been turned off wave activity steadily declines until the end of the simulation.
A significant fraction of this decline is due to conversion to u through the E-P flux
convergence, evident in the increase in u in figure 3a. In comparison, uref decreases
much more slowly than A∗. The decrease in uref in this freely evolving stage primarily
reflects the dissipation of wave activity due to mixing. The increasing u and decreasing
A∗ boosts the fraction of the former in uref toward the end of the simulation, making
the flow less wavy, although A∗ is greater than u until the forcing is turned off. Such
assessment of the eddy-mean partitioning of momentum is not accessible through the
E-P flux analysis alone.

4.2. Wave activity comparison
We have seen that A∗ can provide additional insight for interpreting an evolving flow.
Now we compare it with other forms of wave activity using the same result of the above
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simulation. In figure 4a the time dependence of the global-mean A∗ is shown (solid
curve), together with finite-amplitude impulse-Casimir wave activity AIC (dashed) and
the wave activity of the linearized problem, AL (dot-dashed). We use (1.4) to define AL,
by taking the initial condition (solid body rotation with no wind) as the reference state
dωR/dµ = 2Ω, and remove the zonal-mean component from ζ ′. We also use the same
reference state for AIC . The three curves overlap until about day 10, which confirms
their convergence in the small-amplitude limit. After that they begin to diverge from
one another. The linear wave activity AL remains smaller in amplitude than the others,
while the two finite-amplitude measures depict wave growth until day 24 when barotropic
instability begins to alter the flow. At day 24, the global-mean AIC and AL are roughly 80
and 50 percent of A∗, respectively. During the final twenty days AIC and A∗ show good
agreement and remain fairly constant as would be expected in the absence of forcing. The
discrepancy between the global-mean A∗ and AIC is primarily due to the nonconservative
alteration of the reference state. Although identical initially, the reference state for A∗

evolves due to forcing and mixing, whereas the reference state for AIC is fixed in time.
Comparing (1.4) and (3.3) it is clear that the difference between AL and AIC is due to

the contribution from ωε
2/2Ω, namely the part of AIC associated with the zonal-mean

component of ωε spun up by the eddy-mean flow interaction. Therefore as a comparison,
we show the wave activity linearized about the instantaneous gradient of zonal-mean
absolute vorticity (i.e., replace dωR/dµ in (1.4) by ∂ω/∂µ) in the dotted curve. This
linear diagnostic reproduces A∗ remarkably well until about day 16, much longer than
AL or even AIC , suggesting the importance of flow profiles for computing wave activity
accurately. However, this measure of wave activity lacks conservation properties of AL or
AIC and breaks down as soon as ∂ω/∂µ vanishes due to stirring by eddies, which causes
the wild oscillation after day 16.

In figure 4b the time averaged distribution of wave activity with latitude shows several
important differences between these three diagnostics. The linear measure AL indicates
a maximum in wave activity at the center of the forcing region, while the two finite-
amplitude measures exhibit local minima there. The intriguing distinction between AIC
and A∗ is that one indicates a more focused, symmetric distribution with respect to the
jet, while the other shows a pronounced maximum on the poleward side of the forcing
region.

The comparison is further substantiated by figure 5, in which the meridional profiles
of A∗, AIC and AL are plotted as functions of time. Each measure shows the tendency
of wave activity to split into a subtropical and subpolar tracks, similar to the barotropic
decay of pseudomomentum observed in Held & Phillips (1987). Only A∗ shows a clear
separation of the two tracks with a persistent minimum in between, where the flow
is accelerated. Also A∗ exhibits greater amplitude and broader extent in the poleward
branch, consistent with the enhanced deceleration observed in that region (figure 5a). In
contrast, AIC shows two narrow tracks on the poleward side of the jet, the main track
near the axis and a weaker track in higher latitudes (figure 5b). Thus, despite the similar
behaviors in the global mean (figure 4a), A∗ and AIC show substantial differences in their
meridional profiles. The differences are largely due to the nonlocal nature of equivalent
latitude, which absorbs the flux of wave activity in (3.5). A∗ is more closely related to
the mean flow modification shown in figure 1a than AIC . The linear wave activity AL
shows similarity to AIC in the early stage of evolution and in the secondary track in
high latitudes (figure 5b,c). However, AL does not reproduce the strong signals on the
immediate flanks of the jet in AIC around days 18-40, implying that they are largely due
to mean flow modification. Because AL lacks these signals on both sides of the jet axis,
its time-mean profile in figure 4b shows maximum, not minimum, at the jet axis.
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Figure 5. Time-latitude diagrams for three wave activity measures. (a) Wave activity A∗ as a
function of time and equivalent latitude. (b) The zonally averaged AIC as a function of time
and latitude. (c) Same as (b) but for AL. All panels are plotted with the same grayscale, with
a contour interval of 1 ms−1.

In figure 6 we also compareA∗ cosφe with the GLM pseudomomentum density−P cosφm.
First, we plot equivalent latitude µe (figure 6a) and the center-of-mass latitude µm (figure
6b) for ω-contours in the Northern Hemisphere as a function of time and the value of ω.
The center-of-mass latitude is computed using (2.12) with χij = µj . Both µe and µm are
initially linear with ω, but the contours of µe quickly spreads in the forcing region. This is
consistent with the increase in ∂ω/∂µe in the same region (figure 2b), due to forcing and
mixing (without these nonconservative effects, µe(ω) would be time-independent). Yet
by construction µe remains a monotonic function of ω. In contrast, the evolution of µm
is more complicated: the divergence and convergence of its contours do not necessarily
coincide with those of the µe-contours, and there are some small ‘islands,’ implying that
ω(µm) can be locally multi-valued. This is a well-known difficulty in the GLM analysis,
and for this reason we will not use µm as the coordinate for −P cosφm but use ω instead.
−P cosφm is computed as the difference between C/2πa and M

L
using (2.15).

Wave activity A∗ cosφe shown in figure 6d essentially duplicates figure 5a with the
cosφe weighting and ω in the ordinate. The corresponding GLM pseudomomentum den-
sity −P cosφm shown in figure 6e in the same coordinate has a very different structure
and magnitude. It forms two pairs of negative and positive zones north and south of the
forcing region. The pair appearing north of the forcing region is particularly strong, with
the maximum value reaching near 50 ms−1, an order of magnitude greater than the max-
imum A∗ cosφe (note that the contour interval in figure 6e is 30 times greater than that
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Figure 6. (a) Equivalent latitude µe for the Northern Hemisphere as a function of time and
absolute vorticity. Contour interval is 0.025. (b) Same as (a) but for center-of-mass latitude µm.
(c) Same as (b) but for µm − µe. Negative values are plotted in dashed contours. (d) Same as
(a) but for A∗ cosφe. Contour interval is 0.5 ms−1. (e) Same as (d) but for the negative of GLM
pseudomomentum −P cosφm. Contour interval is 15 ms−1 and negative values are dashed. (f)
Same as (d) but for −P cosφm −A∗ cosφe. Contour interval is 15 ms−1.

in figure 6d). Even in the early stage of simulation, −P cosφm is qualitatively different
from A∗ cosφe, for example it is predominantly negative in high latitudes. Figure 6f shows
−P cosφm −A∗ cosφe. According to (2.18), this quantity equals M(µe)−M

L
. There is

little qualitative difference between figures 6e and f, thus −P cosφm is dominated by this
‘Stokes correction term’ and has little bearing on A∗ cosφe. From the second identity of
(2.38), one sees that this term consists of the impulse associated with the Stokes dis-
placement M(µe) −M(µm) and the Stokes correction MS about µ = µm. Given that
M(µe)−M(µm) ≈ aω(µm − µe) when the displacement µm − µe is small, and that the
structure of µm − µe in figure 6c qualitatively matches that of −P cosφm −A∗ cosφe in
figure 6f suggest that the impulse of displacement dominates the Stokes correction.

4.3. Sensitivity to spectral truncation
To test the sensitivity of the dynamics and diagnostics to the number of retained har-
monics, we have repeated the simulation with T63 and T42 truncations. The analyses
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Figure 7. (a) Average uref (curves with larger values) and u within the forcing region from
three integrations at different truncation; T85 (solid), T63 (dashed) and T42 (dotted). (b) Wave

activities in the same region for T85 (solid) and T42 (dotted); AIC (+) and A∗ (◦).

for these runs are performed using the same 256× 128 Gaussian grid. The model param-
eters are identical except for the hyperdiffusion coefficient, which is adjusted to keep the
damping rate for the harmonic with maximum resolved wavenumber unchanged.

Figure 7a shows that uref in the forcing region is relatively insensitive to the truncation
(indicated by the three curves near the top with different line types). There is about 10
percent decrease in the peak value from T85 to T42; this is probably due to the enhanced
hyperdiffusion in lower truncation runs since uref responds to only the nonconservative
forcing and dissipation. The zonal-mean flow, which plots lower in figure 7a, is nearly
identical for T85 and T63 but shows some increase in T42. This suggests that the eddy
vorticity flux increases at low resolution, which in turn suggests that the small-scale
contributions to the vorticity flux filtered from T42 is negative and not fully compensated
by the enhanced hyperdiffusion. This last point is consistent with the notion that vorticity
flux at small scales is diffusion-like (down-gradient).

The wave activities in the same region first grow due to forcing and then equilibrate
through the E-P flux divergence (figure 7b). Peak values of both A∗ and AIC decrease
appreciably from T85 to T42, but only changes in the former persist for the duration of
the simulation.

5. Summary
In recent papers Nakamura and collaborators have introduced a theory for finite-

amplitude eddy-mean flow interaction based on a new wave activity, A∗, calculated in
terms of the meridional displacement of the contours of PV (or absolute vorticity in the
case of barotropic flow) relative to the zonal circle of equivalent latitude. In this article
we have investigated the connection between the new theory and the extant formalisms,
both theoretically and numerically. The main results are the following.

(1) Both the GLM pseudomomentum density P (Andrews & McIntyre 1978a) and the
zonal-mean impulse-Casimir wave activity AIC (Killworth & McIntyre 1985; McIntyre
& Shepherd 1987; Haynes 1988) may be cast into a flux conservation form in equivalent
latitude, which may then be related to an exact Eliassen-Palm theorem through gauge
transformation ((2.22) and (3.5)). In this sense they are both related to A∗, although
only A∗ satisfies an exact nonacceleration theorem for the zonal-mean flow ū. However,
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under conservative dynamics the global mean values of all three wave activities remain
steady.

(2) Both the new and GLM formalisms derive the respective nonacceleration theorem
from Kelvin’s circulation theorem, but they differ in the way the circulation is parti-
tioned into a mean flow and wave activity/pseudomomentum densities. A∗ cosφe and
−P cosφm differ by the Stokes correction of M relative to the zonal mean at equiv-
alent latitude M(µe) − M

L
. The difference does not vanish even at small amplitude

and tends to dominate −P cosφm at finite amplitude, making it very different from
A∗ cosφe (e.g., P is not sign-definite). A∗ is sign-definite and comparable in magnitude
to the angular momentum of the mean flow. The new partitioning of Kelvin’s circulation,
C = 2πa cosφe(u + A∗ + Ωa cosφe), is more useful for the interpretation of wave-mean
flow interactions from gridded data than the one offered by the GLM theory.

(3) A∗ converges to the impulse-Casimir wave activity AIC and the linear wave activity
AL in the small-amplitude conservative limit, provided that the reference states are
identical. At finite amplitude, although the global-mean AIC and A∗ behave similarly,
their local profiles differ substantially. Since A∗ satisfies an exact nonacceleration theorem
for the zonal-mean flow in the conservative (but finite-amplitude) limit, it has a more
direct bearing on the local modification of the zonal-mean flow than AIC . However,
unlike AIC , A∗ cannot be defined as a 2D (longitude-latitude) wave activity density,
which limits its application to the interaction between the zonal-mean flow and finite-
amplitude eddies.

(4) In the spirit of previous PV-equivalent latitude diagnostics (Butchart & Rems-
berg 1986; Baldwin & Dunkerton 1998), an eddy-free reference state uref = u + A∗ is
unaffected by the advective flux of eddy vorticity and thus useful for the assessment of
nonconservative effects on the flow.

In summary, the theory for finite-amplitude eddy-mean flow interaction based on A∗

is a practical alternative to the GLM formalism, which has long been considered un-
suitable for data analysis (Shepherd 1983; McIntyre 1980; Andrews et al. 1987). The
application of the new theory has already proven fruitful, allowing one to quantify from
meteorological data alone the quasi-adiabatic adjustment to the mean flow by the ed-
dies (NS10, NS11). The barotropic formulation based on Kelvin’s circulation extends
naturally to the diagnosis of atmospheric flows in the isentropic coordinate (NS11) but
it can be easily adapted to baroclinic quasigeostrohic flows in the isobaric coordinate
as well (NS10). Furthermore, A∗ can incorporate the effects of mixing through effective
diffusivity (Nakamura 1996) of PV, thus providing a separate measure of irreversible,
non-adiabatic adjustment to the mean flow (NZ10ab).

This research is supported by NSF Grant ATM0750916. Views expressed herein are
those of the authors and do not necessarily reflect those of the NSF.

REFERENCES

Allen, D. R. & Nakamura, N. 2003 Tracer equivalent latitude: a diagnostic tool for isentropic
transport studies. J. Atmos. Sci. 60 (2), 287–304.

Andrews, D. G., Holton, J. R. & Leovy, C. B. 1987 Middle Atmosphere Dynamics. Aca-
demic Press, 489pp.

Andrews, D. G. & McIntyre, M. E. 1976 Planetary waves in horizontal and vertical Shear:
the generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci.
33 (11), 2031–2048.

Andrews, D. G. & McIntyre, M. E. 1978a An exact theory of nonlinear waves on a
Lagrangian-mean flow. J. Fluid Mech. 89 (04), 609–646.



22 A. Solomon and N. Nakamura

Andrews, D. G. & McIntyre, M. E. 1978b Generalized Eliassen-Palm and Charney-Drazin
theorems for waves in axismmetric mean flows in compressible atmospheres. J. Atmos. Sci.
35 (2), 175–185.

Andrews, D. G. & McIntyre, M. E. 1978c On wave-action and its relatives. J. Fluid Mech.
89 (04), 647–664.

Baldwin, M. P. & Dunkerton, T. J. 1998 Biennial, quasi-biennial, and decadal oscillations
of potential vorticity in the northern stratosphere. J. Geophys. Res. 103(D4), 3919–3928.

Boer, G. J. & Shepherd, T. G. 1983 Large-scale two-dimensional turbulence in the atmo-
sphere. J. Atmos. Sci. 40 (1), 164–184.

Brunet, G. & Haynes, P. H. 1996 Low-latitude reflection of Rossby wave trains. J. Atmos.
Sci. 53 (3), 482–496.

Bühler, O. 2009 Wave and Mean Flows. Cambridge University Press, 370pp.
Butchart, N. & Remsberg, E. E. 1986 The area of the stratospheric polar vortex as a

diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci. 43 (13), 1319–1339.
Charney, J. G. 1959 Hydrodynamics of the atmosphere and numerical weather prediction-a

synthesis. Proc. Nat. Acad. Sci. 45 (12), 1650–1655.
Charney, J. G. & Drazin, P. G. 1961 Propagation of planetary-scale disturbances from the

lower into the upper atmosphere. J. Geophys. Res. 66, 83–109.
Edmon, H. J., Hoskins, B. J. & McIntyre, M. E. 1980 Eliassen-Palm cross sections for the

troposphere. J. Atmos. Sci. 37 (12), 2600–2616.
Eliassen, A. & Palm, E. 1961 On the transfer of energy in stationary mountain waves. Geofys.

Publ. 22(3), 1–23.
Harvey, V. L., Randall, C. E. & Hitchman, M. H. 2009 Breakdown of potential vorticity-

based equivalent latitude as a vortex-centered coordinate in the polar winter mesosphere.
J. Geophys. Res. 114 (D22105).

Haynes, P. H. 1988 Forced, dissipative generalizations of finite-amplitude wave-activity con-
servation relations for zonal and nonzonal basic flows. J. Atmos. Sci. 45 (16), 2352–2362.

Held, I. M. 1985 Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos.
Sci. 42, 2280–2288.

Held, I. M. & Phillips, P. J. 1987 Linear and nonliear barotropic decay on the sphere. J.
Atmos. Sci. 44 (1), 200–207.

Killworth, P. D. & McIntyre, M. E. 1985 Do Rossby-wave critical layers absorb, reflect, or
over-reflect? J. Fluid Mech. 161 (1), 449–492.

Kuo, H.-L. 1951 Vorticity transfer as related to the development of the general circulation. J.
Meteor. 8 (5), 307–315.

Liberato, M. L. R., Castanheira, J. M., de la Torre, L., DaCamara, C. C. & Gimeno,
L. 2007 Wave energy associated with the variability of the stratospheric polar vortex. J.
Atmos. Sci. 64 (7), 2683–2694.

Magnusdottir, G. & Haynes, P. H. 1996 Wave activity diagnostics applied to baroclinic
wave life cycles. J. Atmos. Sci. 53 (16), 2317–2353.

Magnusdottir, G. & Haynes, P. H. 1999 Reflection of planetary waves in three-dimensional
tropospheric flows. J. Atmos. Sci. 56 (4), 652–670.

McEwan, A. D., Thompson, R. O. R. Y. & Plumb, R. A. 1980 Mean flows driven by weak
eddies in rotating systems. J. Fluid Mech. 99 (03), 655–672.

McIntyre, M. E. 1980 Towards a Lagrangian-mean description of stratospheric circulations and
chemical transports. Phil. Trans. Roy. Soc. London. Ser. A, Math. Phys. Sci. 296 (1418),
129–148.

McIntyre, M. E. 1982 How well do we understand the dynamics of stratospheric warmings?
J. Meteor. Soc. Japan. 60, 37–65.

McIntyre, M. E. & Shepherd, T. G. 1987 An exact local conservation theorem for finite-
amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure
and on Arnol’d’s stability theorems. J. Fluid Mech. 181 (1), 527–565.

Nakamura, N. 1995 Modified Lagrangian-mean diagnostics of the stratospheric polar vortices.
Part I. Formulation and analysis of GFDL SKYHI GCM. J. Atmos. Sci. 52 (11), 2096–2108.

Nakamura, N. 1996 Two-dimensional mixing, edge formation, and permeability diagnosed in
an area coordinate. J. Atmos. Sci. 53 (11), 1524–1537.

Nakamura, N. & Solomon, A. L. 2010 Finite-amplitude wave activity and mean flow adjust-



Finite-Amplitude Wave Activity 23

ments in the atmospheric general circulation Part I. Quasigeostrophic theory and analysis.
J. Atmos. Sci. 67 (12), 3967–3983.

Nakamura, N. & Solomon, A. L. 2011 Finite-amplitude wave activity and mean flow adjust-
ments in the atmospheric general circulation Part II: Analysis in the isentropic coordinate.
J. Atmos. Sci. 68, accepted.

Nakamura, N. & Zhu, D. 2010a Finite-amplitude wave activity and diffusive flux of potential
vorticity in eddy-mean flow interaction. J. Atmos. Sci. 67 (9), 2701–2716.

Nakamura, N. & Zhu, D. 2010b Formation of jets through mixing and forcing of potential
vorticity: analysis and parameterization of beta-plane turbulence. J. Atmos. Sci. 67 (9),
2717–2733.

Reynolds, O. 1895 On the dynamical theory of incompressible viscous fluids and the determi-
nation of the criterion. Phil. Trans. Roy. Soc. London. A 186, 123–164.

Scinocca, J. F. & Peltier, W. R. 1994 The instability of Long’s stationary solution and
the evolution toward severe downslope windstorm flow. Part II: The application of finite-
amplitude local wave-activity flow diagnostics. J. Atmos. Sci. 51 (4), 623–653.

Shepherd, T. G. 1983 Mean motions induced by baroclinic instability in a jet. Geophys. As-
trophys. Fluid Dyn. 27, 35–72.

Shepherd, T. G. 1988 Rigorous bounds on the nonlinear saturation of instabilities to parallel
shear flows. J. Fluid Mech. 196 (1), 291–322.

Shepherd, T. G. 1989 Nonlinear saturation of baroclinic instability. Part II: Continuously
stratified fluid. J. Atmos. Sci. 46 (7), 888–907.

Strong, C. & Magnusdottir, G. 2008 How rossby wave breaking over the pacific forces the
north atlantic oscillation. Geophys. Res. Lett. 35 (L10706).

Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press,
745pp.


