

Key tools for in-class experiments related to Earth's climate and weather

Scott Kittelman
University of Colorado
Department of Atmospheric and Oceanic Sciences

From the research laboratory of John Hart to the classroom

The art of the in-class experiment

- Demonstration or experiment?
 - Lots of negative research on the introduction of demonstrations into the classroom.
 - If not done well they can lead to confusion
 - Try to do as an in-class experiment
 - Ask the students what they expect will happen
 - At CU we use a student response system
 - Pre and post questions for immediate assessment of understanding

Simple is good

- Simple experiments create a lasting impression
- Enables a broader base of students
- Try the latent heat packs as an example Exp.
 - Note energy to move 1 kg air or increase its T by 10 Celsius
- Spin up Spin down is a great experiment to do for those new to presenting rotating fluids in the classroom
- What's the main point here
 - Long term retention of information
 - Minimize confusion

Technologies necessary to deliver content

- Dependent on class size
 - NTSC video connection to projector
 - DVD player
 - Computer and internet access
 - Student response system

Some of the classroom tools I use most often

University of Colorado version of an in-class rotating table →

Mobile rotating table

- Main features
 - Load capacity (~ 40 kg)
 - Variable rotation rate
 - Tb = 2 20 seconds
 - Electrical slip rings
 - AC power for lighting Etc.
 - Six signal lines
 - Video

Mobile rotating table

- Easy to prepare before class and roll into the lecture hall during a 10 minute transition period.
- Can remove just the turntable for transportation to outreach venues.

Lighting is very important for clear illustration of fluid flows

- Fiber optic light source
- Slit light
- Adjustable beam
- For the rotating table
 - Fluorescent ring light
 - Can lights with fluorescent bulbs
 - Lower current, lower temperature
 - Backlighting light box

Data acquistion software & hardware

- Needs to be easily Adapted The constant is change
- I use National instruments Labview and a Labjack USB data acquisition system

Data acquisition

Example program from Paul Bunyan's Piston Experiment

Time series plot

Data acquisition

X-Y plots

Data acquisition

- Other useful features
 - Stacked plots
 - Fourier transforms
 - Filtering
 - Histograms
 - Statistics

Topics in Atmospheric and Oceanic Sciences DVD

- Video of experiments in greater detail
 - And time lapsed
- Observations
 - Polar water vapor channel satellite imagery
 - 500 mbar charts
 - Etc.

An example of conducting an experiment using classroom video and an infrared camera

- Selective absorption of light by the atmosphere.
- You will have to use your imagination here. Unfortunately, I had to leave the camera at home.

Irradiance at 645 km above the Earth's surface

Atmospheric absorption at the Earth's surface

Yes, I do emit photons.

Is clear acrylic a selective absorber?

What about sapphire?

What about a colored balloon?

Questions?