Rayleigh-Taylor Instability

Plume

Whitehead, J. A.& D. S. Luther, 1975. Dynamics of laboratory diapir and plume models *Journal of Geophysical Research*, **80**, 705–717.

Tilted conduit

Solitary Wave collision

Scott, D. A., David J. Stevenson & J. A. Whitehead, 1986. Observations of solitary waves in a viscously deformable pipe. *Nature*, **319**, 759–761.

Material is conserved

Paraffin on a cold plate with a clear lid-Transient t=2,7,9,12,25,59s Pe=uL/K

The earthquake machine

Earthquake Equations

dimensional equations

$$m\frac{du'}{dt'} + \frac{\mu}{d} \left[\frac{u' + \beta' u'^3}{1 + \alpha' u'^2} \right] = F'$$
$$\frac{dF'}{dt'} = C(U_0 - u')$$

$$\gamma \, \frac{du}{dt} + \left[\frac{u + \beta u^3}{1 + \alpha u^2} \right] = F$$

$$\frac{dF}{dt} = 1 - u$$

F

stationary

$$F = \left[\frac{u + \beta u^3}{1 + \alpha u^2}\right]$$
$$u = 1$$

Oscillations &--- Glacier theory

Laboratory experiment

Why are Volcanos unsteady?

Oscillate or abrupt/hysteresis

Whitehead, J. A. W. Gregory Lawson and John Salzig. 2001 Multistate flow devices for geophysical fluid dynamics and climate. American Journal of Physics, 69 546-553.

Nonlinear oscillations

Whitehead, J.A. and K. R. Helfrich, 1991. Instability of flow with temperature-dependent viscosity: a model of magma dynamics. Journal of Geophysical Research, 96, (B3), 4145-55.

Oscillations

Evolution of channels if we have space

variation rather than time variation, channels form

• <u>A Broad, slow flow makes a lot of resistance whereas a</u> <u>narrow faster flow has less resistance.</u>

Convection in an Open Cell apparatus

a 2-D version of Tait & Jaupert, 1992; Tait et al, 1992

Channels in porous flow

Cold, depleted

• Channels form within the mushy layer of crystals

Salt channelization

Fresh water sinking Though salt crystals And glass beads

Salt and glass beads

Porous dissolution Channels

Aharonov, Einat, J. A. Whitehead, Peter Kelemen Marc Spiegelman, 1995. Channeling instability of upwelling melt in the mantle *Journal of Geophysical Res* **100**, 20,433–20,450.

COLD DISK WITH PLEX LID WED WITH HEXADECENE (17 DEG MELTING POINT)

Sketch of lava tube apparatus

The apparatus

Results

OUTLET TO LAVATUBE CYLINDER

Summary

- Experiments that demonstrate nonlinear features produce examples of hard-to-predict dynamics such as
- Nonlinear spontaneous oscillations
- Fingering
- Each structure is found over a *finite range*

Climate experiment (In prep, JPO)

Temperature, Salinity jumps

Classroom example

- With P. Baines, we find a supercritical current can develop a hydraulic jump that propagates upstream and makes a transition to subcritical flow.
- The possibility is found in his book and is worth seeing in reality.

The end

References available In the front--see me

....... and Roger F. Gans, 1974. A new, theoretically tractable earthquake model. Geophysical Journal of the Royal Astronomical Society, 39, 11--28.

...... and K. R. Helfrich, 1991. Instability of flow with temperature-dependent viscosity: a model of magma dynamics. Journal of Geophysical Research, 96, (B3), 4145-55.

......1998 Multiple T-S States for Estuaries, Shelves and Marginal Seas. Estuaries, 21, 278-290.

Wylie, Jonathan J., Barry Voight, and 1999 Instability of magma flow from volatile-dependent viscosity, Science 285, 1883-1885.

......2000 Stratified Convection with Multiple States. Ocean Modelling, 2, 109-121.

.....W. Gregory Lawson and John Salzig. 2001 Multistate flow devices for geophysical fluid dynamics and climate. American Journal of Physics, 69 546-553.

...... 2002 A boundary layer flow with multiple equilibria, Physics of Fluids, 14, #7, 2575-2577.

Baines P. G. and 2003 On multiple states in single-layer flows, Phys Fluids. 15, #2, 298-307.

....., M. L. E. Timmermans, W. Gregory Lawson, S. N. Bulgakov, A. M. Zatarian, J. F. A. Medina, and John Salzig, 2003. Laboratory studies of thermally and/or Salinity-driven flows with partial mixing: Part 1 Stommel transitions and multiple flow states, J. Geophys. Res. 108, No. C2, 3036, doi:10.1029/2001JC000902.

....., Lianke te Raa, and Keith Bradley, Laboratory Observations of Two Distinct Flow States and Oscillations in Salt-Stratified Thermal Convection,

....., Tomoki Tozuka and Joseph B. Keller, Theory of Stratified Convection with Multiple States and Oscillations, Geophysical and Astrophysical Fluid Dynamics, Submitted.