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Abstract
We consider the  mixing of passive tracers and

vorticity by temporally fluctuating large scale flows in two

dimensions. In analyzing this problem, we employ modern

developments stemming from properties of Hamiltonian

chaos in the particle trajectories;  these developments

generally come under the heading "chaotic advection" or

"lagrangian turbulence."  A review of the salient properties

of this kind of mixing, and the mathematics used to analyze

it, is presented in the context of passive tracer mixing by a

vacillating barotropic Rossby wave.  We then take up the

characterization of subtler aspects of the mixing.  It is shown

the chaotic advection produces very nonlocal mixing which

cannot be represented by eddy diffusivity. Also,  the power

spectrum of the tracer field is found to be k-1 at shortwaves

—precisely as for mixing by homogeneous, isotropic two

dimensional turbulence,— even though the physics of the

present case is very different.  We have produced two

independent arguments accounting for this behavior.

We then examine integrations of the unforced

barotropic vorticity equation with initial conditions chosen to

give a large scale streamline geometry similar to that

analyzed in the passive case.  It is found that vorticity mixing

proceeds along lines similar to passive tracer mixing.  Broad

regions of homogenized vorticity ultimately surround the

separatrices of the large scale streamline pattern, with

vorticity gradients limited to nonchaotic regions (regions of

tori) in the corresponding passive problem.

Vorticity in the chaotic zone takes the form of an

arrangement of strands which become progressively finer in

scale and progressively more densely packed;  this process

transfers enstrophy to small scales.  Although the enstrophy

cascade is entirely controlled by the large scale wave, the

shortwave enstrophy spectrum ultimately takes on the

classical k-1 form.  If one accepts that the enstrophy cascade

is indeed mediated by chaotic advection, this is the expected

behavior.  The extreme form of nonlocality (in wavenumber

space) manifest in this example casts some doubt on the

traditional picture of enstrophy cascade in the Atmosphere,

which is based on homogeneous 2D turbulence theory.  We

advance the conjecture that these transfers are in large

measure attributable to large scale, low frequency, planetary

waves.

Upscale energy transfers amplifying the large scale

wave do indeed occur in the course of the above-described

process.  However, the energy transfer is complete long

before vorticity mixing has gotten very far, and therefore has
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little to do with chaotic advection.  In this sense, the vorticity

involved in the enstrophy cascade is "fossil vorticity," which

has already given up its energy to the large scale.  

We conclude with some speculations concerning

statistical mechanics of two dimensional flow, prompted by

our finding that flows with identical initial energy and

enstrophy can culminate in very different final states. We

also outline  prospects for further applications of chaotic

mixing in atmospheric problems.



1 . Introduction

Hoskins, et al. (1985) have made an eloquent case

for the analysis of atmospheric and oceanic dynamics in

terms of potential vorticity evolution on isentropic surfaces.

These analyses reveal the hidden complexity that cannot be

detected in streamfunction or geopotential height fields. At

the elemental level,  the smoothness of the streamfunction is

simply a consequence of its being related to potential

vorticity by an inverse laplacian operator.  This remark does

not go far enough, though, as it is the streamfunction that

governs the vorticity advection; hence its smoothness has

important dynamical consequences.  Indeed, linear wave

theory (which generally involves smooth fields) has proved

a very productive approach to a range of atmospheric

phenomena, and it is not at first glance easy to reconcile this

evident success with the spatial complexity of observed

potential vorticity fields.

Recent advances in the area known as "chaotic

advection" or "lagrangian turbulence" provides a way of

putting the wave/turbulence jigsaw puzzle back together.

This work has demonstrated that organized large scale (even

deterministic) flow patterns can produce spatially complex

tracer patterns which lead to effective mixing; it also

provides a powerful apparatus for characterizing the mixing

(Aref 1984, Chien et al. 1986,Khakar et al. 1986, Ottino et

al., 1988, and Wiggins 1988, Ottino 1989, Rom-Kedar et al

1990,  inter alia).  The theory predicts enhanced mixing

whenever a streamfunction exhibiting a closed streamline

region bounded by a separatrix (a streamline terminating in

stagnation points) is subjected to temporal fluctuations.  This

geometry occurs whenever there is an isolated eddy

embedded in a background current, and is ubiquitous in

large scale atmospheric and oceanic flows.  Most of the

progress has been for passive tracer advection in time-

periodic flows, and it is not a priori clear whether any of

these results carry over to mixing of active tracers (like

potential vorticity or potential temperature) in more complex

flows.  Exploring this connection is the central concern of

this paper.

We approach this problem by analyzing passive

tracer mixing by vacillating barotropic Rossby waves, and

then examining integrations of the full barotropic vorticity

equation for the characteristic signature of chaotic mixing in

the vorticity fields.  This example illustrates the peaceful

coexistence between an organized large scale wave and

complex vorticity evolution leading to an enstrophy cascade.

Along the way we derive some novel results on the passive
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tracer problem, particularly concerning use of two-particle

correlation functions to characterize the mixing, and the

relation of these functions to power spectra of the tracer.

These results have clear implications for the representation of

mixing in chemical tracer problems, such as ozone

evolution.  Our main concern, though, is with the

consequences for potential vorticity mixing.

The key result is that chaotic advection theory

provides considerable insight as to where potential vorticity

will homogenize, and where strong gradients can survive.

Potential vorticity homogenization is central to the

understanding of a variety of natural phenomena, including

the stratospheric polar vortex(McIntyre & Palmer 1983),

Rossby wave critical level reflection (Killworth & McIntyre

1985), thermocline theory (Rhines and Young 1982), and

Jupiter's Great Red Spot, where homogenization is

commonly invoked to suppress radiation of Rossby waves

(Marcus 1988).  Our results demonstrate that eddy viscosity

need not be stipulated to account for homogenization.

The Rossby wave problem also leads us naturally

into the consideration of the properties of two-dimensional

turbulence in the presence of large scale inhomogeneity.

Most 2D turbulence studies, both theoretical and numerical,

have been carried out under circumstances favoring

homogeneity and isotropy.  Certainly, this problem has a

great deal of intrinsic intellectual appeal, but lurking in the

background of much of this work is the hope that universal

homogeneous behavior applies at scales far removed from

that of the large scale inhomogeneity.  Because of the

nonlocality in wavenumber space of the enstrophy cascading

subrange (Kraichnan, 1971), this is a dubious proposition.

We shall see that an energetic large scale wave controls the

enstrophy cascade down to arbitrarily small scales.

However, owing to certain universal properties of chaotic

advection, a classical k-1 enstrophy spectrum nevertheless

emerges. Given the prominence of planetary waves in the

Earth's atmosphere, it is likely that the chaotic advection

model provides a better metaphor for the enstrophy cascade

than isotropic, homogeneous 2D turbulence.

We also discuss the energy transfers associated with

the distortion of small scale eddies by the planetary wave.

The large scale wave effectively scavenges the energy of the

small eddies, but it will be seen that these transfers occur at a

very early stage of the game.  The eddies give up their

energy to the large scale long before the vorticity mixing has

gotten underway.  Hence the chaotic mixing properties are of

little relevance to the energy transfer.
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The mathematical statement of the problem of passive

tracer advection by a superposition of Rossby waves is

given in §2, along with a review of its basic behavior.  Some

new quantitative characterizations of the mixing, and their

connection with power spectra of the concentration

distribution, are given in §3.    Fully nonlinear simulations

of the barotropic vorticity equations establishing a

connection of these results with potential vorticity mixing are

given in §4.  In §5 we discuss the upscale energy transfers

associated with mixing of small scale vorticity.  Our

principal conclusions are discussed in §6, where we also set

out some guideposts for future geophysical applications of

chaotic mixing.

2 . Passive tracer advection: the basic behavior

The whole chaotic advection enterprise stems from

the following simple observation.  If ψ(x,y,t) is the

streamfunction for a time-dependent incompressible flow in

two dimensions, then the equations for the position (X,Y) of

a marker particle are

        
dX
dt   = -∂yψ(X,Y,t)         

dY
dt   = ∂xψ(X,Y,t) (1)

Since ψ is a nonlinear function of X and Y, this is a

nonlinear system. Moreover, if the time dependence is

periodic, then this is a three degree of freedom nonlinear

system, since one must specify X,Y and the phase of the

oscillation to determine the future course of the system.  This

is the minimum number of degrees of freedom necessary to

support chaos.  Hence the trajectories of a passive tracer

particle can be chaotic even in spatially simple flow fields;

this has profound implications for mixing.  A further

attractive feature of (1) is that it is a Hamiltonian system,

with canonical coordinates X and Y and Hamiltonian ψ.

Hence the full arsenal of techniques for dealing with

Hamiltonian chaos developed over a century or more of

research is available for one's employment in the

investigation of such systems.  The work of Aref (1984)

drew attention to this opportunity, and in conjunction with

the appearance of the textbook by Holmes and

Guckenheimer (1983) has certainly stimulated much of the

current progress in the subject.  Certain antecedents

concerning mixing by spatially organized flows can also be

found in the much earlier paper by Welander (1955), which

was certainly ahead of its time, being among the first papers

to employ fractal geometry in the investigation of fluid

phenomena.

In this paper, we will be concerned with particle

advection by the velocity field of a superposition of two
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Rossby waves on the barotropic β-plane.  The

streamfunction is

ψ= A sin(k1(x-c1t))sin(l1y) + ε sin(k2(x-c2t))sin(l2y)(2)

where the phase speeds are cj=–β/(kj2 + lj2).  We adopt

units such that l1 = 1 and β=1; further, in all results

presented below k1=1 and k2 and l2 are integers, whence the

flow is confined to a channel periodic in x with period 2π
and bounded by walls at y=0 and π. When ε=0, (1) is an

exact solution of the barotropic vorticity equation for

arbitrary A. The form of the perturbation is correct only in

the limit of small A and ε;  however, experiments with

various (k2,l2) (to be discussed later) suggest that the results

are not very sensitive to the spatial structure of the

perturbation, being controlled primarily by the streamline

geometry of the unperturbed flow and the velocity amplitude

of the perturbation.  Hence we are confident that the results

we present for finite A will survive a more accurate

specification of the velocity field.

In the comoving reference frame x'=x-c1t, (2)

describes a steady velocity field perturbed by a field

oscillating in time with period T=2π/(k2(c1-c2)), and

constitutes a perturbed planar Hamiltonian system. Figure 1

shows the unperturbed streamlines in the comoving frame

for A=1. This is the value of A used throughout this paper,

unless otherwise noted. There are two stagnation points

(marked P and P') on the lower boundary,  where a particle

will remain forever if so placed initially.  They are both

saddle points in the sense that the linearized behavior in the

neighborhood of these points exhibits one stable and one

unstable direction.  The stagnation points P and P' form

what is known as a heteroclinic cycle, being connected by

the upper arc PP' (the unstable manifold of P, which is

exactly coincident with the stable manifold of P') and the

lower segment P'P (the unstable manifold of P' which is

exactly coincident with the stable manifold of P).  Because

of the boundary conditions, the latter is preserved under

perturbation; however, as ε is increased from zero the former

generically breaks up into a chaotic set.  There is a deep and

extensive literature on the association between heteroclinic

(or homoclinic) cycles and chaos in perturbed Hamiltonian

systems.  An introduction to the subject can be found in

Guckenheimer & Holmes (1983).

The unperturbed wave has precisely the same

streamline geometry as that analyzed by Knobloch & Weiss

(1987) and Weiss and Knobloch (1989), though the class of

perturbations we consider is somewhat broader.  These

authors were motivated by modulated traveling waves

appearing in thermosolutal convection, but clearly



5 Chaotic Advection

Geophysical and Astrophysical Fluid Dynamics  58, 285-320.

appreciated that their results were applicable to modulated

traveling waves generally.  The Rossby wave problem we

consider here has the particular attraction that the basic state

is an exact nonlinear solution of the inviscid equations for

arbitrary amplitude;  it also lends itself naturally to nonlinear

simulations probing the connection between passive tracer

and vorticity mixing.  

The results presented in this Section should for the

most part be regarded as a review of the salient properties of

the system as established by Weiss & Knobloch, though we

discuss the behavior from a somewhat different perspective,

and in a few instances extend the results in a modest way.

An important departure from the system considered by

Weiss and Knobloch is that we impose a reentrant condition

on the tracer, so that material transported out of the right of

the domain is reintroduced at the left;  Knobloch and Weiss

were principally concerned with transport amongst gyres in

an infinitely long wavetrain, and so did not impose a single-

period reentrant condition.

The Poincare map P provides a convenient means of

analyzing the structure of the particle trajectories, when the

advecting flow is time-periodic.  This map takes the position

(x,y) of a particle on the plane to its position one oscillation

period T later.  The sequence of points (xi,yi) obtained by

iterating the map on some initial condition is known as an

orbit  of the Poincare map.  From an experimental

standpoint, plotting an orbit amounts to taking a

stroboscopic picture of the position of a single marker

particle every time the advecting flow swings around to the

same state.

Figure 2 shows a family of numerically computed

Poincare orbits starting from a number of different initial

conditions for ε = .1  and (k2,l2) = (1,2).  The blue and

green orbits trace out a series of disjoint, smooth curves.

Orbits of this type are known as tori. The terminology is not

obscure if one recalls that the Poincare sections are a 2D cut

of a 3D object (think of the intersection of a plane with an

inflated inner-tube).  Orbits in the tori are nonchaotic;  they

are characterized by zero Lyapunov exponent, and

neighboring trajectories diverge from each other only

algebraically in time (typically linearly in time).  We have

shown only a few representative tori; the regions they span

are actually filled with a continuous family of tori.  There are

two main regions of tori, one in the region exterior to the

main vortex, and one at the core of the recirculating region

(shown in dark blue and green respectively). Sandwiched

between the two is a "chaotic" or "stochastic" band, whose

trajectory is shown in red.  Trajectories in this region are
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chaotic, are characterized by a positive Lyapunov exponent

(hence exponential divergence of trajectories), and fill out an

apparently two-dimensional region. One also sees an

elongated torus (light blue) embedded in the top of the

chaotic zone.  There appear to be a number of such tori of

various shapes and sizes, though the small ones are hard to

find.  There is a symmetrically disposed stochastic band and

region of "core" tori associated with the recirculating eddy

on the upper boundary, but it is not shown.

Consider the behavior of an initially small blob of

tracer located in a region of tori.  The length of the cloud will

grow algebraically (typically linearly) with time. Ultimately,

the tracer will be redistributed uniformly along the invariant

torus it is initially centered on, but in the absence of

molecular diffusion there will be no mixing across tori.  If a

small molecular diffusion is introduced,  it will act on the

algebraically amplified cross-torus concentration gradients,

resulting in greatly enhanced cross-torus diffusion. This is

clearly a generalization of the shear dispersion phenomenon

familiar from advection-diffusion problems involving steady

flows.

Mixing in the chaotic zone will proceed very

differently.  Trajectories will separate exponentially rather

than algebraically, leading to more efficient dispersal than

possible among tori.  More importantly, a small blob will

ultimately become mixed over an area, rather than a curve,

even in the absence of molecular diffusion.  A typical

example of such mixing is shown in Figure 3, which plots

the time course of a cloud of 2000 particles located initially

in a small disk within the chaotic zone.  The disk is rather

quickly elongated into a short segment, which then jumps

around for several Poincare periods without being much

further stretched.  Then it encounters a region of rapid

extension, and particle dispersion occurs in a burst.  The

geometry is still a filament, though, and mixing over a 2D

region has not yet taken place.  This occurs subsequently,

through the stretching and folding of the filament, in a

process reminiscent of the kneading of dough.  Note that the

folding and creation of multiple strands is an inevitable

consequence of continued elongation of the tracer filaments,

as folds must occur once the length of a filament exceeds the

size of the domain.

The unstable manifold of P is the set of points whose

Poincare orbits asymptote to P as time runs backwards;  it is

a key determinant of the mixing properties of the system.

One can compute an approximation to the unstable manifold

by numerically finding the fixed point of the map, and

tracking the orbits of a small segment of particles initially
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located on a line coming out of the fixed point tangent to the

unstable eigendirection.  A segment of the unstable

manifold, computed in this manner, is shown in Figure 4.

There are clear similarities between the time course of mixing

shown in Figure 3 and the geometry of the unstable

manifold.  The resemblance is particularly clear in the

multiple stranded structure emanating from the vicinity of the

left-hand fixed point of the Poincare map.  It could be said

that the tracer cloud initially wanders about without mixing

much, until it "finds" the unstable manifold, whereafter it

tracks it and consequently fills out the chaotic zone.  We will

see hints of the characteristic unstable manifold structure

again when we consider vorticity mixing in the fully

nonlinear equations in §4.

The extent of the chaotic zone is a characteristic of

prime physical importance, as it determines the region over

which efficient tracer homogeneization will occur. In Figure

5 we show Poincare sections of the chaotic zone for various

ε.  For small ε the chaotic zone closely hugs the heteroclinic

streamline structure of the unperturbed flow.  As ε increases,

the thickness of the zone increases roughly in proportion,

until by ε = .2 there is no longer any hole in the center of the

main eddy, and the tracer homogeneization is expected to

become complete throughout the gyre.  This suggests a

strategy for identifying mixing regions in realistic

geophysical flows.  One would split up the flow into a

"steady" (probably low frequency) and "fluctuating" part,

use the former to identify heteroclinic structures, and use the

latter to determine the approximate width of the associated

stochastic zones.

Given that (2) is not actually a solution of the

equations of motion, one must be wary of any results that

depend on the detailed nature of the stipulated perturbation.

Happily, chaos in such systems is very robust, and depends

primarily on the unperturbed streamline geometry and the

overall velocity amplitude of the perturbation.  A typical

example is shown in Figure 6, which displays a chaotic

Poincare orbit for (k2,l2) = (4,4) with ε=.05.  This result

(and many others like it we could show) suggests that the

oversimplified specification of the perturbation is not a

critical flaw.

3 . Characterization of the mixing:  Correlation

functions and spectra

As illustrated in Figure 3, the mixing proceeds in two

stages.  In the first stage, the small blob of tracer is stretched

out into a filament with size comparable to that of the chaotic

zone. Thereafter the stretching and folding which leads to
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cross-streamline mixing commences.  The stretching in the

first stage is very intermittent in time, and can take quite a

while to get underway.  In fact, we have found the time

required for this stage to be highly sensitive to the initial

position of the blob, a property which is connected with the

intricate and fine-grained spatial variability of finite-time

estimates of the Lyapunov exponents.   This matter, as it

relates to chaotic mixing, is touched upon in Pierrehumbert

1990, and 1991a, but the issues are very deep and require

much further investigation which is outside the scope of the

present study.

We direct attention here to the second stage of

mixing.   How can we characterize the degree of mixedness

during this stage?  An obvious choice is the variance of the

cloud of particles about its mean position.  On reflection, this

is found to be unsuitable. The variance already attains nearly

its maximum value for a single filament snaking through the

chaotic zone, at a stage when the flow is not at all well

mixed.  It is relatively insensitive to subsequent mixing.

Instead, we introduce the two particle correlation

function H(r) as way to characterize mixing.  Given a cloud

of N particles, one computes H(r) in the following manner.

First,  compute the N(N-1)/2 distances between all pairs of

particles.  H(r) is then defined as the number of pairs with

distance less than r.    H(r) encapsulates a great deal of

valuable information about the geometry of the cloud.   H

asymptotes to a constant at large r, and the distance at which

H begins to flatten is indicative of the overall  extent of the

cloud, be it a single strand or an area-filling tangle.   

Further, if H(r) exhibits a self-similar subrange in which

H~rα , then α is the correlation dimension characterizing the

geometry at the corresponding length scales (Grassberger &

Procaccia, 1983).  α=0 corresponds to particles clustered at

a point,  α = 1 corresponds to well-separated filaments of

tracer, and α=2 corresponds to an area-filling cloud;  the

whole panoply of intermediate structures associated with

fractional α is also available.

Figure 7 shows the time evolution of the structure

function for (k2,l2) = (1,2) with ε = .2, plotted on

logarithmic axes.  The  initial condition consists of 10000

particles in a square of side .01 centered on the point

(π/2,.25).   Let Hn(r) be the structure function after n iterates

of the Poincare map.  For n ≤ 5 there is a single subrange of

slope unity that extends from small scales out to where Hn

begins to flatten out.  This corresponds to the stage at which

the cloud has been stretched out to a single filament, or

perhaps a few very closely spaced filaments.  For larger n,

Hn exhibits two distinct subranges— a slope-1 subrange at
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small r and a subrange with slope slightly less than 2 at

somewhat larger r.  The elbow demarcating the two regimes

moves to ever smaller r as n increases. An arrangement of

thin filaments more or less uniformly spaced is one geometry

consistent with this behavior; the elbow of the correlation

function corresponds to the mean spacing of the filaments.

This picture is borne out by Figure 8, which shows a

snapshot of the particle cloud at n=7.    As with the Poincare

cross sections, the behavior of the structure functions is not

particularly sensitive to the detailed form of the perturbation.

In Figure 9 we show Hn(r) for a (4,4) perturbation with ε =

.2.  It shows all the same features present in the previous

case.  

The mixing is very nonlocal.  It does not proceed in a

diffusive manner.  Diffusion would eliminate small scale

inhomogeneities first, and then spread the tracer gradually to

fill the macroscopic vessel. In contrast, for chaotic advection

Hn(r) converges to its asymptotic value first at large r as n

increases, and convergence spreads to smaller distances as

time progresses. The mixing first distributes the tracer

throughout the chaotic zone, in the coarse-grained sense.  It

then proceeds to eliminate fine-grained inhomogeneities.  As

the mixing continues, one must examine ever smaller scales

in order to detect inhomogeneity.  This kind of mixing is

more like the shuffling of a deck of cards in which the top

half is initially black and the bottom is initially white.  The

first shuffle distributes black cards throughout the thickness

of the deck, though there are still many clumps of black

cards in bands.  Subsequent shuffles mix up the bands and

give a more uniform distribution.  "Eddy diffusivity" is

unlikely to be a productive approach to parameterizing

mixing by chaotic advection, but it is not clear what should

take its place.  The following remark provides some

guidance, however.  Suppose that the length of filaments

increases exponentially in time with average rate λ (related to

the Lyapunov exponent, which in turn is related to the

amplitude and fluctuation intensity of the large scale wave).

Then, if the domain over which chaotic mixing takes place

has a characteristic length scale L, the typical strand spacing

scales with Le-λt because a strand of length eλt must have

roughly L/eλt folds if it is crumpled so as to fit into the

domain. Hence, the time required for inhomogeneities to be

eliminated down to scale d is proportional to λ-1ln(L/d), and

this state of affairs occurs only after the tracer is distributed

across the whole domain, in the coarse-grained sense.  In

contrast, the diffusive damping time for inhomogeneities of

scale d is d2/D, and the (longer) time required for diffusive
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transport to fill out a region of size L is L2/D,  where D is the

diffusion coefficient.

It should be evident from the preceding discussion

that H(r) contains much of the information traditionally

obtained from spectral descriptions of the tracer pattern.  In

fact, elementary manipulations establish that the power

spectrum of a cloud of delta-functions characterized by a

structure function H(r) is

C(k) = (const.) k ⌡
⌠

0

∞

 
d H
dr J0(kr) dr (3)

where J0 is a Bessel function and C(k) is the conventional

isotropic concentration variance spectrum,  defined such that

its integral from k=0 to ∞ is the net variance of the tracer

concentration. (See Pierrehumbert 1990  and Weiss and

McWilliams 1990 ) An immediate consequence of (3) is that

if H(r) has an extensive subrange with behavior rα , then

C(k) will have a subrange with behavior  k1-α .  This

observation links the correlation dimension with the classical

notion of self-similar (i.e. power-law) spectra.  A more

complete discussion of the connection between spectra and

fractal geometry may be found in Pierrehumbert 1990 and

Pierrehumbert 1991b.  The spectra associated with fractal

vorticity distributions range from k1 to k-1 ;  steeper spectra

do not have enough power at small scales to support a

spatially self-similar geometry. An important subtlety,

discussed in Pierrehumbert 1991b,  is that the limits k→∞
and α→2 are not interchangeable.  One recovers the k-1

spectrum at sufficiently short waves for α infinitesimally

less than 2, but if we set α=2, the coefficient of the k-1

leading term of the asymptotics vanishes.  This is so because

∫rJ0(kr)dr vanishes for nonzero k, being the 2D Fourier

transform of a constant. In this case the spectrum is steeper

than k-1, the precise steepness being determined by the

nature of the discontinuities of the vorticity field and its

derivatives.  The k-2 spectrum  reported in Saffman (1971) is

an example of this behavior, corresponding to patches of

uniform vorticity demarcated by sharp gradients.  We have

found that for α = 2-δ, the spectrum exhibits a steep

spectrum at moderate k but a k-(1-δ) spectrum at  sufficiently

short waves.

The spectrum computed by Bessel transform of

H20(r) for the (1,2) perturbation case is shown in Figure 10.

In accordance with the almost two-dimensional mixed

subrange shown in the correlation plots, the spectrum shows

a k-1 shortwave behavior.  This is precisely the same as the

classical spectrum of a passive tracer in homogeneous,
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isotropic 2D turbulence (see e.g. Rhines 1979).  However,

the classical reasoning relies on scaling arguments which

build upon assumptions of locality in wavenumber space.

For chaotic mixing, these arguments are invalid in their

customarily stated form, as the shortwave spectrum is

determined nonlocally, being controlled entirely by the large

scale advection.  Hence the replacement of the scaling

argument with the geometric argument based on mixing to a

dimension slightly below 2 is a critical step.

In point of fact, a simple modification to Kraichnan's

(1971) phenomenological derivation of logarithmic

corrections to the enstrophy-cascading spectrum also yields a

k-1 spectrum for the tracer spectrum in chaotic advection.

Paraphrasing Kraichnan's eqn. (1.5), if Λ(k) is the net

concentration variance transfer from all scales  < k to all

scales >k, then

Λ(k) ~ 
k C(k)

τ(k)
 

where τ is the characteristic time scale for distortion of

concentration structures with scale k-1. Kraichnan proceeds

to compute τ in terms of an integral over all scales of motion

with wavenumbers less than k, and then chooses C so as to

make Λ constant, as required in an equilibrium situation.

For chaotic advection, in contrast,  the characteristic time for

distortion of small concentration blobs is fixed by the

separation rate of neighboring trajectories of the large scale

advecting flow.   In consequence, τ is independent of k and

we require C(k) ~ k-1.  The situation is rather ironic:

Kraichnan found a logarithmic correction to the spectrum

that restores the integrity of the scaling argument by

preserving locality. Perversely, by assuming sufficiently

extreme nonlocality we obtain a scaling argument that

recovers the uncorrected result.

4 . Vorticity mixing in fully nonlinear

integrations

Potential vorticity is also a tracer, but the key

difference with a passive tracer is that, owing to self-induced

rotation, small scale vorticity concentrations can resist being

sheared out by the large scale flow field. However, if the

large scale strain is sufficiently strong compared to the small

scale vorticity, the latter may nevertheless be dispersed in a

fashion qualitatively similar to the passive tracer dispersion

illustrated above.  The genericness of the mixing, noted

above, is of importance in this context.  As long as a vortex

is not so intense as to hold together,  the fact that its

evolution alters the detailed form of the large scale advecting

flow should not change the general properties of the mixing.



12 Chaotic Advection

Geophysical and Astrophysical Fluid Dynamics  58, 285-320.

These ideas are investigated through numerical

integrations of the barotropic vorticity equation

∂t ∇ 2ψ  + J(ψ, ∇ 2ψ  + βy) = 0 (4)

subject to the initial  condition

ψ(x,y,0) =

   c1y + A cos(k1x)sin(l1y) + εcos(k2x-δ)sin(l2y) (5)

With ε= 0 the wave retains its form indefinitely in

time, as it is an exact nonlinear solution;  trivially, there is no

mixing.  The picture would be complicated by instability of

the primary wave, but suppression of the subharmonic by

the boundary conditions seems to eliminate such instabilities;

the degree of geometric confinement is not sufficient to

guarantee stability by Arnold's second theorem, however,

and we are unaware of any proof of this evident stability.

For nonzero ε the initial condition is no longer a steady

solution, and so there will be time fluctuations, which

presumably increase in amplitude with increasing ε.  The

fluctuations of ψ in this problem cannot be expected to

resemble those in the constrained advection problem (2), so

ε plays a more complicated role here.  An important

difference from (2) is that the amplitude of the fluctuations

need not be time independent.  If the system approaches a

steady state (through vorticity mixing or otherwise), the time

fluctuations will decay to zero and further mixing will cease.

Nonetheless, we can look for the signature of chaotic

advection in the course of this time evolution.

We could examine passive tracer mixing in the time

varying ψ field yielded by such an integration, but our main

concern here is with dynamical implications of chaotic

advection.  Hence we will confine our analysis to the

potential vorticity field associated with ψ itself.  One might

think this would be a difficult system to analyze, in that the

vorticity is providing its own stirring.  However, because ψ
is related to the vorticity by an inverse Laplacian, it will have

a larger characteristic scale than the vorticity, once small

scale vorticity structures are generated.  This scale separation

means that vorticity and streamfunction can almost be

regarded as separate entities.  A particularly clear cut

example of this is provided by nonlinear Rossby wave

critical level dynamics (see Killworth & McIntyre 1985 for a

review), in which the vorticity field can be precisely

regarded as being advected by the large scale component of

the streamfunction alone.

A more serious problem with the chosen family of

initial conditions is the dual role of ε with regard to the

survival of small vortices.  Increasing ε on the one hand

favors survival of small vortices by increasing their vorticity;

on the other hand it favors their destruction by increasing the
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magnitude of the fluctuation of the large scale flow.  Hence,

we do not address the question of formation and survival of

small intense vortices such as studied by McWilliams (1984)

in the case of homogeneous turbulence.  Such vortices do

not emerge, or play any role, in any of the calculations to be

reported below.

The technology for numerical integration of (2) is

well established, and little needs to be said about it.  For

historical reasons we employ a semi-spectral numerical

model (pseudospectral in x, with second-order finite

differences in y).  The timestep is a standard leapfrog, except

for episodic employment of Euler-backward to keep the even

and odd time levels from drifting apart.   All calculations

reported below were carried out with 512 mode resolution in

x and 256 gridpoints in y.  There is no diffusion in the

calculation, except for what may have been introduced

numerically.  None of the results presented are limited by the

resolution.  At higher resolution, one can track the vorticity

field farther in time before Gibbs' phenomena interfere, and

hence one can see the vorticity mix down to finer scales.

However, the resolution employed is well in excess of that

needed to isolate the basic behavior.  There is no indication

of anything fundamentally new happening with increased

resolution in this series of experiments.

In this section we shall discuss three simulations.

Experiment [1x2] was done with k2=1 and l2=2, ε=.2 and

δ= 0. It is indicative of the mixing proceeding from a flow

with initial vorticity entirely in the largest scales.  Experiment

[1x2s] is precisely the same, except that the perturbation is

shifted by a quarter wave with respect to the basic state wave

(δ = π/2).  It provides an interesting comparison with

Experiment [1x2], as the initial conditions have precisely the

same energy and enstrophy, yet lead to very different

evolution.  Experiment [4x4] was conducted with k2=l2=4,

ε=.1 and δ=0, and is indicative of the behavior when there is

an initial scale separation between the basic state wave and

the vorticity perturbation.

The vorticity evolution for Experiment [1x2] is

shown in Figure 11.  In this experiment, the initial

perturbation has extrema in phase with those of the basic

state;  it strengthens the vortex at the upper right of the

domain and weakens the vortex at the lower left.  The

signature of chaotic mixing is very clear in this case.  The

weakened vorticity of the lower left vortex is stretched and

folded into a series of ever finer and more closely spaced

filaments, and its variation is thus cascaded down to ever

smaller scales.  The vorticity in the open streamline region

exterior to the gyre, where we found tori in the passive
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advection case, undulates but does not show similar signs of

mixing.  With the grey-scale palette employed in Figure 11 it

is difficult to see what is happening to the vortex at the upper

right. Hence, we show this region with a remapped palette in

Figure 12. It is evident that this vortex shows a "core"

region which does not homogenize or mix with the

surrounding fluid, surrounded by a relatively thin mixed

(chaotic) band.  This behavior is consonant with the ε
dependence of the stochastic zone shown in Figure 5.  The

upper vortex is stronger relative to the magnitude of the time

fluctuations, and so has a chaotic zone that more closely

hugs the unperturbed heteroclinic cycle.

The vorticity fields for Experiment [1x2s] are shown

in Figure 13.  In this case the initial perturbation does not

particularly favor one gyre over the other.  In this case, both

large scale gyres have a well-defined core surrounded by a

broad stochastic band.  An interesting feature of this

experiment is the persistent transient pulsation of the core

regions.  The unmixed core vorticity attains a vaguely

elliptical shape, which undergoes repeated elongation and

contraction as it rotates.  The pattern is already evident at

t=39, and while there is some indication of slow relaxation

to a steady state, the fluctuations are still considerable at

t=63.  This behavior is reminiscent of the Great Dark Spot of

Neptune, which has been interpreted as a pulsating Kida

vortex by Polvani et al.  (1990).  The contrast between

Experiment [1x2] and Experiment [1x2s] shows that

whether one gets a steady core (like Jupiter's Red Spot) or a

pulsating core (like Neptune's Dark Spot) can be a matter of

initial conditions.  That radically different end states can

evolve from initial states [1x2] and [1x2s] having identical

energy and enstrophy has some interesting consequences for

the role of higher invariants in the statistical mechanics of 2D

turbulence.  We shall return to this point in §6.

Finally, we turn to Experiment [4x4],  shown in

Figure 14.  This is a particularly stringent test of the chaotic

advection hypothesis, as the rms velocity amplitude of the

perturbing small scale field is fully 33% of that of the large

scale wave.  The background wave is hardly detectable in the

initial total vorticity field.  Yet the large scale wave is there

the whole time, controlling the vorticity mixing, and its form

clearly emerges as the perturbation vorticity is mixed down

to small scales. The end state is characterized by moderate-

sized vortex cores embedded in a broad stochastic band. The

core vorticity is comparable in magnitude to the initial

vorticity in the core region; a vortex present in the initial

perturbation has become trapped in the region of core tori,

strengthening the circulation and thus enhancing the
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predisposition of the large scale flow to have tori here.  

These cores do not exhibit pulsations like those observed in

the previous case.

Vorticity cross sections along two lines of constant x

intersecting the two large scale gyres are shown for each

case in Figure 15.  Case [1x2] clearly shows the broad

homogenized region associated with the lower left eddy.

There is no unmixed core, and the gradients are expelled to

the exterior of the eddy.  The upper right eddy exhibits a

core region as well as a (relatively thin) chaotic band, and

region of exterior gradients.  In Case [1x2s] the structure of

the two vortices is less asymmetric.  Both exhibit a core

vortex region of approximately the same size, surrounded by

a homogenized region, which in turn is bounded by an

exterior region of strong gradients.  Case [4x4] yields a

similar pattern, though the exterior gradient regions are

somewhat less prominent visually, owing to the higher

vorticity variance (which stems from the initial conditions).

The long term behavior in all these cases may be

summed up as follows.  The flow evolves to a nearly steady

state (in the coarse grained sense), with scales and

streamlines resembling those of the initial large scale wave,

but having redistributed vorticity.  The end state vorticity

distribution consists of regions of homogenized vorticity

surrounding the heteroclinic structures of the large scale

wave, and regions of smooth vorticity gradients

corresponding to regions of tori in the associated chaotic

advection problem. The gradient-containing regions are of

two types:  one is associated with the layer of "open"

streamlines snaking between the two recirculating gyres of

the large scale flow. The other (which is present only if the

time variability is sufficiently weak) is associated with the

core region of the recirculating gyres.  The former represents

a barrier to mixing analogous to that found at the edge of a

simulated polar vortex in the laboratory experiments of

Sommeria, Meyers & Swinney (1988).  The appearance of

invariant tori in periodically perturbed Hamiltonian flow is a

familiar phenomenon, but their survival in the face of the

broadband time fluctuations appearing in the vorticity

simulations is striking and unexpected.

The formation of ever finer grained vorticity

filaments as time progresses is an instantiation of enstrophy

cascade to small scales.  The mixing is highly nonlocal in

wavenumber space, and so invalidates the classical similarity

arguments leading to the Kolmogorov-Kraichnan spectrum.

However, the resemblance of the vorticity evolution to

passive tracer mixing by chaotic advection leads one to

conjecture that a k-1 shortwave spectrum may nevertheless
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emerge, as it does in the passive tracer case.  A missing link

in this argument is that the reasoning summarized in §3

connecting geometry to spectra is based on clouds of

vortices of identical strength, whereas the actual vorticity

fields have continuously distributed value.  This may not be

a critical failing, as from a coarse-grained perspective

regions of large vorticity can be approximated as regions of

high density of vortex blobs, and conversely.  At this point,

however, we are not certain how to make this argument

more rigorous.

The enstrophy  spectra for experiments [1x2s] and

[4x4] are shown in Figure 16.  These are isotropic spectra,

angle-averaged over all wavenumbers with a given

magnitude, and multiplied by k so that the integral with

respect to k gives the total enstrophy.  The wavenumber is

normalized such that k=1 corresponds to the length of the

gravest non-constant mode in x.  As is evident from the

vorticity cross sections in Figure 15, the vorticity is not

periodic in y (owing to the beta effect).  If left in, this would

itself lead to a k-2 contribution to the enstrophy spectrum.

Hence we have detrended the vorticity field by subtracting

off β * y before computing spectra.

In both cases, the spectra rather quickly exhibit a

self-similar range at small scales (wavenumbers 10-100).

When it first appears, the slope is steep, the shape being

roughly k-2.  In accordance with the arguments of Saffman

(1971), this is indicative of an arrangement of well-separated

curves on which the vorticity gradient is large, separating the

plane into regions within which the vorticity is comparatively

uniform.  As time progresses, the slope decreases, and

ultimately approaches the k-1 classical form.  The classical

spectrum emerges more quickly in experiment [4x4] than in

experiment [1x2s].  The time course of the spectrum is

precisely opposite to that seen in experiments such as

McWilliams (1984), Benzi et al. (1986) and Legras et al.

(1988) beginning with spatially homogeneous and isotropic

initial conditions; in these cases the spectrum is initially

shallow, and becomes progressively steeper as time goes on

and small coherent vortices freeze out.  Though our

experiments reveal the same dichotomy between steep and

classical spectra, the physics of what is going on is

completely different from the homogeneous case.  In the

experiments discussed here, small scale persistent vortices

never appear, presumably because the large scale strain is

too strong to allow them to survive.  The initial steep spectra

are instead associated with a certain degree of smoothness in

the filamentary structure, which is lost as time goes on.
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Our discussion to this point has emphasized the

emergence of a classical shortwave spectrum.  However, it

should be noted that in the present problem (and perhaps

more generally) this spectral range is characterizing a part of

the flow which is dynamically rather uninteresting and

perhaps entirely irrelevant.   It is telling us something about

the "fuzz" on the vorticity curves in Fig 15, whereas the

overall shape of the curves is clearly more important. The

spectrum in the range k=10 to 100 accounts for around 1%

of the total enstrophy at the later times.   What is far more

interesting is that the classical spectrum begins at about

k=10. Recall that these experiments represent decaying

turbulence, rather than continuosly forced turbulence, so

there is no injection length scale to naturally determine the

boundary of the enstrophy cascading subrange.  There is no

obvious reason the enstrophy cascading region shouldn't

extend all the way to the largest scales, instead of stopping

an order of magnitude short.  That it doesn't is indicative of

the stability of some large scale flow "nearby" (in a function

theoretic sense) to the initial conditions.  This hypothetical

flow is resistant to disruption, and so its enstrophy cannot be

bled off to small scales.

The structure of the large scale spectrum is itself

rather revealing.  In the wavenumber range 1-10, it is steep

but not exponentially so;  the behavior here is suggestive of a

k-3 to k-4 enstrophy range, though given the discreteness at

such long waves it is not possible to be very precise. An

infinitely smooth (infinitely differentiable) vorticity

distribution would yield an exponentially decaying spectrum,

so the algebraic spectrum indicates that, viewed at large

scales, the vorticity field exhibits jumps (more precisely,

rapid transitions) in sufficiently high order derivatives. It is

noteworthy that a jump in vorticity gradient yields a k-4

isotropic enstrophy spectrum. This picture is consistent with

the rather sharp boundaries between macroscopic

homogenized regions and non-homogenized regions evident

in Figures 12-14 and Fig 15.

The following overall picture emerges.  The

crossover wavenumber represents the intersection of the

steep spectrum characterizing a stable large-scale eddy with

the k-1 spectrum characterizing the chaotically mixing,

enstrophy-cascading, part of the vorticity.   Since the

enstrophy is constant (and finite) at all times, the k-1

subrange must have a shortwave cutoff k0, which increases

with time as the mixing proceeds to ever finer scales. If the

enstrophy range is written as  A(t)k-1,  then A must decay

like 1/log(k0), in order to keep the enstrophy in this range

constant.  Hence, the crossover wavenumber increases with
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time and eventually disappears from view, leaving only the

large eddy behind.  Viewed in this way, the initial condition

projects (nonlinearly) on a "steady state" plus a

"perturbation" vorticity field, and as time goes on the

enstrophy cascade acts as a dissipation, getting rid of the

latter by removing it to small scales.  The details of how this

scenario is played out depends on the proximity of stable

large scale states to the initial condition, and so is expected to

be highly dependent on the configuration of the experiment

at large scales.

5 . Vorticity mixing and upscale energy transfer

The previous section established a connection

between chaotic mixing, potential vorticity homogenization,

and the downscale enstrophy cascade.  We now examine the

implications for the upscale energy tranfers that are the

hallmark of two dimensional turbulence.   The basic idea is

as follows. If a small scale eddy is not strong enough to

resist dispersal by the large scale flow, its vorticity will be

redistributed over a large area.  A small scale vortex loses

energy in the course of being dispersed. Since energy is

conserved for the system as a whole, the energy lost by the

small scales must be gained by the large scales.

In order to formalize this idea, divide the

streamfunction field up into a part Ψ(x,y,t) which has large

spatial scale, and ψ'(x,y,t) which is the advected

perturbation field, having a small spatial scale.  The former

is the specified large scale field doing the advecting.  Let the

corresponding vorticity fields be Q and q'.  We will show

that the time-integrated Reynold's stresses acting on the large

scale flow yield a net increase in energy when the passively

advected field loses energy.  The vorticity equation is

∂t Q + [∂t q' + J(Ψ,q')] +

               J(ψ',Q) + J(Ψ,Q) + J(ψ',q') = 0 (6)

However, if the small scale field is passively advected by the

large,we have

∂t q' + J(Ψ,q') = 0 (7)

 and the bracketed terms in (6) vanish.  To form the large

scale energy budget, we multiply (6) by Ψ and integrate over

all space.  Denoting the spatial average by <.>, and using

integration by parts, we find that

− 
dE
dt    + <ΨJ(ψ',Q)> + <ΨJ(ψ',q')> = 0 (8)

where E is the kinetic energy of the large scale flow.  The

first averaged term is linear in the primed quantity and

therefore will nearly vanish if there is a separation in scale
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between the primed and unprimed quantities.  Thus, within

this approximation
dE
dt    – <ΨJ(ψ',q')> = 0 (9)

 The bracketed expression is the conventional

conversion term appearing in most diagnostic analyses of

atmospheric energy budgets. Further, by multiplying the

passive advection equation by ψ' and integrating, we find

that

– 
dE'
dt    – <ΨJ(ψ',q')> = 0 (10)

where E' is the kinetic energy of the primed field. In

consequence 
d(E+E')

dt   =0, and we have the desired result

than any energy lost by the small scale eddies is gained by

the large scale.

Now let us see how well these ideas work in

vorticity simulations such as discussed in §4.  Since the

eddies of interest are large scale and anisotropic, we have

found it most informative to decompose the motion into

Fourier modes in x alone, aggregating all modes with zonal

wavenumber n into the energy En(t). Figure 17 shows the

behavior of the energy for A=1 subject to a (4,4)

perturbation with ε=.2.  As predicted, the fundamental mode

energy E1 increases in step with the decay of the perturbation

energy E4.  The effect of varying ε and A is shown in Figure

18.  Focusing first on the results at fixed A, we see that the

time scale for the energy capture is insensitive to ε.  This

observation establishes that the energy transfer is not due to

subharmonic instability of the (4,4) wave,  whose growth

rate would scale with ε.  Reducing A, on the other hand,

does delay the energy capture.

The above results establish that the large eddy serves

as the pacemaker for the upscale energy transfer, and hence

points the way to a simple parameterization of large eddy

maintainence.  However, it is fair to point out that the

capture of energy by the large scale is virtually complete by

t=2, a stage well before chaotic mixing of the vorticity has

gotten underway.  At this stage, the small scale eddies have

become substantially elongated, but the filaments have not

yet completed a single circuit about the large eddies.  Chaotic

mixing of vorticity in principal could be a potent means of

cannibalizing the small eddy energy, but the effect is clearly

not of importance in the experiments reported here; this is

underscored by the fact that the behavior in Figure 18 shows

no qualitative change as A is reduced below .5 and the

heteroclinic cycle is eliminated.

What is going on here is really not so very different

from the energy capture mechanism discussed by Shutts
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(1983) in connection with maintainence of atmospheric

blocking patterns by synoptic transient eddies.  Shutts noted

that the shearing out of small eddies by a large scale diffluent

jet creates Reynolds' stresses which pump energy into the

large scale, an effect which was already well known in the

simpler context of plane Couette flow.  Haines and Marshall

(1987) indeed found such energy transfers to manifest

themselves in fully nonlinear simulations of small eddies

propagating through blocking patterns.

Blocking presents a natural arena for the application

of chaotic advection concepts, as blocking is practically

synonymous with the appearance of closed streamlines,

particularly at lower levels.  As noted above, nothing

fundamentally new has been learned with regard to the

energy budget of the block.  The novel implications concern

the potential vorticity budget. One expected effect is the

homogenization of potential vorticity within the blocking

region;  this is unlikely to seriously affect the persistence of

the block. An effect of greater import is the exchange of

potential vorticity between the block and its surroundings,

via leakage through thin tails like those appearing at the

bottom boundary of Figures 4 and 8.  This interchange

would erode the potential vorticity of the block, which

cannot in any obvious way be resupplied by interactions

with the synoptic eddy field.  One would need a mechanism

for preferential ingestion of potential vorticity anomalies of a

given sign.

It is noteworthy that the upscale energy transfer

discussed in this section occurs without benefit of either

vortex pairing or a k-5/3 energy cascading inertial subrange.

We suggest that the situation presented above —in which

there is an energetic planetary wave that directly captures

energy of any small eddies which appear and then proceeds

to mix their enstrophy away to small scales— is a better

archetype for turbulent flow in the Atmosphere than the

traditional homogeneous picture based on an injection range

separating longwave energy cascade and shortwave

enstrophy cascade.  Indeed, Boer and Shepherd (1983)

found that the Atmosphere exhibits an enstrophy cascading

inertial range at small scales,  but that the energy cascading

inertial range spectrum is missing, even though there are

clear transfers of energy to the largest scales of motion.

6 . Discussion and conclusions

Using modulated traveling Rossby waves as an

example, we have investigated the properties of mixing by

class of large scale two-dimensional flows of geophysical

interest.  In these flows, which are distinguished by regions
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of recirculating streamlines bounded by a separatrix,

enhanced mixing occurs in a stochastic band surrounding the

separatrix.    The character of the mixing, as revealed by an

analysis of the two-particle correlation function, is different

from diffusion.  It first mixes the tracer over a broad area in

the coarse grained sense, and then proceeds to eliminate

progressively finer grained inhomogeneities.  This kind of

nonlocal (in physical space) mixing cannot be faithfully

represented as an eddy diffusion, and insofar as similar

phenomena occur in nature, attempts to characterize large

scale mixing by eddy diffusion coefficients derived from

data are bound to give unreliable results.

Even though the mixing is governed by processes

that are very nonlocal in wavenumber space, the power

spectrum of passive tracer concentration obeys a classical k-1

form. We have obtained this result from two disparate

arguments. The first is a geometric argument based on fractal

dimension of the concentration distribution.  The second is a

phenomenological scaling argument based on scale-

independence of the characteristic time for distortion of

concentration blobs.

Integrations of the barotropic vorticity equation

subject to initial conditions consisting of a perturbed large

scale Rossby wave demonstrate that the chaotic advection

ideas have considerable explanatory power when applied to

potential vorticity mixing.  Homogenized vorticity regions

appear where one expects chaotic zones in the corresponding

passive advection problem, while regions of surviving

potential vorticity gradients correspond to regions of tori in

the advection problem.  To make the theory fully predictive,

one would need a means of estimating the amplitude of large

scale temporal fluctuations proceeding from a given initial

condition; we have not yet accomplished this.

Vorticity mixing by chaotic advection provides a

clear-cut example of macroscopically irreversible mixing

produced by the microscopically reversible Euler equations.

Hopefully, this remark will resolve any remaining

controversy surrounding the use of the term "Rossby wave-

breaking" by McIntyre and Palmer (1983).  The controversy

(which in our opinion is largely pointless) focuses on the

question of whether the resulting mixing is reversible

(McIntyre and Palmer 1985).    Chaotic mixing is

macroscopically irreversible despite the reversible Euler

equations in precisely the same sense that molecular

diffusion is irreversible despite the reversibility of

Newtonian mechanics.  Strictly speaking, if one runs the

system backwards, the mixed cloud in Figure 8 will

condense back into a small blob, "unscrambling the egg," as
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it were.  However, owing to the exponentially sensitive

dependence of trajectories on initial conditions, a very small

perturbation to the flow or the particle positions would

prevent the unscrambling.

Considered as a decaying 2D turbulence experiment,

our results have some interesting implications for the nature

of the enstrophy cascading subrange in the presence of an

energetic large scale wave.  In the cases we have considered,

the large eddy controls the enstrophy transfer at arbitrarily

small scales, with local (in wavenumber space) interactions

playing no detectable role. Despite the extreme nonlocality, a

classical k-1 enstrophy spectrum ultimately emerges at small

scales.  Given the manifest similarity between vorticity

mixing and passive tracer mixing in these experiments, the

enstrophy spectrum is probably accounted for by arguments

similar to those we have advanced for the passive tracer

case.   The vorticity participating in this spectrum is "fossil

vorticity," which has already given up most of its energy to

the large scale waves;  upscale energy transfer acting to

maintain the planetary wave does indeed occur in our

experiments, but it is essentially complete after a single

large-eddy turnover time. The energy transfer is associated

with the initial distortion of the small scale eddy field, and is

independent of chaotic vorticity mixing.

The importance of the large eddy should not be too

surprising, in light of the well-known theoretical arguments

for nonlocality of the enstrophy cascading inertial range.

Kraichnan (1971) gets around the nonlocality by finding

logarithmic corrections that restore locality;  our findings

show that Nature has at least one other way out of the

dilemma.  Speculations about the connection with 2D

turbulence in the Atmosphere are premature at this stage, but

our results demonstrate that the effect of the planetary waves

must be a central concern in any study of this phenomenon.

Indeed, Shepherd (1987a), who seems to have been the only

investigator to have worried about such matters previously,

found that half of the spectral enstrophy transfer was

associated with interactions between the large scale

stationary flow and the small eddies. He suggested that this

was due to shearing out of eddies by the zonal flow.  If one

enlarged consideration to include low frequency fluctuation

of the wavy planetary jets, chaotic advection comes into play

and one may be able to account for even more of the

enstrophy transfer.  The question is whether most of the

enstrophy transfer to small scales occurs in regions of tori or

regions of chaos;  this is an empirical question, that can be

answered with reference to suitable analyses of the data.
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Our experiments, like those of Marcus (1988), show

that if there is a "nearby" stable large scale state it tends to

emerge, and the enstrophy cascade acts as a dissipation to

get rid of the unwanted enstrophy (getting rid of unwanted

initial energy is more problematic).  Comparison of cases

[1x2] and [1x2s] in §6 demonstrates that knowledge of the

initial energy and enstrophy alone does not suffice to

determine the long term behavior of the system; it is a clear

affront to formulations of statistical mechanics of 2D flow

based on Kraichnan (1975).  However,  the two initial

conditions do differ in their higher order invariants (like

maximum and minimum vorticity).  Recently, Miller (1990)

has shown how to incorporate the full hierarchy of vorticity

invariants into the statistical mechanics. Shepherd (1987b)

demonstrated non-ergodicity on the energy-enstrophy

hypersurface, based on existence of nonlinearly stable

equilibrium states.  This criticism doesn't apply to Miller's

formulation, provided there is only a single stable state on an

isovortical sheet;  what Miller considers is essentially an

excited state of such a vortex.

The output of Miller's theory is a vorticity field

representing the ensemble mean (and presumably time mean)

long term behavior. The vorticity in this state is always

constant on the corresponding streamlines; it is an exact

nonlinear solution of the Euler equations, and hence the

fluctuations have no long term effect.  The vanishing of the

fluctuations is related to Miller's finding that mean field

theory is exact for this problem, which is indeed why he is

able to compute a solution.  The vorticity evolution in our

simulations appears consistent with the picture emerging

from Miller's work, though the ultimate test of consistency

would be to use Miller's formalism to compute the end-state

corresponding to our initial conditions.  This is a nontrivial

and difficult computation, which must be deferred to future

work.

Chaotic mixing is a productive and powerful concept

which is likely to find many future applications in the

atmospheric and oceanic sciences.  Of the various

possibilities,  two problems are particularly ripe for study as

they have an asymptotic regime in which potential vorticity

exactly acts as a passive scalar.  The problems are Rossby

wave critical level dynamics (Killworth & McIntyre 1985)

and baroclinic equilibration with weak surface flow (Warn &

Gauthier, 1989).  Both cases have been worked out for a

single wave, which yields a steady advecting streamfunction;

the ambient vorticity gradient is mixed algebraically by being

wrapped up into a spiral.  In both cases the steady

streamfunction has a heteroclinic structure, and so will
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produce chaotic mixing if perturbed by a second wave.

Given the generic nature of chaotic mixing, there is reason to

hope that the fundamental behavior in these problems does

not change much as the parameter controlling the

asymptotics is made larger.  Carrying out this program

would build a bridge between the idealized behavior and

real-world problems such as the dynamics of the equatorial

stratospheric "surf zone" (McIntyre and Palmer 1983), or

baroclinic equilibration in the presence of multiple unstable

waves.
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Figures



P P'

Figure 1...............Streamlines of basic state in the

comoving reference frame for A=1..

P and P' are fixed points of the

unperturbed flow, and the heteroclinic

cycle is emphasized.

Figure 2...............Tori and chaotic regions for ε=.1
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Figure 3...............Dispersion of cloud, ε=.15 .
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Figure 4 . . . . . . . . . . .A segment of the unstable manifold,

ε=.15.  
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Figure 5...............Stochastic band vs. ε for  (top to

bottom) ε = .05, .10,.15, .20
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Figure 6...............Poincare' orbits  for ε=.05, but with

short wave perturbation having

k2=l2=4.
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Figure 7...............Two particle correlation function for

(1,2) perturbation with ε=.2. The

initial condition is a square of side .01

centered on (π/2,.25). The bold lines

have slopes 1 and 2.
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P P'

Figure 8...............Tracer cloud at Poincare iterate n=7

for the case shown in Figure 7.
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Figure 9...............As in Figure 7, but for (4,4)

perturbation with ε=.2.
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Figure 10.............Concentration power spectrum of

tracer cloud at n=20, and n=40 for a

(1,2) perturbation with ε=.25 The

initial condition is a cloud of 40000

points distributed uniformly over a

square of side .01 centered on

(π/2,1.)

(a)

(b)

(c)

(d)

(e)

(f
)

Figure 11.............Potential vorticity for case [1x2] at (a)

t=0, (b) t=7.8, (c) t=15.6, (d)

t=20.8, (e) t=26.0 (f) t=31.2



6 Chaotic Advection

Geophysical and Astrophysical Fluid Dynamics  58, 285-320.

(a) (d)

(e)

(f)

(b)

(c)

Figure 12.............As in Figure 11, but  remapped to

emphasize the upper right vortex.

(a)

(b)

(c)

Figure 13. . . . . . . . . .Potential vorticity for case [1x2s] at

(a) t=0, (b) t=39.0 (c) t= 63
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(a)

(b)

(c)

Figure 14.............Potential vorticity for case [4x4] at (a)

t = 0, (b)  t = 10.4, (c) t= 31.2
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Figure 15  Vorticity cross sections along lines

x=constant for cases [1x2], [1x2s] and [4x4], taken at the

final times shown in Figs. 11-14.
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Figure 16. . . . . . . . . .Enstrophy spectra for (a) case [1x2s]

and (b) case [4x4].  The bold lines

have slopes 1 and 2.
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Figure 17.............Net energy En(t) in zonal mode n for

A=1 subject to a (4,4) perturbation

with ε =.2.
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Figure 18............. Energy E1(t) in wave 1 for (4,4)

initial perturbation with various

combinations ( ε,Α).


