1 Planck function

Convince yourself of certain properties of the Planck function.

Stefan-Boltzmann law. Convince yourself that if you integrate the Planck function over the entire spectrum, you get back out the Stefan-Boltzmann law.

(A) Quick and easy demonstration of the T^4 dependence. In the last problem set you wrote $B(\nu, T)$ instead as $B(u, T)$ where u is the dimensionless parameter $u = \frac{h\nu}{k_B T}$. Now just write the integral and show that it consists of constants, a T^4 term, and a dimensionless integral over du. First, don’t solve the integral; just show that

$$\int_{u_1}^{u_2} B(u) du = (\text{constants}) \cdot T^4 \cdot \int_{u_1}^{u_2} f(u) du$$

(B) Do that integral numerically (or use the value that was stated in class) and show that the integral times the constants is the Stefan-Boltzmann constant σ.

Equivalence of forms Convince yourself that integrating either form of the Planck function (in terms of intervals in ν or λ) produces the same integrated flux, i.e. that

$$\int_{\nu_1}^{\nu_2} B_\nu d\nu = \int_{\lambda_1}^{\lambda_2} B_\lambda d\lambda$$

(C) Pick a test case and describe it: what temperature blackbody, and what wavelength or frequency interval. Make it something that you find interesting and are curious about. (For example, how many W/m2 of microwave radiation ($1 \text{ mm} < \lambda < 1 \text{ m}$) does a human body emit?)
(D) Integrate \(\int_{\nu_1}^{\nu_2} B_\nu \, d\nu \) over your interval

(E) Integrate \(\int_{\lambda_1}^{\lambda_2} B_\lambda \, d\lambda \) over your interval

Below problems are optional extra credit for 232 students, required for 332 students.

Choosing the “natural” form of the Planck function Determine in which form the apparent peak lies closest to the midpoint of the distribution (i.e. 1/2 power on either side of the peak). It’s easiest to do this using \(B_\nu \) and \(B_\lambda \) written in terms of \(u \) (especially as you know the peak locations in terms of \(u \)).

(F) What is the split of power on either side of the peak of \(B_\nu \)? You don’t need to give absolute values for a given blackbody. Just give the fraction of power that lies on either side of the peak. That is, you need to integrate \(\int_0^{u_{\text{peak}}} u^2 / (e^u - 1) \, du \) and compare it to the integral from 0 \(\rightarrow \) \(\infty \)

(G) What is the split for \(B_\lambda \)?

(H) Which form seems more “natural”?
