
GEOS 24705 / ENST 24705  
Problem set #10 
Due: Tuesday May 5th 
 
Background 
In class we said that every motor could be a generator, and every 
generator could be a motor. I gave definitions of a motor and a 
generator: 
 

• An electrical motor is a device that, if you flow current through it, 
will rotate and do work. 
 

• An electrical generator is a device that, if you do work to rotate it, 
will cause a current to flow. 

 
But these definitions are a little incomplete. First, in both cases, you 
need interaction with a magnetic field. Second, talking about the 
current as the driver of a motor, or the product of a generator, is not 
quite right. We should write the definition in terms of voltage. 
 
Motors: You should ask yourself, well, how could you make current 
flow through a motor? Just as water flows from high to low, and heat 
flows from hot to cold, current only flows from high to low voltage. To 
get current to flow through the motor, you have to impose a voltage 
difference across its wires. The definition of a motor would then be: 
 

• An electrical motor is a device that, if you impose a voltage on it 
(and allow current to flow), will (in the presence of a magnetic 
field) rotate and do work. 

 
In the picture to the right, of a 
simple DC motor like you built in 
class, the battery imposes a 
constant voltage difference 
across the two ends of the loop 
wire. Current then flows from 
one battery terminal to the 
other, through the motor. The 
voltage is the means by which 
you drive the motor, and the 
current that flows just follows 
from that voltage. 
 
The next reasonable question you should ask is, how much current 
would flow? I’ll answer that after talking about generators. 



 
Generators 
 
Just as you decided above that the way you drive a motor is by 
applying a voltage, you should think of what a generator does as 
generating a voltage rather than a current. Think: what happens to a 
generator if you cut its wires so that no current could flow out of it? 
The generator would still make a voltage – a difference in electrical 
potential. It’s just that no current would flow til you connected the 
wires. So a better definition might be 
 

• An electrical generator is a device that, if you do work to rotate it 
(in the presence of a magnetic field), will produce a voltage 
difference (that can cause a current to flow). 

 
It is easy to make an “alternating current” (AC) generator with a setup 
similar to the loop motor above. The simplest possible generator is a 
single loop of wire rotating in the field of a permanent magnet: 
 

 
 
The generator produces a voltage because the magnetic field 
“captured” by the wire loops varies over time. That voltage is given by 
Faraday’s law which is, in our notation: 

    V = N ⋅ dΦ/dt  = N ⋅ d(A⊥⋅B)/dt 
 
where V is the voltage produced in the current loop, N is the number 
of loops, B is the amplitude of the magnetic field, A⊥ is the area of the 
loop that is perpendicular to the magnetic field, and d( )/dt means a 
rate of change. Φ is the “magnetic flux” captured by the loop, or A⊥⋅B. 
AC generating systems produce voltage that rises and falls in a sine 
wave, as in the picture below.  



 
 

If you wanted to make a constant instead of alternating voltage, you’d 
have to play the same tricks that we discussed for DC motors: 
switching the wires’ connections every half-cycle to prevent the 
voltage from going negative, and adding more loops to smooth it out. 
 
You can see both AC and DC generation at this nice animation:  
http://www.walter-fendt.de/ph14e/generator_e.htm 
(Note: to get the animation to play on a Mac, you may have to go into 
System Preferences, click on Java and then on “Security” and add the 
website to the “Exception Site list” and then restart your browser). 
Set the “without commutator” option to make a simple AC generator. 
Click “with commutator” to see a kind of bumpy DC generation. 
 
AC generation may seem strange, but it can power devices just fine 
(and is how most of our electrical system works). If you connect an AC 
generator to a wire, the alternating voltage in turn drives an 
alternating current that moves back and forth at the same frequency. 
Think of the current as sloshing back and forth through whatever 
device is attached to the generator. Purely resistive devices – like 
incandescent lightbulbs, or toasters – don’t care whether they are 
powered with alternating or direct current. An incandescent lightbulb 
will light no matter what direction the current is flowing through it. It 
will therefore light even if the current changes direction and sloshes 
back and forth through it.  
 
For motors, you saw that an alternating current might actually allow a 
simpler motor, since it could solve the problem of the loop that 
“flopped” back and forth when connected to a battery. Instead of 
having to switch the connections, you could just switch the direction of 
the current – exactly as an AC generator already does. Alternating 
current can therefore have advantages in making simple electric 
motors. We won’t talk about AC motors til next lecture, but I’ll cover 
DC motors now… 
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DC motors (See also posted reading on motors) 
 
I asked earlier, when you connect a DC motor to a battery, how much 
current would flow? The answer to that question is a little counter-
intuitive, but it’s deep and interesting and governs why electric motors 
are particularly useful for certain applications.  
 
First, think about what might happen if the motor loop wasn’t allowed 
to turn at all – if you put some kind of brake on it. Connecting the loop 
to a battery would then be just like placing a wire across the battery 
terminals. Because the wire has low resistance, a huge amount of 
current would flow (set by Ohm’s law, ΔVbattery = I Rwire, so I = 
ΔVbattery/Rwire). The battery would lose all its energy very quickly, since 
the power flowing out of the battery must be P = I * ΔVbattery = 
ΔVbattery

2/Rwire. And, since the only place for that power to go is into the 
wire as heat, you’d probably melt your motor.  
 
But you know that motors don’t actually melt if you allow them to 
turn. If you went to lab, you saw that when you connected a wire to a 
battery with a magnet nearby, and allowed it to turn, the wire turned 
but didn’t heat up. In some way, allowing the motor to turn must 
reduce the current that flows through it! That’s odd, and fascinating. 
 
What the DC motor actually does in the process of turning is to create 
a kind of “back” voltage (call it Ve) proportional to how fast it is 
turning, and in the opposite direction. (Why does it do this? Because a 
motor is also a generator, so turning the loop makes a counter-acting 
voltage.) This “back voltage” means that in a motor that is turning, the 
total voltage drop that pushes current around the wire is no longer 
Vbattery  but a smaller number, Vbattery - Ve. (I’m dropping the Δ notation 
here just for clarity.) The resulting current that flows is then only: 
  
 I = (Vbattery - Ve)/Rwire 
 
And the power lost to resistive heating is also correspondingly smaller:  
 
 Pheat= I *(Vbattery-Ve) 
 
But the total power lost from the battery must still be 
 
 Pbattery= I * Vbattery 
 
How can those two quantities (Pbattery and Pheat) be different? Because 
some of the total power goes to work! The work that the motor does is 



the difference between the total power lost by the battery and the part 
of that power that goes to resistive heating: 
 
 Pwork = Pbattery – Pheat. 
 
Or  Pwork = I * Ve 
 
When does the motor do maximum work? As the motor spins faster, 
Ve increases, which would tend to increase the work, but I decreases, 
which would tend to decrease the work. To answer the question, you 
have plug in the expression for I: 
 
 Pwork = Ve*(Vbattery - Ve)/Rwire = [-Ve

2 + (Vbattery *Ve) ] * 1/Rwire 
 
Check the logic of this quadratic equation. Remember that the back-
voltage Ve is proportional to how fast the motor is turning. If the motor 
stops (Ve =0), it can (obviously!) do no work. But if the motor is going 
so fast that Ve = Vbattery, it again can do no work. Somewhere between 
0 speed and this top speed, the motor must do its maximum work. 
 
Now, how do you set how fast the motor goes, and how much work it 
does? The answer is, you don’t get to tell the motor what to do. You 
have only two things you can control:  

• what voltage you apply to the motor 
• what “load” you connect to the motor 

 
Think of the load as a weight you’re asking the motor to lift. It’s 
analogous to the problem of the Newcomen engine and water pump. If 
you attach too heavy a load to the motor, it can’t turn and doesn’t do 
work. If you attach no load to the motor, it has no way to do work and 
spins uselessly at its maximum rate. You get the maximum work from 
the motor if you match the load and voltage just right (just as the 
Newcomen engine designers had to match each engine to its pump.) 
 
What happens if you overload the motor? We said in class that if you 
overloaded the Newcomen engine, it would just stop. The cylinder 
would heat and cool but the piston would not move. That’s wasteful, 
but not dangerous. Overloading a DC motor is however dangerous. 
The overloaded motor also stops, but now you have a bigger problem, 
because as the motor slows, Ve goes down and the current rises. That 
is, as the motor slows, the battery delivers MORE power, but LESS of 
that power goes to doing work. Instead, the extra power is dumped as 
heat into the wires. If you overload a DC motor, it can melt.  
 



Problem 1: Characteristics of motors and generators 
 

A. In the generator animation of the link above, explain what the 
“slip rings” do in the case where “without commutator” is set. 
Why are these necessary? 
 

B. In generator animation, explain what the commutator is and 
what it is doing when “with commutator” is set. Are the 
connections here the same or different than you would find on a 
DC motor?  

 
C. The pictures below show the pieces of a disassembled simple DC 

motor:  the rotating part or “rotor” (left) and the stationary part 
(right) inside which the “rotor” turns. Annotate the images: 
describe and mark the different parts of the motor. 

 

 
 

D. (Optional) In the discussion of the DC motor above (the 
“Background” section), prove that the maximum power occurs 
when Ve = Vbattery/2. Discuss. 

 
E. Make a power-speed curve for a DC motor: draw a graph 

showing the variation of the power output Pwork vs. the rotations 
per time at which the motor turns (call it ω). The “back voltage” 
Ve is proportional to that speed, so let Ve = ω /k, where k is 
some constant determined by the motor design. You can use the 
result above that the maximum power comes at Ve = Vbattery/2. 

 
F. (Optional) Make a torque-speed curve for a DC motor: draw a 

graph showing torque vs. ω. We haven’t discussed torque yet; 
we’ll talk about it in the next class. Torque (τ) is a kind of 
“turning force” that is the force exerted times a lever arm 
distance; it has the units of energy. The power output is then 
equal to torque x rotation rate: Pwork = τ ∗ ω. 



Problem 2: The trouble with DC electrical systems 
 
Edison’s vision of the electrical system was easy to understand: his 
generating station would generate a high constant voltage, and 
electrical current would flow from that station down wires to houses 
and businesses. The system would be analogous to a hydropower 
system: think of Edison’s generators as pumping electric charge up to 
some “height” from which it flows down.  
 
Edison established the first commercial electricity company in the U.S. 
based on his DC technology. Edison’s first customers used his 
electricity for lighting – remember, Edison also invented the first 
commercial light bulb – but factories were another potential customer 
base for him, since DC motors had also been invented by this time. 
 
Given all those advantages, why did Edison not succeed in having his 
technology become the standard? The only drawback to his system 
was that Edison had no easy way of transforming voltages.  
 
In the modern electrical system, your household electricity is at 110 V 
but the wires from the power plant are carrying electricity at much, 
much higher voltage: over 100,000 V. Between the power plant and 
your house are various stations or devices that can lower the voltage 
without altering the total power being transmitted. (Those 
transformations don’t throw power away. Since power P = I * V, they 
just trade off current and voltage, reducing voltage V and 
correspondingly raising current I). Note that V here is the total voltage 
drop to ground. 
 
Edison couldn’t transform voltage. If 110 V is the voltage that was safe 
to use in households, then Edison had to transmit electricity at 110 V. 
And that limits how he could operate his business. 
 

A. Write the expression for resistive losses (Ploss) in any power 
cable as a function of current and resistance Rwire in the lines. 
 

B. Now write down an expression for the “line loss” ratio Ploss/P, 
where P is the total power transmitted = I*V, where V is the 
total voltage difference from generating station to ground. For 
the same wires, how much more significant are line losses for 
Edison transmitting at ~100 V than for the power company 
transmitting at ~ 100,000 V? 

 
C. Read the 1882 article on Edison’s first generating company in 



New York that was posted on the website. Print out a map of 
modern Manhattan (the street plan is the same) and color in 
Edison’s service area. State its dimensions. 

 
D. Now calculate his line losses. You’ll need Edison’s total power 

transmitted per line and the resistance of each line. Edison’s 
electrical power output doesn’t seem to be recorded, but I’ve 
seen statements that his first engines totalled 175 hp, and we 
can assume that he converted something like 20% of that power 
into electricity. Then you need to estimate how many lines he 
was sending power over. The Pearl Street station served 400 
lamps when it started up, and from the New York Times article 
you can see how many of them were in a single building. I’d just 
assume that each building gets its own transmission line. You 
can also assume that Edison is using modern metal cables for 
power transmission with resistance of ~ 0.3 ohm/kilometer.  

 
Then answer: How far could Edison transmit before he has 
lost half his power to resistive heating in the wires? How 
much power would he lose in transmitting to the edge of 
his service area?  

 
 
Problem 3: Generating AC voltages 
 
The modern electricity system follows Tesla’s standard of “alternating 
current” (AC). In this problem you’ll plot out the behavior of a simple 
AC loop generator like the one below. There are two options on this 
problem, one for those comfortable with calculus/dot products/sines 
and cosines, and a no-calculus option. 

 



Make sure to read the AC generator description in the “background” 
section. Then answer one of the following sets of questions. 
 
Option 1 (no calculus): 
 

A. Draw the position of the loop at various time points over 
the course of a single oscillation of period T. (For 
example, draw it at t=0, t =¼ T, t=1/2 T, t=3/4 T, t=T).  

 
B. Make a graph of A⊥⋅B vs time. That is, identify A⊥⋅B at each 

of your time points, plot them on the graph, and link them. 
 
C. On the same figure, plot the resulting voltage vs. time. 

	
  
Then assume that you are now rotating the loop twice as fast, so that 
you can complete two full revolutions in your original period T. If it 
helps, draw the system again (and add some more intermediate time 
points now that you’re going faster).  

 
D. Add plots of the new A⊥⋅B_faster rotation and the resulting 

voltage to your previous graphs. Make sure that you draw 
amplitudes correctly to scale, and that you’re thinking 
carefully here.  

 
E. Come up with an expression for the average absolute 

value of the voltage |V|average in terms of generator 
characteristics. (The “absolute value” means ignore the fact 
that it goes negative.) Write your expression in terms of B, A, 
and the frequency of rotation (ω = 1/T). It may help to think 
about only the first ¼ cycle. 

 
 
Option 2 (with calculus): 
 

A. Write a formula for A⊥⋅B as a function of time 
B. Write the formula for voltage as a function of time 
C. Write the formula for for A⊥⋅B at 2ω  (2 x rotation rate). 
D. Write the formula for voltage at 2ω .  
E. Integrate the absolute value of the voltage to get 

|V|average (and write with your answer in terms of not the 
period of the oscillation but the frequency). 

 
 
 



Problem 4: Specifying AC voltages 
 
The voltage in the U.S. electrical system is alternating current, 
switching back and forth 60 times a second, with a voltage specified as 
about 110 Volts. (It can fall in range of about 110-120 V).  
 
 
 
 
 
 
 
 
 
But what does that specified voltage really mean? Voltage in an AC 
system varies from 0 to some maximum amplitude Vmax back down 
through 0 and then to a negative –Vmax. The specified voltage is just 
some single value that represents that whole pattern.   
 
How to pick that representative value? We obviously can’t use the 
average voltage, since that’s zero. We could use the maximum voltage 
Vmax, or the average absolute voltage |V|average that you just calculated 
in problem 2. But that’s not what is used. Instead, voltage is given as 
the “root-mean-squared” voltage: the square root of the average of 
the square of the voltage: 
 
        Vrms =   √  V2(t) 
 
(where the horizontal bar represents a time average). That seems 
complicated. In this problem you’ll understand why that was chosen. 
 

A. Determine Vmax, the peak voltage you get on your 
household electrical system, from your known Vrms. For 
anyone with calculus, integrate to find Vrms. For others, use 
the formula Vrms = Vmax / √2  

 
The diagram below describes a simple system, with current flowing 
from an applied voltage V to ground through a resistive load R. (That 
resistive load could be a lightbulb, for example).  
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The power dissipated in the resistive load is the product of current and 
voltage:   

P = I ⋅ ΔV  
 
where current I has units of charge/time and V has units of 
energy/charge, so that I⋅V has units of energy/time, or power. The 
current that flows in a resistive system is proportional to a voltage 
drop (Ohm’s law: ΔV= I ⋅ R, where ΔV is the voltage drop). 

 
B.  Write the expression for the power dissipated in the 

resistive load in terms of both I and R and also in 
terms of V and R. (You wrote down the expression in 
terms of I and R already in Problem 2.)  

 
C. Your answer in B should give you insight: Why do we use 

Vrms? What’s so special about squaring the voltage? 
 
 
 
Problem 5: Motor identification. 
 

A. Find something around your house that has an electric motor. If 
the motor plugs into the wall, it is AC. If it runs off a battery, it 
is DC. Photograph the motor and describe it. Extra points for 
doing both AC and DC motors. 
 

B. (Optional): if the motor is broken (or is used in some broken 
object you don’t care about anymore), bring it in to class and we 
will dissect it in lab. 

 
 

 
 
 
 



 
Optional thermodynamics problems 
For physics students with some calculus and thermo background. 
These can be done & turned in anytime, and Andrew can provide hints. 
 
Problem 6 (Optional): Describing the Carnot cycle.  
 
Background:  
The gas in an engine cylinder is governed by both its equation of state, 
the ideal gas law, and by conservation of energy. The ideal gas law is 

 PV = nkT 
(where n is the number of molecules and k is the Boltzmann constant).  
 
Conservation of energy means that the heat input into (or removed 
from) the system must be accounted for by changes in the internal 
energy of the system and/or by work done on or by the system, i.e. 

dQ = dU + dW 
 
(The differential notation, e.g. “dW”, is standard in thermodynamics; if 
it bothers you, you can rewrite this as a differential equation in time).  
Work dW is given by p*dV, as we’ve used in class.  
 
A change in internal energy is manifested as a temperature change: 

dU= cv*dT  
where cv is the specific heat at constant volume (J/K). (This is in fact 
the definition of temperature).  
 
The Carnot cycle consists of two isothermal and two adiabatic legs. It 
is trivial to derive that during an isothermal stage, pressure and 
volume in the cylinder are related by P ∝ 1/V. It is less trivial to 
determine the governing equation for an adiabatic stage. 
 
Questions 

A. Derive the fundamental relationship for an adiabatic expansion 
or compression. This is known as “Poisson’s equation”: 

PVγ = constant  

where the constant γ ≡ cp/cv, with cv = the specific heat at 
constant volume and cp the specific heat at constant pressure, in 
units of J/(kg*K). The two are related via cp = cv + R, where R 
= k/m and m is the molecular mass. 
 

B. Explain in words why cp must be greater than cv. 



 
Problem 7 (Optional):  Integrating around the P-V diagram 
 
Background: 
 
The work done by a single engine stroke is the area of the P-V 
diagram. The discussion in problem 6 should help you think about how 
to describe the heat flows into and out of an ideal Carnot engine. 
 
The math for this problem is relatively simple – this is not an exercise 
in integration - but the problem can still seem confusing. The 
challenge is in thinking your way through to make it uncomplicated.  
 
Questions: 
 

A. Draw the Carnot cycle, and mark on which legs heat flows 
into or out of the system.  
 

B. Integrate P*dV on the legs that have net heat flow in or 
out of the system. 

 
C. Either integrate P*dV on the legs that do not have net 

heat flow in, or construct an argument why you shouldn't 
need to do this. 

 
D. Derive the efficiency of the Carnot cycle from your answers 

above. 
 
 


