GEOS 24705/ ENST 25500 U. Chicago Apr 2015

Lecture 2
Earth's energy flows II

Agenda for this lecture

- Earth's energy flows
- Estimation principles lessons from quiz
- Definition of efficiency
- How big is the Earth?
- How much land does a person have?
- Agriculture and photosynthetic efficiency
- How much energy does human society need?

Global Heat Flows

Los Angeles (34 N) W/m^2 Month of the year

Figure 6: Average monthly solar irradiance in Los Angeles, latitude N33.93. Source: http://rredc.nrel.gov/solar/old_data/nsrdb/redbook/sum2/state.html, 30-year average of monthly solar radiation, 1961-1990.

Portland (44 N) W/m^2 Month of the year

Figure 7: Average monthly solar irradiance in Portland, Maine, latitude N43.65. Source: http://rredc.nrel.gov/solar/old_data/nsrdb/redbook/sum2/state.html, 30-year average of monthly solar radiation, 1961-1990.

Anchorage (61 N) W/m^2 Month of the year

Figure 8: Average monthly solar irradiance in Anchorage, Alaska, latitude N61.17. Source: http://rredc.nrel.gov/solar/old_data/nsrdb/redbook/sum2/state.html, 30-year average of monthly solar radiation, 1961-1990. Note the change of scale relative to Los Angeles and Portland.

Photosynthetic efficiencies and energy flows

photosynthetic	$\epsilon_{\sf photo}$	W/m ²
Rainforest Good farmland, fert. corn Good farmland, ave. Land mean World mean ϵ_{photo}	1% 1% 0.5% ~0.2% ~0.1%	2 2 1 0.4 0.2
food	[€] food	W/m ²
U.S. fertilized corn World ave., all cereal Pre-modern	~0.5% ~0.15% ~0.015%	1 (1:1 stover:kernels)0.30.03 (10 times worse)

Sources: various internet, unverified. Pre-modern efficiency from Grigg, `Population Growth and Agrarian Change - an Historical Perspective', estimate of ca. 1200 AD British yield of ~700 kg/ha = 125 W/acre. Fertilized efficiency calculated from figures from the lowa Corn Growers association, 183 bushels/acre -> 10,000 kg/ha or 1700 W/acre. Stover fraction from Iowa State Univ. Extension Fact Sheet BL-112. World average efficiency from USDA estimates from 2010. (Note that wheat is less than corn)

Why do you care about photosynthetic efficiency?

Because there are so many people on Earth that land is limiting

At present, ave. land/person on Earth ~ 20,000 m²

What can you visualize that corresponds to that area?

Average land/person on Earth is 20,000 m²

Equivalent to University of Chicago Quadrangle

Average land/person on Earth is 20,000 m²

lce

Desert

Forest

Arable

Equivalent to University of Chicago Quadrangle

Arable

Needed

only)

Equivalent to ½ of Harper Library Quadrangle

Arable

cereal

yield)

Safety factor of $\sim 1/3$ if all vegan + no wastage

Arable

Needed

cereal

Safety factor < 1/3 given wastage

Arable

Actual crops for people take up 2x as much land - people eat more than 100 W and vegetable calorie yield is less than grain

Arable

Feed crops for livestock fill the rest: ~ 12% of Earth surface cultivated

Appropriation of land for humans

lce

Desert

Forest

Arable

humans

animals

Pasture

38% of all land is used for agriculture (excluding forestry) Source: World Bank