GEOS 24705/ ENST 25500 U. Chicago
 Apr 2015

Lecture 2
Earth's energy flows II

Agenda for this lecture

- Earth's energy flows
- Estimation principles - lessons from quiz
- Definition of efficiency
- How big is the Earth?
- How much land does a person have?
- Agriculture and photosynthetic efficiency
- How much energy does human society need?

Global Heat Flows

Los Angeles (34 N)

Figure 6: Average monthly solar irradiance in Los Angeles, latitude N33.93. Source: http://rredc.nrel.gov/solar/old_data/nsrdb/redbook/sum2/state.html, 30-year average of monthly solar radiation, 1961-1990.

Portland (44 N)

Figure 7: Average monthly solar irradiance in Portland, Maine, latitude N43.65. Source: http://rredc.nrel.gov/solar/old_data/nsrdb/redbook/sum2/state.html, 30-year average of monthly solar radiation, 1961-1990.

Anchorage (61 N)

Figure 8: Average monthly solar irradiance in Anchorage, Alaska, latitude N61.17. Source: http://rredc.nrel.gov/solar/old_data/nsrdb/redbook/sum2/state.html, 30-year average of monthly solar radiation, 1961-1990. Note the change of scale relative to Los Angeles and Portland.

Photosynthetic efficiencies and energy flows

photosynthetic

Rainforest
Good farmland, fert. corn
Good farmland, ave.
Land mean
World mean $\varepsilon_{\text {photo }}$
$\varepsilon_{\text {photo }}$
1\%
1\%
0.5\%
~0.2\%
$\sim 0.1 \%$
$\varepsilon_{\text {food }}$

W/m²
2
2
1
0.4
0.2
$\mathrm{W} / \mathrm{m}^{2}$

U.S. fertilized corn
 World ave., all cereal
 Pre-modern

~0.5\%
~0.15\%
~0.015\%
1 (1:1 stover:kernels)
0.3
0.03 (10 times worse)

Why do you care about photosynthetic efficiency?

Because there are so many people on Earth that land is limiting

At present, ave. land/person on Earth $\sim \mathbf{2 0 , 0 0 0} \mathbf{m}^{2}$

What can you visualize that corresponds to that area?

Average land/person on Earth is 20,000 m²

Equivalent to University of Chicago Quadrangle

Average land/person on Earth is 20,000 m²

\square	Ice
\square	Desert
\square	Rainforest
\square	Forest
\square	Arable

Equivalent to University of Chicago Quadrangle

Average arable land/person on Earth is ~2500 m²

\square Arable
\square Needed for food (U.S. corn only)

Equivalent to $1 / 2$ of Harper Library Quadrangle

Average arable land/person on Earth is ~2500 m²

\square Arable

Needed for food (world av. cereal yield)

Safety factor of $\sim 1 / 3$ if all vegan + no wastage

Average arable land/person on Earth is ~2500 m²

\square Arable
\square Needed for food (world av. cereal yield, $1 / 3$ wastage)

Safety factor < $1 / 3$ given wastage

Average arable land/person on Earth is ~ 2500 m 2

\square Arable
\square Crops for humans

Actual crops for people take up $2 x$ as much land - people eat more than 100 W and vegetable calorie yield is less than grain

Average arable land/person on Earth is ~ 2500 m 2

\square Arable
\square Crops for humans

Crops for animals

Feed crops for livestock fill the rest: $\sim 12 \%$ of Earth surface cultivated

Appropriation of land for humans

\square	Ice
\square	Desert
\square	Rainforest
\square	Forest
\square	Arable
\square	Crops for humans
\square	Crops for animals
\square	Pasture

38% of all land is used for agriculture (excluding forestry) Source: World Bank

