GEOS 24705/ ENST 25500 U. Chicago Apr 2014

Lecture 3 Earth's energy flows III

Global Heat Flows

Kiehl and Trenberth 1997

Photosynthetic efficiencies and energy flows

photosynthetic	[£] photo	W/m ²
Rainforest	1%	2
Good farmland, fert. corn	1%	2
Good farmland, ave.	0.5%	1
Land mean	~0.2%	0.4
World mean ϵ_{photo}	~0.1%	0.2
food	^ɛ food	W/m ²
U.S. fertilized corn	~0.5%	1 (1:1 stover:kernels)
World ave., all cereal	~0.15%	0.3
Pre-modern	~0.015%	0.03 (10 times worse)

Sources: various internet, unverified. Pre-modern efficiency from Grigg, `Population Growth and Agrarian Change – an Historical Perspective', estimate of ca. 1200 AD British yield of ~700 kg/ha = 125 W/acre. Fertilized efficiency calculated from figures from the Iowa Corn Growers association, 183 bushels/acre –> 10,000 kg/ha or 1700 W/acre. Stover fraction from Iowa State Univ. Extension Fact Sheet BL-112. World average efficiency from USDA estimates from 2010. (Note that wheat is less than corn)

Average land/person on Earth is 20,000 m²

Equivalent to University of Chicago Quadrangle

Average land/person on Earth is 20,000 m²

Equivalent to University of Chicago Quadrangle

Appropriation of land for humans

38% of all land is used for agriculture (excluding forestry) Source: World Bank

Humans dominate the Earth's surface

Fractional use of:

Earth's land surface area used for food ~ 38% *(farm + pasture)*

Land NPP appropriated ~ 30%

Farmland, Longsheng, China (Flickr)

Farmland, Oklahoma (OK Farm Report)

Farmland, Washington (Google)

Arable land /person is not equally distributed

Data: actually cultivated land/ person. *Source: World Bank, for 2009–2013*

Arable land /person is not equally distributed

Arable/cap (m^2) % of land

DRC	43,000	>50
used	2500	03
Canada	15,000	05 (?)
Russia	8500	07 unused land in
U.S.	6000	19 arable land/
World av.	2600	13 person in rich
Saudi Ar.	1400	02 "neo-colonial"
India	1400	49 pressure – foreign
Rwanda	1200	46 ownership or Jease of land
China	1100	15 🖌
Bang.	500	55

Sources: various internet, unverified. Note that some sources consider "arable" to mean "potentially cultivated" and others to mean "actually cultivated"

Average land/person in U.S. is 30,000 m²

U.S. land/person is larger than world average, and higher fraction of that land is arable

Bangladesh land/person is 1/30th that of U.S.

Arable land/cap. in Bangladesh too low to feed people

.. fraction of arable land in Bangladesh is high, but area/person is so small that country must import food

World population growth rate now 1.1%/year

doubling time is ~ 60 years, x3 growth 1950-present

How is it that we seem to be at present magically at the maximum number of people that can be reasonably supported?

seems statistically unlikely...

Green Revolution: steep rise in yields since 1950

Total world production of coarse grain, 1961-2004

Green Revolution: 3 x rise in global ave. yield compensated for 3 x rise in population

Without that yield increase people would likely be hungry now Note that land usage is nearly flat – gains are from yield

WORLD CEREALS PRODUCTION AND YIELDS

SOURCE: UN Food and Agriculture Organization

Yield rises vary by country

Green Revolution: 3x yield increase Prevented hunger, but at cost in \$ and energy

Norman Borlaug, 1914-2009 born Iowa, college U. Minn. Nobel Peace Prize 1970

Image: Associated Press, 1970

Fertilizer plant ammonia and urea production

Image: Hyosung Power & Industrial Systems

Green Revolution: 3x yield increase

Prevented hunger, but at cost in \$ and energy

Norman Borlaug, 1914-2009 born Iowa, college U. Minn. Nobel Peace Prize 1970

Image: Associated Press, 1970

Indicators of global crop production intensification, 1961-2007

Yields go with fertilizer use and irrigation world fertilizer use quadruples during Green Revolution

Image: U.N. FAO

Modern vs. ancient wheat

Modern wheat is shorter and stiffer, allowing it to bear the heavier seed heads that result from fertilizing.