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Abstract. A growing body of evidence indicates that anthropogenic greenhouse gases are changing Earth’s
climate, and that those changes may involve not only changes in climatic means but also in variability. Climate
models may be informative about these future changes, but their use is complicated by the fact that they do not
capture variability in current climate well. Many methods have therefore been developed to combine models
and data in simulations of future climate, but current methods generally account only for changes in marginal
variation and do not capture projected changes in correlation (spatial, temporal, spatiotemporal). We develop here
a procedure to simulate future daily mean temperature that modifies climate observations based on changes in the
mean and spectral density suggested by climate model output, and illustrate our methodology with projections
from the CCSM3 (Community Climate System 3) climate model. We are able to simulate a future climate with
changing temporal covariance while largely retaining non-Gaussian features of the observations. Our results
suggest that in CCSM3, at most locations and most timescales, variability in daily mean temperature decreases
under anthropogenic warming. The methodology presented here applies only to fully equilibrated future climate
states, but may be extended to simulating transient states as well.

1 Introduction

With mounting evidence indicating that Earth’s climate is
changing (IPCC, 2007, and references therein), it is becom-
ing increasingly important to understand the potential im-
pacts of climate change on society. Impacts assessment re-
quires projections of future climate under increased concen-
trations of greenhouse gases (GHGs). For example, under-
standing climate effects on food supply would require simu-
lations of future temperature and precipitation for use in agri-
cultural yield models. Crop yields, however, are highly non-
linear with temperature and precipitation and therefore are
sensitive not only to climatological means but also to short-
term extremes (e.g., Schlenker and Roberts, 2009; Wheeler
et al., 2000). In this context, climate must be understood as
an underlying, multivariate, spatiotemporal probability dis-
tribution, for which weather is a random realization. Human
societies can be impacted by changes of not only the mean,
but of the entire probability distribution.

Changes in variability in both temperature and precipi-
tation are physically plausible. For precipitation, standard
physics would suggest increases in both spatial and tem-
poral variability, with dry areas drier, wet areas wetter, and
rainfall occurring in more intense events (Held and Soden,
2006). Changes in temperature variability are less robustly
predicted. Some empirical studies suggest that temperature
variability may already be changing in particular contexts,
though some studies argue for increases and others for de-
creases (Karl et al., 1995; Timmermann et al., 1999; Schär
et al., 2004; Hansen et al., 2012; Huntingford et al., 2013).
For instance, in large portions of North America, a weakened
polar jet stream (in part driven by reduced latitudinal tem-
perature gradients) may (Francis and Vavrus, 2012) or may
not (Barnes, 2013; Screen and Simmonds, 2013) lead to pro-
longed weather patterns that shift variation to lower frequen-
cies. Studies of variability changes in climate models remain
limited, and it is not yet clear which if any predictions are
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Figure 1. Comparison of modeled and observed global mean temperatures. (a) CO2 concentrations used in “baseline” and “scenario” runs
with the CCSM3 model. (See Appendix A for description of experiments and observations.) Figures here truncate output after less than
600 years but the scenario run extends for 6000 years. (b) Corresponding annual model GMT (�C) for the two runs and observed GMT from
the Global Historical Climatological Network. Model output reproduces trends in global temperature well but with a systematic offset from
observations. To better show the similarity in trend we also plot the observational record minus a 2 �C offset.

robust across models (see, e.g., Barnes and Polvani, 2013) or
physical parameterizations (see, e.g., Hawkins et al., 2013).
The area remains one of active research.
One complication to analyses of potential future changes

in climate variability is that while the deterministic climate
models used for long-term climate forecasts appear to cap-
ture trends, they do not accurately reproduce observed cur-
rent climate. These models, known as atmosphere–ocean
general circulation models (AOGCMs), are physically based
numerical simulations of transport of energy and moisture in
the atmosphere and ocean, typically with separate submod-
els for the atmosphere, ocean, sea ice, and vegetation. Many
AOGCMs successfully reproduce observed large-scale cir-
culation, atmospheric structure, latitudinal temperature gra-
dients, storm tracks, and quasi-periodic interdecadal phe-
nomena such as the El Niño–Southern Oscillation. When
driven with historical records of CO2 and aerosol emissions
due to human and volcanic activity, they also reproduce
well the observed temperature trend of the last 2 centuries.
Figure 1 demonstrates this ability to capture trends in the
widely used Community Climate System 3 (CCSM3) model
(Collins et al., 2006), which we use in examples throughout
this manuscript. (See Appendix A for description of model
and experimental runs, as well as observational data used in
comparisons.) CCSM3 and other AOGCMs do not, however,
perfectly reproduce either the mean or distribution of current
climate. Model present-day global mean temperature (GMT)
can be offset by several degrees from observations (again,
see Fig. 1) and probability distributions of temperature and
precipitation at individual locations do not match those of
weather observations (Fig. 3, which shows marginal distri-
butions in CCSM3 temperature output and observations for
three representative locations whose time series are given in
Fig. 2; see also Lambert and Boer, 2001, for discussion).
The comparisons above suggest that climate models may

be informative about changes in climate, even while fail-

ing to capture certain current characteristics. This is well-
demonstrated for means (again, see Fig. 1), and the fact
that AOGCMs capture trends in mean climate well suggests
that their physics may be sufficiently realistic to provide a
guide to trends in variability. We therefore seek a method
of producing simulations of future climate that combines
model output with data to incorporate both observational
ground truth and model forecasts of trends. An appropriate
method should simply reproduce current climate when mod-
els suggest no changes. When models do predict changes,
the desired “data-driven simulation” should reproduce model
changes in second-order moments (e.g., covariance) of cli-
mate but retain most non-Gaussian characteristics of data,
rather than of model output, when changes in variability are
relatively small. Our motivation in this work is to develop an
empirically driven approach to simulating future climate that
modifies existing observations in terms of means and second-
order moments (including covariances) based on changes in
model simulations.
Many methods for combining observations with model

output in climate projections have been developed for use
in impacts studies, especially those involving hydrology and
agriculture (see, e.g., Wood et al., 2004; Diaz-Nieto and
Wilby, 2005; Eisner et al., 2012; Hawkins et al., 2013). In
these cases, impacts models typically require inputs of tem-
perature and precipitation at finer spatial resolution than is
provided by AOGCMs, whose typical state-of-the-art resolu-
tion is on the order of 1� (111 km or 69 miles). For this rea-
son, approaches for simulating future climate by combining
model output and data are often intertwined with methods for
downscaling to higher spatial resolutions, and are described
in the literature on statistical downscaling1. We provide a

1The other approach to downscaling, dynamic downscaling, in-
volves the running of a regional climate model (RCM) at a higher
spatial resolution over a much smaller spatial domain, where bound-
ary conditions are supplied by an AOGCM.

Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, 2015 www.adv-stat-clim-meteorol-oceanogr.net/1/1/2015/
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Figure 2. (Left) Three locations (individual model pixels) used as examples throughout the manuscript, chosen to represent different combi-
nations of seasonality, variability, and expected future changes: Illinois, mid-continental with a strong seasonal component (green, 38.97� N,
90�W); Gulf of Guinea, near-equatorial with little seasonal cycle (red, 1.86� S, 0� E); and Southern Ocean, which has strong projected
changes in both mean temperature and in variability (blue, 61.2� S, 33.8� E). Annual standard deviation of daily temperatures � and pro-
jected temperature change 1 (scenario–baseline) are Illinois: � = 10.81, 1 = 3.87; Gulf of Guinea: � = 1.97, 1 = 2.43; Southern Ocean:
� = 4.67, 1 = 8.10. (Right) Time series of the 3 years of daily temperature (�C) from the NCEP-DOE (National Centers for Environmen-
tal Predictions – Department of Energy) Climate Forecast System Reanalysis at those locations. (See Appendix A for a description of the
observational data set.)
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Figure 3. Marginal densities (by season) of daily mean tempera-
ture (�C) for the pixels in Illinois (top row), the Gulf of Guinea
(middle row), and the Southern Ocean (bottom row) for reanalysis
data (solid blue line), baseline model output (dashed blue line), and
scenario model output (dashed red line). The model output does not
replicate the marginal distributions of the reanalysis observations.
Furthermore, the marginal distributions in the model output change
from the baseline to scenario periods.

brief summary of existing approaches, along with what we
consider to be the primary shortcomings of each approach.
All approaches that combine observations and model out-

put in simulating future climates correct in some way for
model–observation discrepancies. One approach is a simple
“bias correction” in which any offsets between current ob-
served and modeled present-day climate are assumed to be
systematic model errors. Model simulations of future climate
are then “corrected” by adding the present-day bias (deter-
mined by comparing observations to a baseline run). Bias
corrections can be made on annual mean temperatures or,
more commonly, on monthly mean temperatures or annual
harmonics, since models may not perfectly capture observed

seasonal variation. One drawback of this approach is that
all higher-order moments of the marginal and joint proba-
bility distributions (variability, skewness, stationarity, etc.)
are provided by the future model output. As we have seen
in Fig. 3, climate models may not adequately capture higher-
order characteristics in the data.
A variant on this approach, typically termed “bias cor-

rection/spatial disaggregation” (BCSD), attempts to provide
a better approximation of observed climate distributions by
separately bias-correcting the different quantiles of model
output (e.g., Wood et al., 2002, 2004). This approach is also
termed “quantile mapping” and involves computing a trans-
fer function between model simulations of present-day cli-
mate and actual observations based on the ranked model out-
put. The transfer function is then applied to AOGCM projec-
tions of future climate. This approach accommodates errors
in higher-order moments of the model – in the most extreme
case, the procedure results in a full transformation of the
empirical cumulative distribution function (CDF) – but only
corrects the marginal distributions of the model, and takes
no account of differences in the covariance structure of the
model output and the observed climate. Since human soci-
eties are sensitive to climate variation at different timescales
(e.g., to changes in duration of droughts or rainfall that pro-
duces flooding), BCSD is not ideal for estimating the societal
impacts of climate change.
While the previous two approaches are model-based, i.e.,

they quantify present-day model–observation discrepancy
and apply it to future model output, the “change-factor” or
“delta” method (see, e.g., Diaz-Nieto and Wilby, 2005; Eis-
ner et al., 2012, and references therein) is observation-based:
future climate projections are generated by modifying obser-
vations based on present–future differences in AOGCM sim-
ulations. Specifically, the delta method involves quantifying
the difference (e.g., in annual or monthly means) between
model output from a baseline run driven with present-day
or preindustrial GHG concentrations and that from a “sce-

www.adv-stat-clim-meteorol-oceanogr.net/1/1/2015/ Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, 2015
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nario” run under future GHG concentrations2, then adding
this difference onto some observation set. As a result, higher-
order moments (in terms of the marginal and joint PDFs) will
be derived from observations. Hawkins et al. (2013) showed
that delta-method approaches may provide a better fore-
cast of future climate than bias-correction approaches. Delta-
method approaches do not however generally involve repre-
senting changes in variability in future climate regimes. Re-
cent advances have been developed to accommodate chang-
ing marginal variances (see, e.g., Ho et al., 2012; Hawkins
et al., 2013); however, such approaches ignore joint depen-
dence characteristics (e.g., covariances).
In this work, we adopt the observation-based approach of

the delta method (modifying observations based on changes
suggested by model output) but extend the method to account
for possible changes in variability and temporal correlations.
While recent work has extended the delta-method approach
to accommodate some aspects of changing variability (Ho
et al., 2012; Hawkins et al., 2013), these methods do not ac-
count for changes in third-order or higher moments of the
marginal distribution, or in the covariance of the joint dis-
tribution. Changing covariance structures in particular are a
critical component of simulating future climate for impacts
assessment.
A delta- or change-factor approach that involves modify-

ing covariance structures poses substantial challenges. The
approach requires modifying a vector of random variables
with a given joint dependence structure to produce a new
vector of random variables with a different dependence struc-
ture. To achieve this goal, it helps to think about modi-
fying quantities that are independent (or close to indepen-
dent) under both present and future climates. In this regard,
spectral-based approaches provide a natural framework. We
propose an approach that modifies the discrete Fourier trans-
form (DFT) of observations based on an estimated ratio of
spectral densities of model output. Under a large class of sta-
tionary processes, the DFT is a transformation to approxi-
mate independence (Brillinger, 1981). This approach shares
an important quality with the delta method that when the
model suggests no changes (in either first- or second-order
moment characteristics), the simulations equal the observa-
tions.
One caveat is that the procedure is designed to transform

model simulations of an assumed equilibrium climate to an-
other equilibrium climate while, during foreseeable human
timescales, climate will continue to remain in a transient
state. This approach does not directly address the impor-
tant problem of simulating transient climate behavior in the
covariance structure. However, it is likely that the method
would remain an improvement over the delta method even in
predicting future transient climate states, with certain exten-

2Because current climate is transient and changes as a result of
increased GHG emissions are not fully realized yet, preindustrial
GHG forcings may be a reasonable assumption in these problems.

sions related to nonstationary time series. We do not explore
the issue in this paper, but point out a potential approach in
Sect. 4.
In the remainder of the paper, Sect. 2 outlines the method-

ology, explaining how to estimate the ratio of spectral den-
sities and use it to modify observations. We also explain an
approach to account for a limited type of temporal nonsta-
tionarity in the data as brought about by differences in in-
traseasonal variability across seasons. Section 3 applies the
method to generating simulations of daily mean temperature
for a higher-CO2 world, and Sect. 4 discusses results and fu-
ture research needs. We provide supplemental materials that
give further details, a numerical study, and information on
how to access the code and data used to reproduce the analy-
sis.

2 Methods

Our method produces data-driven simulations of future cli-
mate that combine observed climate with model predictions
of changes to climate means, variability and temporal cor-
relation. To do this we need to take account of changes in
variability of model output over all temporal scales.
In the sections below, we first demonstrate the principle of

our approach for an idealized situation: we assume an infinite
length observational time series with known changes in the
spectral process. We then develop the method for the more
practical setting in which

– the time series of both observations and model output
are finite

– we do not know the explicit form of the spectral process

– we do not know the explicit form of changes to the spec-
tral process

– climate exhibits a strong seasonal cycle in both first and
second-order moments.

2.1 Motivation

We demonstrate here that given an infinite length Gaussian
time series representing present-day climate with a known
spectral process and known future changes in the spec-
tral process, we can modify the continuous Fourier trans-
form separately at each frequency to produce output that
has the correct joint distribution for the future process. Let
{Z0,t ; t = 0,±1,±2, . . .} represent a time series of an ob-
servable process of interest. Furthermore, suppose {Z0,t } is
a stationary Gaussian process with E(Z0,t ) = 0 and covari-
ance function �0(h) = Cov(Z0,t ,Z0,t�h

) = E(Z0,tZ0,t�h

).
Let {Z1,t ; t = 0,±1,±2, . . .} represent the future process that
we wish to simulate. Suppose that {Z1,t } is also a station-
ary Gaussian process with E(Z1,t ) = 0, but with covariance
function �1(h) = Cov(Z1,t ,Z1,t�h

) = E(Z1,tZ1,t�h

), where
�1(h) is not necessarily equivalent to �0(h).

Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, 2015 www.adv-stat-clim-meteorol-oceanogr.net/1/1/2015/
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We are interested in modifying {Z0,t } in order to gener-
ate a random process that is equal in (joint) distribution to
{Z1,t }. The temporal correlations in {Z0,t } makes this non-
trivial. However, the orthogonal nature of the spectral rep-
resentation makes it the natural domain in which to mod-
ify random quantities. For example, writing ı for

p�1,
Z0,t has the representation Z0,t = R 0.5

�0.5 exp(2⇡ ı!t)dẐ0(!)

where Ẑ0(!) is a complex-valued Gaussian random mea-
sure with mean of 0 and for disjoint sets [a,b] \ [c,d] =
?, E(Ẑ0([a,b]), Ẑ0([c,d])) = 0, and x represents the com-
plex conjugate of x. That is, Ẑ0(!) (also referred to
as the spectral process associated with {Z0,t }) is an or-
thogonal Gaussian measure that can be modified sepa-
rately at each frequency to produce a process with a dif-
ferent covariance structure. The spectral distribution as-
sociated with {Z0,t }, G0(!), is the positive finite mea-
sure given by E(

�

�dẐ0(!)

�

�

2
) = dG0(!). Assuming absolute

summability of the covariance, i.e.,
1
P

h=�1
|�0(h)| < 1, the

spectral distribution is absolutely continuous: dG0(!) =
g0(!)d! and g0 is called the spectral density for {Z0,t }.
The spectral density can be obtained from the covariance

function �0 by g0(!) =
1
P

h=�1
exp(�2⇡ ı!h)�0(h). If �1 is

summable, we can similarly consider the second-order char-
acteristics of {Z1,t } based on its spectral density g1(!) =

1
P

h=�1
exp(�2⇡ ı!h)�1(h).

The spectral densities g0(!) and g1(!) provide informa-
tion regarding the covariance structure of {Z0,t } and {Z1,t },
respectively, for frequencies, ! 2 (�0.5,0.5]. Then, given a
spectral density ratio ⇢

g

(!) = g1(!)/g0(!) we can modify
the spectral process associated with

�

Z0,t
 

to generate

Z1,t =
0.5
Z

�0.5
exp(2⇡ ı!t)

q

⇢

g

(!)dẐ0(!),

which is a stationary, Gaussian process with E(Z1,t ) = 0 and
covariance �1(h). In this way, we derive the future, unob-
servable process in terms of the present process, modified by
the ratio of their spectral densities. If g1(!) = g0(!), for all
! 2 (�0.5,0.5], then Z1,t = Z0,t , for all t (because in this
special case the procedure reduces to taking the DFT and
then the inverse DFT of the observations). In particular, the
temporal covariance structure of the simulations equals that
of the observations.

2.2 Outline of approach

When working with real time series of climate observations
and model output, the spectral densities in the past and future,
g0(!) and g1(!), are not known. While g0(!) can be esti-
mated from data, clearly we cannot provide an observation-
based estimate of g1(!). A central question then becomes

how to best represent the spectral ratio ⇢

g

(!). Let f1(!) rep-
resent the future spectral density associated with the com-
puter model output. For AOGCMs, f1(!) may differ sub-
stantially from g1(!). However, given the model’s suggested
covariance structure under a baseline period, represented by
f0(!), the estimated change in covariance structure may be
a reasonable approximation for the real changes in the co-
variance structure, especially if those changes are relatively
small. We therefore do not assume that model output has
the correct covariance structure for a given GHG scenario,
but assume that the computer model provides a reasonable
approximation to the changes in the spectral density across
all frequencies (i.e., ⇢

g

(!) = ⇢

f

(!) for all ! 2 (�0.5,0.5],
where ⇢

f

(!) = f1(!)/f0(!)).
Carrying out the simulation on real data then requires the

following steps, starting with {Z0,t } (observations), {Y0,t }
(model base period time series), and {Y1,t } (model scenario
period time series):

1. Preprocess the observations and model out-
put to produce Z

⇤
0,t = (Z0,t � µ̂

z,t

)/D

z,t

,
Y

⇤
0,t = (Y0,t � µ̂0,t )/D0,t , and Y

⇤
1,t = (Y1,t � µ̂1,t )/D1,t ,

which have mean of 0 and are stationary. See Sect. 2.5
for details on the estimation of the seasonal cycle (i.e.,
µ̂

z,t

, µ̂0,t , and µ̂1,t ) and see Sect. 2.6 and Sect. S2 in
the Supplement for details on the estimation of seasonal
variation (i.e., D

z,t

, D0,t , and D1,t ).

2. Estimate the ratio of spectral densities of
n

Y

⇤
1,t

o

, and
n

Y

⇤
0,t

o

, following the steps given in Sects. 2.4 and S1.
Then, use the estimated spectral densities to modify the
discrete Fourier transform of

n

Z

⇤
0,t

o

, producing
n

Z

⇤
1,t

o

,
following the instructions in Sect. 2.3.

3. Reverse preprocessing to produce simulations Z1,t =
µ̂

z,t

+ (µ̂1,t � µ̂0,t ) + D

z,t

(D1,t /D0,t )Z
⇤
1,t .

In the following subsections we describe in detail these
primary steps: estimating the spectral ratio and modifying
the discrete Fourier transform; removing the seasonal cycle;
and modulating the deseasonalized time series.

2.3 Spectral-based conditional simulation

Let {Z0,t ; t = 0, . . .,T � 1} represent the observations of the
process of interest, observed at regular time points. For now,
assume that the process is stationary with E(Z0,t ) = 0. We
discuss how we account for any trend in Sects. 2.5 and 2.6.
In the previous section T = 1 whereas, in practice,

our observations are observed discretely over a finite pe-
riod and the spectral process associated with

�

Z0,t
 

is
unknown. First we approximate the true spectral process
by using the discrete Fourier transform of the obser-

vations Ẑ0,k = T

�1/2 T �1
P

t=0
Z0,t exp(�2⇡ ı!

k

t) for !

k

= k/T
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and k = �T/2+ 1, . . .,T /2. Here, Ẑ0,k are complex-valued
quantities that provide an approximation to Ẑ0(!), with
Ẑ0,k = Ẑ0,�k

. We can similarly define the cosine trans-

form Ẑ

c

0,k = T

�1/2 T �1
P

t=0
Z0,t cos(2⇡!

k

t) and sine transform

Ẑ

s

0,k = T

�1/2 T �1
P

t=0
Z0,t sin(2⇡!

k

t), which relate to the DFT

through the equality Ẑ0,k = Ẑ

c

0,k � iẐ

s

0,k . Because Ẑ

c

0,k and
Ẑ

s

0,k are linear combinations of Gaussian processes, Ẑ

c

0,k
and Ẑ

s

0,k are also Gaussian and, under the condition that

� =
1
P

h=�1
|h||�0(h)| < 1, the following asymptotic results

hold in terms of the covariance structure for the cosine trans-
form

Cov(Ẑc

0,j , Ẑ
c

0,k) =
⇢

g0(!j

)/2+ ✏

T

, j = k

✏

T

, j 6= k

,

the sine transform

Cov(Ẑs

0,j , Ẑ
s

0,k) =
⇢

g0(!j

)/2+ ✏

T

, j = k

✏

T

, j 6= k

,

and also Cov(Ẑc

0,j , Ẑ
s

s,k

) = ✏

T

, for all j,k. (See Shumway
and Stoffer, 2011, for details.) Here, ✏

T

is a generic remain-
der that varies with j and k and can be shown to obey a
bound |✏

T

|  �/T . As a result, our methodology is modi-
fying nearly independent quantities in order to produce sim-
ulations with a different covariance structure than the obser-
vations. Let ⇢̂

f

(!

k

) be an estimate of the ratio of the spec-
tral densities at !

k

. Then, the simulations (not accounting for
changes in mean) under a given scenario can be represented
as

Z1,t = T

�1/2
T/2
X

k=�T/2+1

q

⇢̂

f

(!

k

)Ẑ0,k exp(2⇡ ı!

k

t); (1)

so, when ⇢̂

f

(!

k

) = 1, k = �T/2+ 1, . . .,T /2, then Z1,t =
Z0,t , t = 0, . . .,T �1. This suggests the following covariance
structure for {Z1,t } for a given estimate ⇢̂

f

(!

k

):

E(Z1,t+h

Z1,t ) = T

�1
T/2
X

k=�T/2+1
⇢̂

f

(!

k

)g0(!k

)exp(2⇡ ı!

k

h).

A brief numerical study in Sect. S3 illustrates the efficacy
of this approach even for fairly small T when ⇢

g

= ⇢

f

is known. In the following section, we provide the details
of a penalized likelihood approach to estimate ⇢

f

(!

k

). Fi-
nally, although we have motivated this methodology in terms
of Gaussian processes, the resulting simulation of Z1,t in
Eq. (1) will tend to retain any non-Gaussian characteristics
of Z0,t , at least if

p

⇢̂

f

(!

k

) is nearly constant.

2.4 Estimation of the ratio of spectral densities
(⇢f

�
!k

�
)

We propose a penalized likelihood approach for estimation
of ⇢

f

(!

k

), similar to the approach given in Pawitan and
O’Sullivan (1994) for the estimation of one spectral density.
Let f

j,k

= f

j

(!

k

), ✓

j,k

= log(f
j,k

), j = 0,1,k = 1, . . .,K ,
and ✓

j

= (✓

j1, . . .,✓jK

)

0. Then, a penalized likelihood can be
generally written as

L0(✓0) +L1(✓1) + �J (✓0,✓1),

whereL0(✓0) andL1(✓1) represent theWhittle likelihood for
j = 0,1, respectively. So, L0(✓0) and L1(✓1) provide an ob-
jective function that determines the fit to the data, J (✓0,✓1)
is a function that penalizes lack of smoothness, and � is a
smoothness parameter.

Likelihood

Let {Y
i,0,t ; t = 0, . . .,T � 1} represent the i

th realization of
AOGCM output (i = 1, . . .,n0) of the baseline run and let
{Y

i,1,t ; t = 0, . . .,T �1} represent AOGCM output for the ith
realization of the scenario run (i = 1, . . .,n1). Here we in-
troduce the possibility of having multiple independent real-
izations, i.e., the AOGCM output that was run under identi-
cal forcings but with different initial conditions. Let Y

i,0 =
�

Y

i,0,0, . . .,Yi,0,T �1
�0 and Y

i,1 = �

Y

i,1,0, . . .,Yi,1,T �1
�0. We

assume that Y1,0, . . .,Yn0,0 are independent and identically
distributed, that Y1,1, . . .,Yn1,1 are also independent and
identically distributed, and finally that Y

i,0 and Y
i

0
,1 are in-

dependent, for all i, i0.

Let Ŷ

i,j,k

= T

�1/2 T �1
P

t=0
Y

i,j,t

exp(�2⇡ ı!

k

t) represent the

DFT of the ith realization of the model output at frequency
!

k

(for either the model baseline or scenario run). Note that
when

�

Y

i,0,t
 

and
�

Y

i,1,t
 

follow stationary, Gaussian distri-

butions, the periodograms I

i,j,k

=
�

�

�

Ŷ

i,j,k

�

�

�

2
, for j = 0,1, fol-

low (asymptotically) independent exponential distributions
such that E

�

I

i,j,k

/f

j,k

� ! 1 as T ! 1. As a result, the
Whittle negative-log-likelihood approximationL(✓

j

;I
i,j

) =
T/2
P

k=�T/2+1
�

✓

j,k

+ I

i,j,k

exp(�✓

j,k

)

 

is a reasonable approxi-

mation for the likelihood in the objective function (Whit-
tle, 1954). In the event that we have multiple realizations,

we can take the average periodogram I

j,k

=
n

j

P

i=1
I

i,j,k

which

follows asymptotically a gamma distribution with E(I

j,k

) =
f

j,k

as before but with Var(I
j,k

) = f

j,k

/n

j

(as opposed to
Var(I

j,k

) = f

j,k

).
We further linearize the log likelihood and carry out

estimation using an iterative, weighted least squares ap-
proach (McCullagh and Nelder, 1989). Let L(✓

j

) ⇡
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T/2
P

k=�T/2+1
w

j,k

(m

j,k

� ✓

j,k

)

2, with

m

j,k

= ✓

0
j,k

+ (I

j,k

� exp(✓ (0)
j,k

))

d✓
j,k

df
j,k

�

�

�

�

✓

(0)
j,k

= ✓

0
j,k

+ I

j,k

exp(�✓

(0)
j,k

) � 1, and

w

�1
j,k

=
0

@

d✓
j,k

df
j,k

�

�

�

�

✓

(0)
j,k

1

A

2

Var(I
j,k

) = n

�1
j

.

Thus, this framework can handle the situation in which there
is a different number of independent realizations for the base-
line and scenario runs. For given initial conditions, these
computations are iterated until convergence.

Penalty function

Although penalties could be placed on the individual spec-
tral densities themselves, for our analysis we only need an
estimate of the ratio; therefore, we place the penalty on the
log ratio of the spectral densities ✓1� ✓0 so that J (✓0,✓1)
can be written as J (✓1� ✓0). Because we expect the ra-
tio of spectral densities to be smoother than the individual
spectral densities themselves, it makes sense to place the
penalty on this ratio, enabling us to obtain a low-variance
estimate of the ratio while increasing the bias less than
we would by smoothing each spectral density individually.
Our penalty function is then placed on the `th derivative of
�(!) = ✓1(!) � ✓0(!): J (�) = (2⇡)

�2`R 0.5
�0.5

�

�

(`)

(!)

 2d!.
Using Parseval’s identity, this can be written as J (�) =

1
P

k=�1
k

2`�
�

3

⇤
k

�

�

2, where 3

⇤
k

is the kth Fourier coefficient of

�(!), 3

⇤
k

= R 0.5
�0.5�(!)exp(�2⇡ ık!)d!. We then approx-

imate the penalty function by J (�) ⇡
T/2
P

k=�T/2+1
k

2`|
3

k

|2,
where 3

k

is the discrete Fourier coefficient of �, 3

k

=
T

�1/2 T/2
P

j=�T/2+1
�(!

j

)exp(�2⇡ ık!

j

).

The objective function that we minimize can then be writ-
ten as

T/2
X

k=�T/2+1

h

n1(m1,k � ✓0,k � �

k

)

2

+n0(m0,k � ✓0,k)
2+ �k

2`|
3

k

|2
i

,

where, for a given smoothing parameter �, we can iterate
back and forth between estimates of ✓0,k and �

k

until conver-
gence. The ratio of spectral densities can be estimated using
the algorithm provided in Sect. S1.
We do not develop an automated method for choosing

the smoothing parameter � in this paper. In a situation in
which multiple realizations of a climate scenario exist, it

may be desirable to choose � based on a cross-validation
study. Here, we chose � = e

�7 ⇡ 9.12⇥10�4, which appears
to give good visual results. Using the formula for effec-
tive degrees of freedom given by Pawitan and O’Sullivan
(1994) yields an approximate bandwidth for this smoother
of 0.078 day�1, which is quite broad considering that we
are defining the spectral density on (�0.5,0.5] day�1. We
believe this degree of smoothing is acceptable given that
the estimated log-spectral ratios are quite flat. (As men-
tioned previously, one advantage of smoothing on the ra-
tio of spectral densities is that the ratio is flatter than are
the individual spectral densities.) However, we do see some
evidence that the ratio is less flat at the lowest (below-
annual) frequencies. For studies of interannual variability,
there could be some advantage in using a penalty function
that allows for more flexibility in � near the origin by defin-
ing J (�) = (2⇡)

�2`R 0.5
�0.5⌘(!){�(`)

(!)}2 d! for some posi-
tive, even function ⌘ that takes on smaller values near 0. Such
a technique could resolve different changes at different inter-
annual frequencies.

2.5 Seasonal cycle and long-term trend

The previous section assumed that the process of interest was
a stationary process with constant mean. Daily mean tem-
perature however involves a strong seasonal component. So,
before estimating the spectral ratio and modifying the DFT
of the observations, we remove the seasonal cycle in the ob-
servations and AOGCM output. The empirical mean of the
observations and present–future difference in the AOGCM
output are then added back on at the end of the algorithm.
This part of our approach is analogous to the delta method
and in fact reduces to the delta method when the present and
future spectral densities are equal.
As mentioned previously, the delta method uses model

output for changes in first-order characteristics (e.g., over-
all mean and seasonal cycle) estimated from the model out-
put. This method typically involves adding the difference in
the overall mean (usually including the seasonal cycle) of the
base and scenario time slices for the AOGCM to the obser-
vations. Let µ̂0,t and µ̂1,t represent monthly means or an-

nual harmonics, i.e., µ̂
j,t

= µ̂

j

+
K

P

k=1
R̂

j,k

cos(2⇡!

k

t + �̂

j,k

)

for j = z,0,1, and !

k

= k/365.25. The parameters µ̂

z

, µ̂0,
and µ̂1 are the estimated long-term averages for the obser-
vations, base, and scenario periods, respectively, and R̂

z,k

,
R̂0,k , and R̂1,k are the estimated amplitudes at !k

for the ob-
servations, base, and scenario periods, respectively. Lastly,
�̂

z,k

, �̂0,k , and �̂1,k are the estimated phase shifts for !k

. All
parameters are estimated using least squares. Seasonal de-
modulation (Sect. 2.6) is performed on e

Z0,t = Z0,t � µ̂

z,t

,
e

Y0,t = Y0,t � µ̂0,t , and e

Y1,t = Y1,t � µ̂1,t , in order to account
for seasonal difference in second-order moments.
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Figure 4. (Top) Log (base 10) of averaged periodograms for the Illinois location, by season, for the reanalysis (left), model baseline period
(middle), and model scenario period (right). Note strongest variability in winter, weakest in summer. (Middle) Identical to top but now for the
demodulated time series. Seasonal differences in variability are effectively removed, suggesting we can treat these time series as stationary
in time. (Bottom) Modulation constants used for the reanalysis (left), model baseline period (middle) and model scenario period (right),
showing smallest values in summer, as expected. See Figs. S1 and S2 for similar plots for other locations used as examples; results are
similar.

In our example, our AOGCMs have been run far past the
point of CO2 stabilization and, therefore, can be considered
to be nearly in an equilibrated state. However, there is evi-
dence of a long-term trend in temperature in the observations
{Z0,t }. We remove this long-term trend from the observations
using a simple linear regression of the observations against
the logarithm of CO23.

2.6 Accounting for seasonal nonstationarity

Thus far we have assumed that the deseasonalized observa-
tions and model output, eZ0,t = Z0,t �µ̂

z,t

, eY0,t = Y0,t �µ̂0,t ,
and e

Y1,t = Y1,t � µ̂1,t are (temporally) stationary. However,
this need not be the case and in applications involving daily
mean temperature it likely is not the case. Figure 4 shows the
log-averaged periodograms by season for the Illinois pixel
for the base and scenario period, as well as for the obser-
vations (similar plots are provided for the Southern Ocean

3The trend in the observations may be affected by volcanoes
(e.g., Pinatubo), which produce a temporary reduction in GMT. The
fact that these trends are not removed implicitly assumes that in-
termittent volcanic eruptions would continue in the future. Another
potential concern is that the aerosol forcings that affect observed
climate will not continue to evolve indefinitely as they have in the
past.

and Gulf of Guinea in Figs. S1 and S2 in the Supplement).
Clearly, the seasonal spectral density functions for the base
period are different for the different seasons, with the win-
ter months showing the greatest variability and the summer
months the lowest variability across all frequencies. Note
that in the case of the scenario period, variability across fre-
quencies in the winter has decreased, and is now roughly
the same as in spring and fall, but the summer variability
is still roughly the same, and is lower across most frequen-
cies. Thus, the assumption of temporal stationarity is not rea-
sonable and, furthermore, the form of the nonstationarity is
somewhat different for the base and scenario periods. How-
ever, the log periodograms for the different seasons are nearly
parallel for both periods, suggesting that it may be reason-
able to treat the processes as uniformly modulated (Priestley,
1988).
Following Priestley, we consider eZ0,t = D

z,t

Z

⇤
0,t , eY1,t =

D1,t Y
⇤
1,t , and e

Y0,t = D0,t Y
⇤
0,t , after deseasonalizing, where

�

Z

⇤
t

 

,
n

Y

⇤
1,t

o

, and
n

Y

⇤
0,t

o

are stationary processes (corre-
sponding to the observations, model output under scenario
period, and model output under base period, respectively).
Then,

�

D

z,t

 

,
�

D1,t
 

, and
�

D0,t
 

are modulation constants
to be estimated. Thus, if we can find suitable values for the
modulation constants, then we can perform the spectral den-
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sity estimation on
n

Y

⇤
1,t

o

and
n

Y

⇤
0,t

o

, in order to modify the

DFT of
n

Z

⇤
0,t

o

, and then multiply by the constants D1,t as
a last step to account for the nonstationarity across seasons.
Our approach to estimating the modulation constants is pro-
vided in Sect. S2. Figure 4 and Figs. S1 and S2 show the log-
averaged periodograms for the modified process. The log-
periodograms are much closer together than they were origi-
nally, suggesting that this approach accounts for most of the
seasonal nonstationarity.

3 Application

In this section, we continue to illustrate our methodology us-
ing NCEP Climate Forecast System Reanalysis observations
(Saha et al., 2010) and the CCSM3 output described in Ap-
pendix A. Because the observations and model output used
are of different lengths (32 years and 100 years, respectively)
the Fourier frequencies will be different. As a result, after es-
timating the ratio of spectral densities for the model output,
we do a simple linear interpolation on the log-spectral ratio
of the model output to the Fourier frequencies of the obser-
vations.
Although we are only modifying the temporal covariance

structure, we can produce maps that show how variability
is changing at different locations and different frequencies
(e.g., see Fig. 5). In general, at most locations and at most
frequencies, variability is decreasing in the CCSM3 output
for this particular scenario. Variability increases occur only
in a few regions. Increases in lower-frequency (periods close
to 3.2 years) variability appear primarily on land at low lat-
itudes. Increases in higher-frequency (periods of roughly 2
days) variability occur primarily at low latitudes over water
near coastlines.
Variability clearly changes differently at different loca-

tions (Figs. 5, 6) and, furthermore, variability changes at a
given location can differ with frequency (Fig. 6, top panel).
In Illinois and the Gulf of Guinea, there is a modest decrease
in low-frequency variability. At high frequencies, there is a
slightly greater suppression of variation in Illinois, whereas
in the Gulf of Guinea high-frequency variation is actually
larger for the future scenario than the present. The decreasing
variability at high frequencies in Illinois may be consistent
with suggested changes in the polar jet stream that impacts
weather at the middle latitudes. For the Gulf of Guinea, the
slight suppression of low-frequency variation and the ampli-
fication of high-frequency variation may suggest fundamen-
tally changing weather patterns at this location. These results
show that the manner in which variability changes is nontriv-
ial and is dependent on the temporal scale. As a result, an ap-
proach that considers changes across a variety of timescales
is necessary (as opposed to a simple rescaling of the obser-
vations based on changes in model output).
In contrast to those locations, however, are pixels such

as the Southern Ocean, where the change in variability re-

Figure 5. (Top) Estimated log (base 10) ratio of spectral densities
for model scenario vs. baseline at low and high frequencies. The
low-frequency results are the estimated log ratios at 1168 days and
the high-frequency results at 2 days; however, due to the large de-
gree of smoothing, it is best to think of them as representing low-
and high-frequency behavior. Both long- (left column) and short-
term (right column) variability decreases in nearly all locations. Re-
mainder of rows: estimated log-spectral densities at these frequen-
cies for reanalysis (second row), model baseline period (third row)
and model scenario period (bottom row), using the demodulated and
deseasonalized time series. The pattern of enhanced variability over
land vs. ocean and high vs. low latitudes is as expected.

mains relatively constant across all frequencies (with ap-
proximately a 60% decrease in overall variability). For lo-
cations that exhibit this type of change in the spectral ratio, a
simple scaling of the observations may be acceptable. How-
ever, Fig. 6 indicates that in all three locations, the across-
frequency variation of the spectral density is greater than the
across-frequency variation of the spectral ratio, supporting
our claim that the spectral ratio is smoother than the spectral
densities themselves.
All three locations used as examples show evidence of a

mean shift (see Fig. 7). Mean shifts in Illinois and the Gulf
of Guinea are of a few degrees, similar to changes in global
mean temperature, though in the Illinois location the shift
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Figure 6. (Top) Logarithm (base 10) of the estimated spectral den-
sity ratios in the Southern Ocean (blue), Illinois (green), and Gulf
of Guinea (red). (Bottom) Logarithm of the estimated spectral den-
sities of the reanalysis data (solid line), base period (dashed line),
and scenario period (dashed and dotted line). The spectral density
estimation was performed on the deseasonalized and demodulated
time series.

is small relative to temperature variability. In the Southern
Ocean location, the mean shift in local Winter (JJA, June–
August) is nearly 10�, which is likely due to the loss of sea
ice in the future scenario. (Ice cover allows for lower tem-
peratures than are possible over open ocean). All locations
show physically reasonable characteristics in variability and
in changes in variability: variability is stronger in the the non-
equatorial locations (Southern Ocean and Illinois) than near
the Equator and stronger in winter than in summer, and vari-
ability reductions are also greater in winter.
An important aspect of our approach is that it does not sig-

nificantly alter the non-Gaussian aspects (e.g., tail behavior)
of observed climate. In fact, in our method, when the model
does not show changes in mean or covariance, the simula-
tions are simply the observations and, thus, non-Gaussian
features of the data are retained exactly. When the obser-
vations are not significantly changed, the non-Gaussian fea-
tures of the data are largely retained. For instance, JJA in the
Gulf of Guinea shows a marginal distribution that is posi-
tively skewed. In this case, the simulation shows a slight de-
crease in marginal variability, as well as an increase in mean
temperatures, but we maintain the positive skewness of the
observations (see Fig. 8). We consider this to be a strength of
our approach: in the event that there are non-Gaussian fea-
tures of the data, the simulations will retain these features,
at least when the change in the dependence structure is rela-
tively small.
Preserving the shapes of distribution of the observations

(e.g., skewness, kurtosis) would be a problem if the actual
shapes of distributions changed from present to future. For
locations in or near bodies of water, changes in tempera-
ture means can alter climate variability distributions because
those distributions are sensitive to the freezing point of wa-
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Figure 7. Time series of daily mean temperature (�C) for 3 years
of reanalysis (blue) and simulations (red) at Illinois (top row), Gulf
of Guinea (middle row), and Southern Ocean (bottom row).

ter. As long as water is liquid, temperature variability is con-
strained because air temperatures cannot drop significantly
below freezing. This property is evident in the marginal dis-
tributions for both observations and model output in Fig. 3,
which show upward bumps in the marginal densities at near-
freezing temperature, i.e., a clustering of temperatures near
freezing. When open water freezes, however, air temper-
atures can become very cold. The left-skewed tail in the
Southern Ocean local winter in reanalysis data (Fig. 3, bot-
tom row JJA) indicates that the location is sea-ice covered for
part of the season. This freezing point effect introduces fur-
ther problems when model output is biased relative to obser-
vations. The example of the Southern Ocean location in win-
ter shows this clearly. The wintertime base period CCSM3
temperatures show a distribution characteristic of complete
sea ice cover rather than the partial cover implied by obser-
vations, with a strong cold bias (a mode over 10� below the
freezing point) and a wide spread. Because sea ice is lost in
the warmer future scenario, the temperature change between
model base and future periods is very large. The modeled
changes in both mean temperature and temperature variabil-
ity are therefore physically inappropriate when applied to ob-
servations and produce unphysically high wintertime temper-
atures and low wintertime variability in resulting data-driven
simulations (Fig. 7). We note that this limitation applies not
just to our approach but to statistical downscaling methods
in general. Systematic offsets in the mean between climate
model and data make it difficult to adequately simulate fu-
ture climate, so that simulations are inherently limited by the
skill of the AOGCM being used.
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Figure 8.Marginal densities (by season) of daily temperature (�C)
for the pixels at Illinois (top row), Gulf of Guinea (middle row),
and Southern Ocean (bottom row) for reanalysis (blue line) and the
simulations (red line). The simulations display marginal tail behav-
ior similar to the reanalysis observations.

4 Discussion

Detailed characterization of the nature in which climate is
changing (mean shifting, tail behavior, spatial and temporal
covariance structures) is still a relatively open area of inquiry.
One of the best ways of studying how future climate might
change is by first investigating the nature in which the sta-
tistical properties of the output of AOGCMs change from
the present to possible future scenarios. We have provided a
method of quantifying how temporal covariance is changing
in these AOGCMs at different temporal scales. Our results
show that variability is changing differently at different loca-
tions. At a given location, the changes in variability may be
different (in both magnitude, direction of the change, or both)
across different frequencies. We used this estimate of chang-
ing variability to produce simulations that modify the tempo-
ral covariance structure of the observations. In this way, we
extend the delta method to be able to account for changes in
the mean and covariance structure.
Our method for producing simulations relies on modify-

ing the discrete Fourier transform of the observations and, as
such, the length of the simulations in this manner is currently
limited by the available data. However, it is possible that by
recycling old observations, one could generate simulations of
longer length. Another possibility is to modify the observa-
tions by phase scrambling (Davison and Hinkley, 1997) and
then appending these newer pseudo-observations to the true
observations.
We point out that we have not accounted for any changes

in spatial and spatiotemporal covariance structures. Account-
ing for changes in spatial covariance is complicated by the
nonstationarity present in the observations (due to geogra-

phy, land–ocean contrasts, etc.) and remains the subject of
future research. However, we do note that, due to the use of
the observations, we are mimicking any spatial structure in
the present climate regime.
Next, while we have provided a method for producing

simulations of daily mean temperature, most impacts as-
sessments also rely on simulations of daily precipitation.
The methodology presented here is not fit to handle the
highly non-Gaussian, nonlinear nature of daily precipitation
directly; however, a popular approach in the statistics litera-
ture is to model precipitation using a latent Gaussian process
(see Allcroft and Glasbey, 2003, for an example). The ap-
proach presented could be applied to such a latent process.
Latent processes might be further extended to consider joint
bias correction and downscaling of temperature and precipi-
tation.
Perhaps most importantly, the methodology presented here

is based on the assumption of stationarity in the model out-
put and the data. While we did incorporate the concept of
a uniformly modulated process to deal with seasonal non-
stationarity, this methodology is still limited to simulating
equilibrium climate. Because for the foreseeable future our
climate will be in a transient state, we must consider ways
of extending this methodology to be able to simulate tran-
sient climate. We point out that there is the potential for this
methodology to be extended by considering an evolutionary
spectral approach (Priestley, 1988).
Lastly, our methodology is limited to generating simula-

tions for those GHG scenarios for which an AOGCM has
been run. We cannot produce simulations for arbitrary GHG
emissions scenarios without first running the AOGCM to ob-
tain the necessary output. However, we note the potential to
consider “emulating” higher-order characteristics in the gen-
eral circulation models in order to generate simulations for
arbitrary emissions scenarios. For transient climates, it may
be possible to relate changes in the covariance structure to
the past trajectory of CO2.
We believe that our approach provides a general frame-

work for high-resolution future climate simulation. Two crit-
ical features of our approach are that (1) it is observation-
driven, using the model output to suggest how to modify the
existing observations, and (2) it considers changes in both
mean and covariance structures; and this modification of co-
variance structure, by taking place in the frequency domain,
involves modifying quantities that are at least approximately
independent. We anticipate many opportunities to extend our
framework to generate more realistic simulations for use in
impacts assessment, and suggest that any extensions should
seek to maintain these features when feasible. Society’s ob-
vious need for better impacts assessment begins with a bet-
ter understanding of how climate will change in the future.
Our conceptual approach provides a valuable framework for
quantifying climate change and simulating future climate in
order to meet that need.
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Appendix A: Model and model experiments

All model output shown here is from the Community Cli-
mate System Model Version 3 (CCSM3), a fully coupled
general circulation model developed at the National Center
for Atmospheric Research (NCAR), with the full represen-
tation of the atmosphere, land, sea ice, and ocean (the mod-
ules CAM3, CLM3, CSIM5, and POP 1.4.3, respectively)
(Collins et al., 2006). The model is run at T31 resolution
(⇠ 3.75�⇥3.75�) and all runs shown are initialized from year
410 of the NCAR b30.048 preindustrial control run with ini-
tial CO2 concentration at 270 ppm (parts per million). The
“baseline” run maintains this preindustrial CO2 concentra-
tion for an additional 2800 years to ensure that we are sam-
pling an equilibrated state. (The control run begins slightly
out of equilibrium.) The “scenario” run uses historical forc-
ings until 2010, then increases CO2 piecewise linearly to
700 ppm in 2100 and continues at this stabilized value for an
additional 6000 years until climate is fully equilibrated. We
take the last 100 years of each run to represent equilibrated
climate at 270 and 700 ppm CO2.

We use two data sets for observational comparisons. In
Fig. 1 we use global mean temperature from the Global His-
torical Climatological Network (GHCN), a historical recon-
struction of temperature anomalies based on weather sta-
tion data and managed by the National Climatic Data Cen-
ter. In Fig. 1 we show GHCN archived temperature anoma-
lies plus an added climatological mean of 14 �C (Vose et al.,
1992). In the remainder of the paper we show output from
the NCEP-DOE (National Centers for Environmental Predic-
tions – Department of Energy) Climate Forecast System Re-
analysis, which combines measurements from ground-based
stations and satellites, assimilating them into a weather pre-
diction model to produce gridded output that synthesizes
available observations. We use 2.5 km resolution output, re-
gridded with an area-conserving remapping function to T31
resolution.
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The Supplement related to this article is available online
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