
Geosci 343 Problem Set 1

January 28, 2009

Problem 1.1 Consider rigid body rotation in 2D, defined by the velocity
field (u, v) = (−Ωy,Ωx)

a) Show that this flow is nondivergent

~∇ · ~v =
∂u

∂x
+
∂v

∂y
= Ω− Ω = 0

b) Write down the Poisson equation which determines the pressure field
which keeps this flow nondivergent.
Starting from the momentum equation from Newton’s 2nd law:

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇ · p (1)

Writing this in terms of the given velocity field and remembering that the
flow is nondivergent and time-independent

Ω2xx̂+ Ω2yŷ = −1

ρ
(
∂p

∂x
x̂+

∂p

∂y
ŷ) (2)

To obtain the Laplacian, take the divergence of equation (2) to obtain

2Ω2ρ =
1

r

∂

∂r
(r
∂p

∂r
) (3)

which is the Poisson equation, where the right hand side of (3) is the
Laplacian in polar coordinates. Integrating (3) twice gives

p(r) =
Ω2ρ

2
r2 + p0 (4)

where we have set the constant of first integration equal to 0 because there
is no pressure gradient at r=0, and the constant of second integration is the
pressure at r=0 (p0).
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The centrifugal acceleration points radially outward and is proportional to
the tangential velocity squared and inversely proportional to the radius (Ω2r,
where Ωr is the tangential velocity). This is equal and opposite to the pres-
sure gradient force obtained from the radial derivative of equation (4) plugged
into Newton’s law (1). Therefore the pressure gradient force is what keeps
the fluid moving in a circle.

Problem 1.2 The flow around a point vortex is given by the streamfunc-
tion ψ = −(Γ/2π) ln r. Explicitly compute the circulation around a circle
of radius R with center at the point (x0, y0). Show by explicit calculation
that the circulation is zero if the circle does not contain the origin, and is Γ
otherwise.

One approach is to write the streamfunction in Cartesian coordinates

ψ =
Γ

2π
ln (

√
x2 + y2) (5)

The velocities become

~v = − Γ

2π

y

(x2 + y2)
x̂+

Γ

2π

x

(x2 + y2)
ŷ (6)

The circulation is given by the line integral∮
~v · d~r (7)

where d~r is the differential of curve length evaluated at a point (x,y) on any
curve with continuous first derivatives. If we take the center of the point
vortex at (0,0) then any position on the curve is given by the position vector
~r = xx̂ + yŷ. The differential length becomes d~r = dxx̂ + dyŷ and the line
integral (7) becomes∮

~v · d~r =

∮
(− Γ

2π

y

(x2 + y2)
x̂+

Γ

2π

x

(x2 + y2)
ŷ) · (dxx̂+ dyŷ) (8)

=

∮
− Γ

2π

xdy − ydx
(x2 + y2)

(9)

An angle θ is formed between the position vector and the Cartesian x coor-
dinate. The length of the position vector (||~r||, denoted as the scalar r here)
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along with θ gives x = r cos θ and y = r sin θ. For the differential length
we have dx = −r sin θdθ + dr cos θdθ and dy = r cos θdθ + dr sin θdθ. Using
these relations and some minor algebra we can integrate equation (9) counter
clockwise around the curve containing point B to obtain∮

~v · d~r =

∫ θ0

θ0

Γ

2π
dθ =

Γ

2π
(θ0 − θ0) = 0 (10)

where the integration ends at the same angle as it started, so that there is no
contribution to the circulation. For the integral around the curve containing
point A we have ∮

~v · d~r =

∫ 2π

0

Γ

2π
dθ = Γ (11)

because θ goes through one complete revolution. Note curve A and curve B
could be circles centered at a given (x0, y0) but this is not necessary for the
above argument.

Problem 1.3 Find the streamfunction and the velocity field which is asso-
ciated with the vorticity field ω = cosx+cos10x. Plot the vorticity, y-velocity
and streamfunction on the same graph. What do you notice about the degree
of smoothness of the three fields?

We can get the streamfunction from the vorticity field if the flow is non-
divergent, by using
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∇2ψ = ω

This equation is linear, so we can use the principle of superposition to first
solve the homogeneous problem

∇2ψ = 0 (12)

and add the result to any particular solution for the given nonhomogeneous
problem

∇2ψ = cosx+ cos10x (13)

to arrive at a general solution to equation (2)
One way to solve the homogeneous problem (1) is to use separation of

variables
ψ = f(x)g(y)

Substituting the trial solution into

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0

gives
d2f

dx2
g(y) +

d2g

dy2
f(x) = 0 (14)

which requires
d2f

dx2

1

f(x)
= λ (15)

d2g

dy2

1

g(y)
= −λ (16)

where λ is a separation constant

Case 1) λ = 0
f(x) = A1x

2 +B1x+ C1

g(y) = A2y
2 +B2y + C2

Case 2) λ = α2 > 0
f(x) = A1e

αx
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g(y) = A2e
αy +B2e

−αy

Case 3) λ = α2 < 0
f(x) = A1e

αx +B1e
−αx

g(y) = A2e
αy

However we know from equation (2) that ψ does not have exponential so-
lutions, which leaves us with case 1, λ = 0, so we can use the solution to
equation (12) given by

ψ = Axy +Bx+ Cy (17)

To find a particular solution to (13) we can note the form of the right hand
side and try

ψ = −cosx− 1

100
cos10x

We add this particular solution to the solution for the homogeneous problem
(equation 17) to obtain a general solution

ψ = −cosx− 1

100
cos10x+ Axy +Bx+ Cy (18)

Problem 1.4 Show that the flow defined by the streamfunction ψ = A(cos kx cos ly)
is an exact steady solution to the 2D Euler equations...

There is no time dependence, so the 2D Euler equation becomes

∂ω

∂t
+ (~v · ~∇)ω = (~v · ~∇)ω = 0 (19)

Forming the vorticity from the streamfunction gives

ω = ∇2ψ = −Ak2 cos kx cos ly − Al2 cos kx cos ly (20)

Forming the velocities

v =
∂ψ

∂x
= −Ak sin kx cos ly (21)

u =
−∂ψ
∂y

= Al cos kx sin ly (22)

Using equations (22,21,20) in equation(19) shows that the given
streamfunction satisfies equation (19).
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Problem 1.5 Consider three point vortices with identical circulation Γ,
which are initially equally spaced on a line. Show that this configuration
remains linear as time progresses, and rotates about the center vortex at
constant angular velocity. Compute the rotation rate.

The circulation of each vortex is given by∮
~v · d~r = Γ (23)

Integrating this around a circle of radius R is the same as multiplying the
velocity (which is constant along a circle centered about the vortex) by the
circumference. We can obtain the tangential velocity for a given vortex by
dividing by the circumference

vθ =
Γ

2πR
(24)

The velocity field is determined by the streamfunction and we can add
streamfunction contributions from each point vortex. The velocity field is
linear in streamfunction, so we can also add the contributions of each point
vortex to the velocity. The tangential velocity is proportional to the y
component of the velocity in Cartesian coordinates by a factor cos θ. So we
know that the velocity is positive or negative depending on whether we are
left cos (0) or right cos (−π) of the vortex as we move along the x axis. For
three vortices equally spaced (by a distance R) on a line (say the x axis) we
see that the tangential velocities from the left and right vortices cancel over
the center vortex.

For the left vortex we add the negative contributions of the center and right
vortices while keeping in mind the distance between the left and right vortices
is twice the distance (2R) between the left and center vortices (R)

v = − Γ

2πR
− Γ

4πR
= − 3Γ

4πR
(25)

For the right vortex we have

v =
Γ

2πR
+

Γ

4πR
=

3Γ

4πR
(26)
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So the vortices will spin counterclockwise about the center which is fixed in
time. The angular velocity is given by the tangential velocity divided by R,
so the rotation rate about the center vortex (in cycles per unit time) is

3Γ

4πR2
(27)
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