
Geosci 342 Problem Set 2

February 13, 2009

Errata Equation (27) of Problem Set 1 solution has units of radians per
unit time.

Problem 2.1 (a) The acceleration due to the centrifugal force is Ω2r, where
r is the distance from the axis of rotation. At the equator, r is simply the
Earth’s radius. Compare the centrifugal acceleration at the Equator with
the acceleration of gravity on Earth...

At the equator

Ω2r ≈
( 2π

24 · 3600s

)2

· (6370 · 103m)

so the centrifugal acceleration is

Ω2r ≈ 3.4 · 10−2m s−2

which is much less than gravity. At 45◦ latitude

r ≈ cos (π/4) · (6370 · 103m)

so the centrifugal correction at 45◦ is

1

2
ρΩ2r2 ≈ 1

2
(1 kg m−3)

( 2π

24 · 3600s

)2

·
(

cos (π/4) · (6370 · 103m)
)2

≈ 5.365 · 104 kg m s−2 m−2 = 5.365 · 104 N m−2 = 5.365 · 104 Pa

At 45◦ latitude and 10 km above the surface

r ≈ cos (π/4) · (6380 · 103m)
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so the centrifugal correction at 45◦ and 10 km above the surface is

1

2
ρΩ2r2 ≈ 1

2
(1 kg m−3)

( 2π

24 · 3600s

)2

·
(

cos (π/4) · (6380 · 103m)
)2

≈ 5.382 · 104 Pa

The difference between centrifugal correction at 10 km and the surface is
about 1.69 · 102Pa whereas the surface pressure is 105Pa.

Problem 2.2 In the absence of a pressure gradient, the velocity of a fluid
parcel measured in a rotating reference frame obeys the equation

d

dt
~v = −2Ωẑ × ~v (1)

where ~v = (u, v) is the horizontal velocity vector. Note that this can be
treated as an ordinary differential equation if you are following along with
the fluid parcel, because there are no pressure gradients to couple one fluid
parcel to another. Integrate the differential equation to show that, following
a fluid parcel, the magnitude of the velocity vector remains constant and
that its direction rotates uniformly over time; find the rotation rate.

Writing equation (1) in component form

du

dt
= 2Ωv (2)

dv

dt
= −2Ωu (3)

We want to solve this system of equations. One way to do this is by multi-
plying the first equation by u and the second equation by v,

u
du

dt
= 2Ωvu (4)

v
dv

dt
= −2Ωuv (5)

Using the product rule (in reverse) these equations become

1

2

du2

dt
= 2Ωvu (6)
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1

2

dv2

dt
= −2Ωuv (7)

Adding the two equations together,

du2

dt
+
dv2

dt
= 0 (8)

this is an exact differential that readily leads to an equation for the magnitude
of the velocity vector

u2 + v2 = A2 (9)

which means the velocity vector describes circular motion,

u = A cos θ (10)

v = A sin θ (11)

Substituting equations (10,11) into equation (6)

d

dt
(cos2 θ) = 2Ω cos θ sin θ (12)

this becomes

−2(cos θ sin θ
dθ

dt
) = 2Ω cos θ sin θ (13)

so the rotation rate is −Ω (which means the flow is anticyclonic and moves
around half of one circle in one Earth day).

Problem 2.3 For a planar velocity field (u, v) the vertical vorticity is ∂xv−
∂yu. Suppose we transform to a rotated coordinate system (x′, y′) in which
the velocity field has the components (u′, v′). Show that in the rotating frame
the vorticity is ∂x′v′ − ∂y′u′, i.e. the same form as it had in the rest frame.

There are several approaches to this problem. The following argument
aims to cover the concept of a 2D reference frame rotating with an angular
velocity constant in time. Consider the position vector in the fixed (non-
rotating, or inertial) reference frame,

~r = xx̂+ yŷ (14)

Taking the material derivative and using the chain rule,

d~r

dt
=
dx

dt
x̂+ x

dx̂

dt
+
dy

dt
ŷ + y

dŷ

dt
(15)
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For a coordinate system rotating at a constant rate (Ω), the unit vectors (x̂
and ŷ) sweep out differential arc lengths in directions perpendicular to the
unit vectors

dx̂

dt
= ||x̂||dθ

dt
ŷ = Ωŷ (16)

dŷ

dt
= −||ŷ||dθ

dt
x̂ = −Ωx̂ (17)

We can write the fixed-reference frame velocity vector (left hand side of equa-
tion 15) in terms of the velocity in a rotating reference frame by taking the
rotation rate (Ω) to be nonzero. When we do this the dx/dt and dy/dt terms
on the right hand side of equation (15) become the relative velocities (u′rel

and v′rel); primes indicate that we are in a reference frame rotated relative to
the fixed reference frame; and the subscripts (rel) indicate that this reference
frame is also undergoing continual rotation over time so that the velocities
are measured relative to the motion of the rotating reference frame. Using
these relations, equation (15) becomes

u′ = u′rel − y′Ω (18)

v′ = v′rel + x′Ω (19)

which states the absolute velocity in the fixed, rotated (but not rotating)
reference frame (u′, v′) is given by the relative velocity in the rotating refer-
ence frame plus an additional factor due to the rotation rate of the reference
frame. The vorticity is obtained from differentiating equation (18, 19),

∂v′

∂x′
− ∂u′

∂y′
=
∂v′rel

∂x′
− ∂u′rel

∂y′
+ 2Ω (20)

The left hand side (LHS) is the absolute vorticity (the vorticity in the non-
rotating frame), which is equal to relative vorticity in the rotating reference
frame (first two RHS terms) plus twice the rotation rate of the reference
frame.

We can show that rotation of the coordinate system does not change the
absolute vorticity by using the chain rule

∂v

∂x
=

∂v

∂x′
∂x′

∂x
+
∂v

∂y′
∂y′

∂x
(21)

∂u

∂y
=
∂u

∂y′
∂y′

∂y
+
∂u

∂x′
∂x′

∂y
(22)
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By differentiating the rotation matrix defined in class we can rewrite equa-
tions (21, 22) as

∂v

∂x
=

∂v

∂x′
cos(Ωt)− ∂v

∂y′
sin(Ωt) (23)

∂u

∂y
=
∂u

∂y′
cos(Ωt) +

∂u

∂x′
sin(Ωt) (24)

Forming the vorticity from these equations we obtain

∂v

∂x
− ∂u

∂y
=

∂

∂x′

(
v cos(Ωt)− u sin(Ωt)

)
− ∂

∂y′

(
v sin(Ωt) + u cos(Ωt)

)
(25)

The RHS of equation (25) can be rewritten in terms of the velocity compo-
nents in the rotated reference frame, to obtain

∂v

∂x
− ∂u

∂y
=
∂v′

∂x′
− ∂u′

∂y′
(26)

which means the absolute vorticity is unchanged by rotation of the coordinate
axes. We can now rewrite equation (20)

∂v

∂x
− ∂u

∂y
=
∂v′rel

∂x′
− ∂u′rel

∂y′
+ 2Ω (27)

which shows that the absolute vorticity in the fixed reference frame (LHS
terms) is equal to the relative vorticity in the rotating frame (first two RHS
terms) plus an additional constant 2Ω due to the rotation rate of the coor-
dinate system (e.g. the Earth’s vorticity).

Problem 2.4 The vertical vorticity equation in the rest frame (i.e. the
non-rotating frame) is

d

dt
ωs − ~ω · ∇w = 0 (28)

We derive the vertical vorticity equation in the rotating reference frame by
splitting the vertical vorticity into the Earth’s part and the relative part and
substituting into equation (28) to get

d

dt

(
2Ωẑ + ωz,rel

)
− ~ω · ∇w = 0 (29)

There is no time rate of change of the Earth’s vorticity and the advection
term in the material derivative is invariant to rotation of the coordinate axes
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(per discussion in class). Furthermore the results from problem 2.3 showed
that the absolute vorticity in a rest frame is equal to the sum of the Earth’s
vorticity and the relative vorticity in the rotating coordinate system (see
equation 27). Considering these facts, the first LHS term of equation (29)
becomes the time rate of change of the relative vorticity in a reference frame
rotating with the Earth’s vorticity.

d

dt
ω′z,rel (30)

For the second LHS term, note that dot product in the full vorticity equation
derived in class (~ω·∇~v) only contributes the term (~ω·∇w) to the z-component
of vorticity (ωz). Expanding this term gives,

~ω · ∇w = ωx
∂w

∂x
+ ωy

∂w

∂y
+ ωz

∂w

∂z
(31)

~ω · ∇w =
(∂w
∂y
− ∂v

∂z

)∂w
∂x
−

(∂w
∂x
− ∂u

∂z

)∂w
∂y

+
(∂v
∂x
− ∂u

∂y

)∂w
∂z

(32)

Taking the horizontal velocity independent of height, equation (32) becomes

~ω · ∇w =
∂w

∂y

∂w

∂x
− ∂w

∂x

∂w

∂y
+

(∂v
∂x
− ∂u

∂y

)∂w
∂z

(33)

The first two terms cancel, leaving

~ω · ∇w =
(∂v
∂x
− ∂u

∂y

)∂w
∂z

(34)

The first RHS quantity is the absolute vorticity in the rest frame, which can
be written as the absolute vorticity in the rotating reference frame using the
result of equation (26). Using these results, (30), and the invariance of the
dot product to coordinate rotation, the relative vorticity equation becomes

d

dt
ω′z,rel −

(
ω′z,rel + 2Ω

)
· ∇′w = 0 (35)

Problem 2.5 Consider a region of the Earth where 2Ω ≈ 10−4s−1. A uni-
form geostrophically balanced wind with a speed of 20 m s−1 blows through
this region. The air density is 1 kg m−3. How much does the pressure in this
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region vary over a distance of 1000 km? Give the answer in Pascals. Do the
same for an ocean current of 10 cm s−1 with density of water 1000 kg m−3

A geostrophically balanced wind in (suppose) the x-direction is given by
the x-component of the equation for geostrophic balance

2Ωu = −1

ρ

∂p

∂y

so the pressure gradient is given by

−2ρΩu =
∂p

∂y

which gives a pressure gradient of magnitude 0.002 Pa m−1. Over 1000 km
the pressure will vary by 2 · 103 Pa, or 2 mb. For the ocean the pressure
varies by 1 · 104Pa.

Problem 2.6 Find the geostrophically balanced flow over a ridge with
height h(x) = h0(1 − x2/L2) for |x| < L, having h = 0 elsewhere. The fluid
layer has depth D away from the ridge, and the flow far upstream is in a
uniform geostrophically balanced current in the x direction with constant
speed U. Sketch the vorticity field, marking regions of positive and negative
vorticity. Interpret your result in terms of the stretching or compression of
the Earth’s vorticity of rotation.

Starting with the vertical vorticity equation (first order in Rossby num-
ber) derived in class,

dgω

dt
= −2Ω

D

dh(x)

dt
(36)

where the RHS is proportional to the change in bottom height, assuming the
change in surface height to be relatively small. This states that the sum of the
relative vorticity and a term proportional to the bottom height is constant
following the fluid motion,

dg

dt

(
ω +

2Ω

D
h(x)

)
= 0 (37)

so that

ω +
2Ω

D
h(x) = 0 (38)
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where we take the constant to be zero because the relative vorticity must
vanish far from the ridge if the flow there has constant speed U. Writing this
in terms of streamfunction and moving the height term back to the RHS,

∂2ψ

∂x2
+
∂2ψ

∂y2
= −2Ωh(x)

D
(39)

We know that in the far stream ∂yψ is constant in y because U is constant.
Since the ridge height is also constant in y we have ∂yψ

′ = 0 for the pertur-
bation near the ridge. Imposing these requirements on equation (39) gives a
perturbation streamfunction equation valid near the ridge

d2ψ′

dx2
= −2Ωh(x)

D
(40)

Integrating once and taking the constant of integration to be zero (for sym-
metry of the perturbation y-velocity about the ridge)

dψ′

dx
=

2Ωh0

D

(
− x+

x3

3L2

)
(41)

Integrating a second time,

ψ′ =
2Ωh0

D

(
− x2

2
+

x4

12L2

)
+ c (42)

which gives a solution having high pressure (negative vorticity) over the
ridge with surrounding lower pressure (positive vorticity). As the flow moves
over the ridge columns of vorticity become compressed. Since the change in
column depth is negative for compression the relative vorticity must decrease
over the ridge to satisfy potential vorticity conservation (equation 36). Since
the flow is geostrophic we know the perturbation y-component of the velocity
(v) is positive (northward) to the left of the ridge and negative (southward) to
the right of the ridge to give an anticyclonic (negative vorticity) circulation.
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