
Geosci 342 Problem Set 4

March 13, 2009

Problem 4.1 For a frictional boundary layer with friction forces repre-
sented as a drag (−u/τ,−v/τ) within a layer of depth δ, find the vector
(u, v) as a function of τ and δ as τ is increased from zero to large values.

The steady linearized equations of motion in the presence of drag are

−u
τ

+ 2Ωv = 2Ωvg (1)

−v
τ
− 2Ωu = −2Ωug (2)

Using the result from class, the x-component of the velocity is given by

u = − 2Ω

4Ω2 + τ−2

(vg
τ
− 2Ωug

)
(3)

Following a similar derivation, the y-component of the velocity is obtained
from equations (1,2)

v =
2Ω

4Ω2 + τ−2

(ug
τ

+ 2Ωvg

)
(4)

If we align the coordinate system so that (say) the y-axis is pointing in the
direction of the geostrophic wind then we can eliminate ug from (5,6).

u = − 2Ω

4Ω2 + τ−2

(vg
τ

)
(5)

v =
2Ω

4Ω2 + τ−2

(
2Ωvg

)
(6)

These equations can be rearranged to highlight the role of the
nondimensional parameter 2Ωτ , which is essentially an inverse Ekman
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number. Form terms involving powers of 2Ωτ (multiply numerator and
denominator by τ 2). Further dividing by the geostrophic wind (vg) tells us
exactly how the wind varies with τ (through the nondimensional number
2Ωτ)

u

vg
= − (2Ωτ)

1 + (2Ωτ)2
(7)

v

vg
=

(2Ωτ)2

1 + (2Ωτ)2
(8)

This solution has the necessary behavior that the x-component of the wind
approaches zero and the y-component approaches its geostrophic value for
weak damping (2Ωτ >> 1). For strong damping τ is small (2Ωτ << 1) and
both u and v are zero. For 2Ωτ = 1 the rotation rate and damping times are
comparable and both the x-component and y-component of the velocity have
magnitude equal to half the geostrophic wind speed (the actual wind vector
is rotated 45◦ in the cyclonic direction from the geostrophic wind vector).
See figure (1).

Note that the geostrophic wind is specified at the top of the boundary
layer (a number, independent of boundary layer depth) and by parameter-
izing the viscous forces as a depth-independent drag law the wind is also
independent of depth. In the next problem we will see that the dependence
of the wind on τ is analogous to its dependence on depth within the bound-
ary layer, as each layer of fluid exerts an additional drag on the layer below.

Problem 4.2 If the boundary layer frictional force is represented in terms
of a viscosity, then the equations for the boundary layer flow become

ν
d2u

dz2
= −2Ω(v − vg), ν

d2v

dz2
= 2Ω(u− ug) (9)

Solve these equations for the behavior of the vector (u, v) as a function of z,
subject to the boundary condition that u = ug and v = vg at large z and
u = v = 0 at z = 0... This is a classic problem found in most text books.
Adding i times the second equation to the first equation gives

ν
d2(u+ iv)

dz2
− 2Ωi(u+ iv) = −2Ωi(ug + ivg) (10)
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Figure 1: u- and v-components of the wind as a function of the nondimen-
sional damping time 2Ωτ .

Following the usual method (of undetermined coefficients), assume solutions
of the form (u+iv) = eγz for the homogeneous problem (zero RHS) to obtain
the eigenvalues

γ = ±
√

2Ωi/ν (11)

Using
√
i = 1+i√

2
, (11) becomes

γ = ±
√

Ων−1(1 + i) (12)

which means the homogeneous solution has exponential and oscillatory be-
havior. It is easy to find a particular solution if ug and vg are independent of
depth (which is u + iv = ug + ivg). Adding this to the above solution gives
a general solution

(u+ iv) = Ae
√

Ων−1z
(

cos
√

Ων−1z + i sin
√

Ων−1z
)

+

Be−
√

Ων−1z
(

cos
√

Ων−1z − i sin
√

Ων−1z
)

+ ug + ivg (13)

Separating (14) into its real and imaginary parts and setting A = 0 by using
the boundary condition that the wind approach the geostrophic value as z
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increases,

u = Be
√

Ων−1z cos (
√

Ων−1z) + ug (14)

v = Be−
√

Ων−1z sin (
√

Ων−1z) + vg (15)

The top boundary condition is satisfied for the first equation by setting
B = ug. We satisfy the boundary condition in the second equation by ro-
tating the coordinate axes so that the x-axis points in the direction of the
geostrophic wind. This is what the mathematics has required by multiplying
the v-component velocity by i.

u = uge
√

Ων−1z cos (
√

Ων−1z) + ug (16)

v = uge
−
√

Ων−1z sin (
√

Ων−1z) (17)

The boundary layer thickeness is determined by the depth at which the wind
approaches its geostrophic value. Inspecting equation (17) we see that when
sin (
√

Ων−1z) = 0 the velocity decays to its geostrophic value (taking vg = 0),

which happens when z = π
√
νΩ−1.

The divergence is given by taking ∂u/∂x, ∂v/∂y of equations (16,17) to
get

∂v

∂y
= ζge

−
√

Ων−1z sin (
√

Ων−1z) (18)

where ζg = ∂ug/∂y is the geostrophic relative vorticity in the coordinate
system aligned with the geostrophic wind. In differentiating the first equation
we use the fact that the geostrophic wind is nondivergent, and vg = 0 in the
rotated coordinate system. The vertical velocity is the divergence, vertically
integrated to the top of the boundary layer,

w(ztop) =
√
νΩ−1

1

2

[(
sin
√

Ων−1ztop)− cos
√

Ων−1ztop

)
e−
√

Ων−1ztop

−
(

sin
√

Ων−1z(0))− cos
√

Ων−1z(0)
)
e−
√

Ων−1z(0)
]

(19)

Plugging in for ztop = π
√
νΩ−1 and z(0) = 0 we get w(ztop) ≈ 1

2
ζg
√
νΩ−1.

The vertical velocity is proportional to the boundary layer depth, which is
in turn dependent on the strength of the viscous dissipation. This result is
qualitatively similar to what we obtained in class using the drag law form of
viscous dissipation.
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Problem 4.3 Including the effects of Ekman damping, the stationary Rossby
wave equation for flow over a mountain is

U∂x∇ψ + β∂xψ + 2ΩU∂xh/H = −E∇ψ (20)

Solve this equation for a mountain of shape h = h0 cos kx sin ly. The flow is
in a channel on the β-plane, and has v = 0 at y = 0 and y = π/L...

It is helpful to write the mountain shape as h = h0Re(e
ikx) sin ly. We

try solutions having form similar to the forcing and its derivatives. For
ψ = Aeikx sin ly we get the following algebraic equation

A
[
Ui(k3 + kl2) + βik − E(k2 + l2)

]
eikx sin ly = 2ΩU

ho
H
ikeikx sin ly (21)

Then we have an equation for the complex amplitude

Ã =
(
K2 −K2

s −
iE

kU
K2
)−1

2Ωk
ho
H

(22)

where Ks is the stationary wavenumber and K2 is the squared magnitude
of the total wavenumber vector (k2 + l2). Putting the imaginary part in the
numerator,

Ã =

(
K2 −K2

s − iE
kU
K2
)

2Ωk ho

H

(K2 −K2
s )2 +

(
E
kU
K2
)2 (23)

The complex amplitude can be written as Ã = Ar + iAi = |Ã|eiφ or in other
words Ã = |Ã| cosφ+ i|Ã| sinφ, where φ is whatever it need be to write the
complex amplitude in this form and |Ã| is the square root of the squares of
the real and imaginary amplitudes. Using this in our assumed solution, we
get ψ = |Ã|eiφ cos kx sin ly. Using cos kx = 1

2
(eikx − e−ikx), and multiplying

this by eiφ we get the phase-shifted solution ψ = |Ã| cos (kx+ π/2) sin (ly),
which matches the given boundary conditions.

Collecting real and imaginary parts of the amplitude we get Ar = |Ã| cosφ
and Ai = |Ã| sinφ, so taking the arctangent of the ratio Ai/Ar = tanφ gives
the angle φ. Plugging the imaginary and real parts of Ã into this ratio gives

tanφ =
Ai
Ar

=
EK2/kU

K2 −K2
s

(24)

When K = Ks we notice that the real part of the amplitude in equation
(24) is zero, which means the arctangent of the ratio Ai/Ar will give an
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angle of 90◦. The maximum amplitude still occurs when K = Ks, but the
damping shifts the wave one-quarter out of phase with the topography and
removes the resonant singularity that occurred in the absence of damping.
To check the solution, notice that when there is no damping (E = 0) the
amplitude equation (23) reduces to that of equation (11) of problem set 3,
A = −2Ω

D
h0/(k

2
s − k2), except for the sign difference due to the form of the

topography.

Problem 4.4 Consider a circular ocean basin on a β-plane. The radius of
the ocean basin is r, and it is driven by a wind with profile U0 cos πy

2r
, with

y = 0 taken to be the center of the circle. Assuming Sverdrup balance, find
the flow in this ocean basin assuming there is no flow through the boundary
on the right-hand side of the basin...

The equation given in class,

β
∂ψ

∂x
= − δ

Hτ

∂u∗

∂y
(25)

describes a balance between the stretching of vortex columns by Ekman
pumping in the ocean surface layer (boundary layer) and the vorticity ac-
quired by meridional fluid motion on a rotating sphere. The Ekman pumping
is driven by the wind stress exerted by the atmosphere on the ocean. If we
take the wind given in this problem to be the atmospheric surface layer wind
(the friction velocity u∗), equation (25) becomes

β
∂ψ

∂x
=
δU0π

2Hτr
sin

πy

2r
(26)

Integrating in x from the semicircle on the right of the domain (x =
√
r2 − y2)

to an arbitrary x gives

ψ(xcircle)− ψ(x, y) ∝ sin
(yπ

2r

)(√
r2 − y2 − x

)
(27)

Taking ψ = 0 on the semicircle boundary to satisfy the zero normal flow
condition there,

ψ(x, y) ∝ − sin
(yπ

2r

)(√
r2 − y2 − x

)
(28)

Boundary currents must occur on the left side of the domain to satisfy the
zero normal flow condition there. See figure 2
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Figure 2: Streamfunction for Sverdrup balance in a circular basin.
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